1
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Iglesias R, Ferreras JM, Llorente A, Citores L. Ebulin l Is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins (Basel) 2021; 13:toxins13020102. [PMID: 33573355 PMCID: PMC7911328 DOI: 10.3390/toxins13020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Mechanical, Electronics and Chemical Engineering Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
- Correspondence:
| |
Collapse
|
3
|
Drizyte-Miller K, Chen J, Cao H, Schott MB, McNiven MA. The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling. J Cell Sci 2020; 133:jcs236661. [PMID: 32295849 PMCID: PMC7295596 DOI: 10.1242/jcs.236661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial cells, such as liver-resident hepatocytes, rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rab proteins can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports the mechanistic target of rapamycin complex 1 (mTORC1) signaling under basal and amino acid-stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase, and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Hong Cao
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Micah B Schott
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A McNiven
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Tharkeshwar AK, Gevaert K, Annaert W. Organellar Omics-A Reviving Strategy to Untangle the Biomolecular Complexity of the Cell. Proteomics 2017; 18:e1700113. [PMID: 29125683 DOI: 10.1002/pmic.201700113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022]
Abstract
A eukaryotic cell encompasses many membrane-enclosed organelles, each of these holding several types of biomolecules that exhibit tremendous diversity in terms of their localization and expression. Despite the development of increasingly sensitive analytical tools, the enormous biomolecular complexity that exists within a cell cannot yet be fully resolved as low abundant molecules often remain unrecognized. Moreover, a drawback of whole cell analysis is that it does not provide spatial information and therefore it is not capable of assigning distinct biomolecules to specific compartments or analyzing changes in the composition of these compartments. Reduction of the biomolecular complexity of a sample helps to identify low abundant molecules, but such a reductionist approach requires methods that enable proper isolation and purification of individual cellular organelles. Decades of research have led to the development of a plethora of isolation methods for a broad range of subcellular organelles; yet, in particular, intrinsically dynamic compartments belonging to the endocytic machinery, including the plasma membrane, remain difficult to isolate in a sufficiently pure fraction. In this review, we discuss various methods that are commonly used to isolate subcellular organelles from cells and evaluate their advantages and disadvantages.
Collapse
Affiliation(s)
- Arun Kumar Tharkeshwar
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium.,Laboratory for Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium.,Laboratory for Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Vashi N, Andrabi SBA, Ghanwat S, Suar M, Kumar D. Ca 2+-dependent Focal Exocytosis of Golgi-derived Vesicles Helps Phagocytic Uptake in Macrophages. J Biol Chem 2017; 292:5144-5165. [PMID: 28174296 DOI: 10.1074/jbc.m116.743047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Indexed: 11/06/2022] Open
Abstract
The role of Golgi apparatus during phagocytic uptake by macrophages has been ruled out in the past. Notably, all such reports were limited to Fcγ receptor-mediated phagocytosis. Here, we unravel a highly devolved mechanism for recruitment of Golgi-derived secretory vesicles during phagosome biogenesis, which was important for uptake of most cargos, except the IgG-coated ones. We report recruitment of mannosidase-II-positive Golgi-derived vesicles during uptake of diverse targets, including latex beads, Escherichia coli, Salmonella typhimurium, and Mycobacterium tuberculosis in human and mouse macrophages. The recruitment of mannosidase-II vesicles was an early event mediated by focal exocytosis and coincided with the recruitment of transferrin receptor, VAMP3, and dynamin-2. Brefeldin A treatment inhibited mannosidase-II recruitment and phagocytic uptake of serum-coated or -uncoated latex beads and E. coli However, consistent with previous studies, brefeldin A treatment did not affect uptake of IgG-coated latex beads. Mechanistically, recruitment of mannosidase-II vesicles during phagocytic uptake required Ca2+ from both extra- and intracellular sources apart from PI3K, microtubules, and dynamin-2. Extracellular Ca2+ via voltage-gated Ca2+ channels established a Ca2+-dependent local phosphatidylinositol 1,4,5-trisphosphate gradient, which guides the focal movement of Golgi-derived vesicles to the site of uptake. We confirmed Golgi-derived vesicles recruited during phagocytosis were secretory vesicles as their recruitment was sensitive to depletion of VAMP2 or NCS1, whereas recruitment of the recycling endosome marker VAMP3 was unaffected. Depletion of both VAMP2 and NCS1 individually resulted in the reduced uptake by macrophages. Together, the study provides a previously unprecedented role of Golgi-derived secretory vesicles in phagocytic uptake, the key innate defense function.
Collapse
Affiliation(s)
- Nimi Vashi
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Syed Bilal Ahmad Andrabi
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Swapnil Ghanwat
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Mrutyunjay Suar
- the School of Biotechnology, KIIT University, Bhubaneswar-751024, India
| | - Dhiraj Kumar
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| |
Collapse
|
6
|
Cao H, Schroeder B, Chen J, Schott MB, McNiven MA. The Endocytic Fate of the Transferrin Receptor Is Regulated by c-Abl Kinase. J Biol Chem 2016; 291:16424-37. [PMID: 27226592 PMCID: PMC4974358 DOI: 10.1074/jbc.m116.724997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
Clathrin-mediated endocytosis of transferrin (Tf) and its cognate receptor (TfR1) is a central pathway supporting the uptake of trophic iron. It has generally been assumed that this is a constitutive process. However, we have reported that the non-receptor tyrosine kinase, Src, is activated by Tf to facilitate the internalization of the Tf-TfR1 ligand-receptor complex. As an extension of these findings, we have tested whether subsequent trafficking steps might be regulated by additional kinase-dependent cascades, and we observed a significant endocytic block by inhibiting c-Abl kinase by a variety of methods. Importantly, Tf internalization was reduced significantly in all of these cell models and could be restored by re-expression of WT c-Abl. Surprisingly, this attenuated Tf-TfR1 endocytosis was due to a substantial drop in both the surface and total cellular receptor levels. Additional studies with the LDL receptor showed a similar effect. Surprisingly, immunofluorescence microscopy of imatinib-treated cells revealed a marked colocalization of internalized TfR1 with late endosomes/lysosomes, whereas attenuating the lysosome function with several inhibitors reduced this receptor loss. Importantly, inhibition of c-Abl resulted in a striking redistribution of the chaperone Hsc70 from a diffuse cytosolic localization to an association with the TfR1 at the late endosome-lysosome. Pharmacological inhibition of Hsc70 ATPase activity in cultured cells by the drug VER155008 prevents this chaperone-receptor interaction, resulting in an accumulation of the TfR1 in the early endosome. Thus, inhibition of c-Abl minimizes receptor recycling pathways and results in chaperone-dependent trafficking of the TfR1 to the lysosome for degradation. These findings implicate a novel role for c-Abl and Hsc70 as an unexpected regulator of Hsc70-mediated transport of trophic receptor cargo between the early and late endosomal compartments.
Collapse
Affiliation(s)
- Hong Cao
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Barbara Schroeder
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jing Chen
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Micah B Schott
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Mark A McNiven
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| |
Collapse
|
7
|
Xiao D, Chen S, Shao Q, Chen J, Bijian K, Laird DW, Alaoui-Jamali MA. Dynamin 2 interacts with connexin 26 to regulate its degradation and function in gap junction formation. Int J Biochem Cell Biol 2014; 55:288-97. [DOI: 10.1016/j.biocel.2014.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 11/16/2022]
|
8
|
Abstract
UNLABELLED Clathrin-mediated endocytosis in mammalian epithelial cells is believed to require the synergistic action of structural coat proteins and mechanochemical enzymes to deform and sever the plasma membrane (PM) into discreet vesicles. It is generally believed that the formation of clathrin-coated pits in epithelial cells occurs randomly along the apical and basolateral plasma membranes. In this study we visualized the endocytic machinery in living hepatocytes using green fluorescent protein (GFP)-tagged dynamin, a large mechanochemical guanosine triphosphate (GTP)ase implicated in the liberation of nascent vesicles from the plasma membrane and a variety of internal membrane compartments. Confocal microscopy of living cells expressing the epithelial isoform of GFP-tagged dynamin [Dyn2-GFP] revealed a distribution along the ventral PM in discrete vesicle-like puncta or in large (2-10 μm) tubuloreticular plaques. Remarkably, these large structures are dynamic as they form and then disappear, while generating large numbers of motile endocytic vesicles with which dynamin associates. Inhibiting dynamin function by microinjection of purified dynamin antibodies increases the number and size of the tubuloreticular plaques. Importantly, these "hot spots" sequester specific trophic receptors and cognate ligands such as transferrin receptor 1 (TfR1), but not TfR2. CONCLUSION These findings suggest that hepatocytes sequester or prerecruit both structural and enzymatic components of the clathrin-based endocytic machinery to functional hot spots, from which large numbers of coated pits form and vesicles are generated. This process may mimic the endocytic organization found at the synapse in neuronal cells.
Collapse
Affiliation(s)
- Hong Cao
- The Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905
| | - Eugene W. Krueger
- The Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905
| | - Mark A. McNiven
- Dept. of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
- The Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
9
|
Wang Y, Cao H, Chen J, McNiven MA. A direct interaction between the large GTPase dynamin-2 and FAK regulates focal adhesion dynamics in response to active Src. Mol Biol Cell 2011; 22:1529-38. [PMID: 21411625 PMCID: PMC3084675 DOI: 10.1091/mbc.e10-09-0785] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study establishes Dyn2 as a novel effector downstream of Src-FAK signaling in mediating FA disassembly. FAK directly binds to and recruits Dyn2 to FAs. The formation of a Src–FAK–Dyn2 complex is essential for Dyn2's phosphoactivation and subsequent endocytic turnover of FAs. Tumor cell migration is supported in part by the cyclic formation and disassembly of focal adhesions (FAs); however, the mechanisms that regulate this process are not fully defined. The large guanosine 5′-triphosphatase dynamin (Dyn) plays an important role in FA dynamics and is activated by tyrosine phosphorylation. Using a novel antibody specific to phospho-dynamin (pDyn–Tyr-231), we found that Dyn2 is phosphorylated at FAs by Src kinase and is recruited to FAs by a direct interaction with the 4.1/ezrin/radizin/moesin domain of focal adhesion kinase (FAK), which functions as an adaptor between Src and Dyn2 to facilitate Dyn2 phosphorylation. This Src–FAK–Dyn2 trimeric complex is essential for FA turnover, as mutants disrupting the formation of this complex inhibit FA disassembly. Importantly, phosphoactivated Dyn2 promotes FA turnover by mediating the endocytosis of integrins in a clathrin-dependent manner. This study defines a novel mechanism of how Dyn2 functions as a downstream effector of FAK–Src signaling in turning over FAs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
10
|
Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011; 5:187-98. [PMID: 21258212 DOI: 10.4161/cam.5.2.14773] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Branched actin assembly is critical for a variety of cellular processes that underlie cell motility and invasion, including cellular protrusion formation and membrane trafficking. Activation of branched actin assembly occurs at various subcellular locations via site-specific activation of distinct WASp family proteins and the Arp2/3 complex. A key branched actin regulator that promotes cell motility and links signaling, cytoskeletal and membrane trafficking proteins is the Src kinase substrate and Arp2/3 binding protein cortactin. Due to its frequent overexpression in advanced, invasive cancers and its general role in regulating branched actin assembly at multiple cellular locations, cortactin has been the subject of intense study. Recent studies suggest that cortactin has a complex role in cellular migration and invasion, promoting both on-site actin polymerization and modulation of autocrine secretion. Diverse cellular activities may derive from the interaction of cortactin with site-specific binding partners.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
11
|
Kurklinsky S, Chen J, McNiven MA. Growth cone morphology and spreading are regulated by a dynamin-cortactin complex at point contacts in hippocampal neurons. J Neurochem 2011; 117:48-60. [PMID: 21210813 DOI: 10.1111/j.1471-4159.2011.07169.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal growth cone (GC) migration and targeting are essential processes for the formation of a neural network during embryonic development. Currently, the mechanisms that support directed motility of GCs are not fully defined. The large GTPase dynamin and an interacting actin-binding protein, cortactin, have been localized to GCs, although the function performed by this complex is unclear. We have found that cortactin and the ubiquitous form of dynamin (Dyn) 2 exhibit a striking co-localization at the base of the transition zone of advancing GCs of embryonic hippocampal neurons. Confocal and total internal reflection fluorescence microscopies demonstrate that this basal localization represents point contacts. Exogenous expression of wild-type Dyn2 and cortactin leads to large, exceptionally flat, and static GCs, whereas disrupting this complex has no such effect. We find that excessive GC spreading is induced by Dyn2 and cortactin over-expression and substantial recruitment of the point contact-associated, actin-binding protein α-actinin1 to the ventral GC membrane. The distributions of other point contact proteins such as vinculin or paxillin appear unchanged. Immunoprecipitation experiments show that both Dyn2 and cortactin reside in a complex with α-actinin1. These findings provide new insights into the role of Dyn2 and the actin cytoskeleton in GC adhesion and motility.
Collapse
Affiliation(s)
- Svetlana Kurklinsky
- Mayo Graduate School, The Molecular Neuroscience Program, Rochester, Minnesota, USA
| | | | | |
Collapse
|
12
|
Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D. Lipidomics era: accomplishments and challenges. MASS SPECTROMETRY REVIEWS 2010; 29:877-929. [PMID: 20931646 DOI: 10.1002/mas.20294] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO J 2010; 29:3039-53. [PMID: 20711168 DOI: 10.1038/emboj.2010.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/14/2010] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl-interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85-Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.
Collapse
|
14
|
Hom J, Yu T, Yoon Y, Porter G, Sheu SS. Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:913-21. [PMID: 20347716 DOI: 10.1016/j.bbabio.2010.03.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 01/21/2023]
Abstract
Mitochondria are dynamic organelles that constantly undergo fission, fusion, and movement. Increasing evidence indicates that these dynamic changes are intricately related to mitochondrial function, suggesting that mitochondrial form and function are linked. Calcium (Ca2+) is one signal that has been shown to both regulate mitochondrial fission in various cell types and stimulate mitochondrial enzymes involved in ATP generation. However, although Ca2+ plays an important role in adult cardiac muscle cells for excitation-metabolism coupling, little is known about whether Ca2+ can regulate their mitochondrial morphology. Therefore, we tested the role of Ca2+ in regulating cardiac mitochondrial fission. We found that neonatal and adult cardiomyocyte mitochondria undergo rapid and transient fragmentation upon a thapsigargin (TG)- or KCl-induced cytosolic Ca2+ increase. The mitochondrial fission protein, DLP1, participates in this mitochondrial fragmentation, suggesting that cardiac mitochondrial fission machinery may be regulated by intracellular Ca2+ signaling. Moreover, the TG-induced fragmentation was also associated with an increase in reactive oxygen species (ROS) formation, suggesting that activation of mitochondrial fission machinery is an early event for Ca2+-mediated ROS generation in cardiac myocytes. These results suggest that Ca2+, an important regulator of muscle contraction and energy generation, also dynamically regulates mitochondrial morphology and ROS generation in cardiac myocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Dynamins
- GTP Phosphohydrolases/metabolism
- In Vitro Techniques
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/metabolism
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
- Thapsigargin/pharmacology
Collapse
Affiliation(s)
- Jennifer Hom
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
15
|
Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci U S A 2010; 107:5863-8. [PMID: 20231454 DOI: 10.1073/pnas.0915123107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The size and integrity of the Golgi apparatus is maintained via a tightly controlled regulation of membrane traffic using a variety of different signaling and cytoskeletal proteins. We have recently observed that activation of c-Src has profound effects on Golgi structure, leading to dramatically vesiculated cisternae in a variety of cell types. As the large GTPase dynamin (Dyn2) has been implicated in Golgi vesiculation during secretion, we tested whether inhibiting Dyn2 activity by expression of a Dyn2K44A mutant or siRNA knockdown could attenuate active Src-induced Golgi fragmentation. Indeed, these perturbations attenuated fragmentation, and expression of a Dyn2Y(231/597)F mutant protein that cannot be phosphorylated by Src kinase had a similar effect . Finally, we find that Dyn2 is markedly phosphorylated during the transit of VSV-G protein through the TGN whereas expression of the Dyn2Y(231/597)F mutant significantly reduces exit of the nascent protein from this compartment. These findings demonstrate that activation of Dyn2 by Src kinase regulates Golgi integrity and vesiculation during the secretory process.
Collapse
|
16
|
SRC-mediated phosphorylation of dynamin and cortactin regulates the "constitutive" endocytosis of transferrin. Mol Cell Biol 2009; 30:781-92. [PMID: 19995918 DOI: 10.1128/mcb.00330-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which epithelial cells regulate clathrin-mediated endocytosis (CME) of transferrin are poorly defined and generally viewed as a constitutive process that occurs continuously without regulatory constraints. In this study, we demonstrate for the first time that endocytosis of the transferrin receptor is a regulated process that requires activated Src kinase and, subsequently, phosphorylation of two important components of the endocytic machinery, namely, the large GTPase dynamin 2 (Dyn2) and its associated actin-binding protein, cortactin (Cort). To our knowledge these findings are among the first to implicate an Src-mediated endocytic cascade in what was previously presumed to be a nonregulated internalization process.
Collapse
|
17
|
Dynamin 2 orchestrates the global actomyosin cytoskeleton for epithelial maintenance and apical constriction. Proc Natl Acad Sci U S A 2009; 106:20770-5. [PMID: 19948954 DOI: 10.1073/pnas.0909812106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanisms controlling cell shape changes within epithelial monolayers for tissue formation and reorganization remain unclear. Here, we investigate the role of dynamin, a large GTPase, in epithelial morphogenesis. Depletion of dynamin 2 (Dyn2), the only dynamin in epithelial cells, prevents establishment and maintenance of epithelial polarity, with no junctional formation and abnormal actin organization. Expression of Dyn2 mutants shifted to a non-GTP state, by contrast, causes dramatic apical constriction without disrupting polarity. This is due to Dyn2's interactions with deacetylated cortactin and downstream effectors, which cause enhanced actomyosin contraction. Neither inhibitors of endocytosis nor GTP-shifted Dyn2 mutants induce apical constriction. This suggests that GTPase-dependent changes in Dyn2 lead to interactions with different effectors that may differentially modulate endocytosis and/or actomyosin dynamics in polarized cells. We propose this enables Dyn2 to coordinate, in a GTPase-dependent manner, membrane recycling and actomyosin contractility during epithelial morphogenesis.
Collapse
|
18
|
Orlichenko L, Weller SG, Cao H, Krueger EW, Awoniyi M, Beznoussenko G, Buccione R, McNiven MA. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol Biol Cell 2009; 20:4140-52. [PMID: 19641024 DOI: 10.1091/mbc.e08-10-1043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Remodeling of cell-cell contacts through the internalization of adherens junction proteins is an important event during both normal development and the process of tumor cell metastasis. Here we show that the integrity of tumor cell-cell contacts is disrupted after epidermal growth factor (EGF) stimulation through caveolae-mediated endocytosis of the adherens junction protein E-cadherin. Caveolin-1 and E-cadherin closely associated at cell borders and in internalized structures upon stimulation with EGF. Furthermore, preventing caveolae assembly through reduction of caveolin-1 protein or expression of a caveolin-1 tyrosine phospho-mutant resulted in the accumulation of E-cadherin at cell borders and the formation of tightly adherent cells. Most striking was the fact that exogenous expression of caveolin-1 in tumor cells that contain tight, well-defined, borders resulted in a dramatic dispersal of these cells. Together, these findings provide new insights into how cells might disassemble cell-cell contacts to help mediate the remodeling of adherens junctions, and tumor cell metastasis and invasion.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Mayo Clinic, Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kruchten AE, Krueger EW, Wang Y, McNiven MA. Distinct phospho-forms of cortactin differentially regulate actin polymerization and focal adhesions. Am J Physiol Cell Physiol 2008; 295:C1113-22. [PMID: 18768925 DOI: 10.1152/ajpcell.00238.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.
Collapse
Affiliation(s)
- Anne E Kruchten
- Dept. of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Guggenheim 1637, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
20
|
Chi S, Cao H, Chen J, McNiven MA. Eps15 mediates vesicle trafficking from the trans-Golgi network via an interaction with the clathrin adaptor AP-1. Mol Biol Cell 2008; 19:3564-75. [PMID: 18524853 PMCID: PMC2488291 DOI: 10.1091/mbc.e07-10-0997] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/11/2022] Open
Abstract
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.
Collapse
Affiliation(s)
- Susan Chi
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Hong Cao
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Jing Chen
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Mark A. McNiven
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| |
Collapse
|
21
|
Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tetè S, Luini A, Buccione R. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci 2008; 121:369-78. [PMID: 18198194 DOI: 10.1242/jcs.008037] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. Although many molecular components have been defined, less is known of the formation and regulation of invadopodia. The multidomain protein cortactin, which is involved in the regulation of actin polymerisation, is one such component, but how cortactin is modulated to control the formation of invadopodia has not been elucidated. Here, a new invadopodia synchronization protocol is used to show that the cortactin N-terminal acidic and SH3 domains, involved in Arp2/3 complex and N-WASP binding and activation, respectively, are both required for invadopodia biogenesis. In addition, through a combination of RNA interference and a wide array of cortactin phosphorylation mutants, we were able to show that three convergent regulatory inputs based on the regulation of cortactin phosphorylation by Src-family kinases, Erk1/Erk2 and PAK are necessary for invadopodia formation and extracellular matrix degradation. These findings suggest that cortactin is a scaffold protein bringing together the different components necessary for the formation of the invadopodia, and that a fine balance between different phosphorylation events induces subtle changes in structure to calibrate cortactin function.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Tumour Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA. Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci 2007; 120:4167-77. [PMID: 18003703 DOI: 10.1242/jcs.010686] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well-known that dynamin 2 (Dyn2) participates in clathrin- and caveolae-mediated endocytosis; however, the role of Dyn2 in coat-independent endocytic processes remains controversial. Here we demonstrate a role for specific spliced variants of Dyn2 in the micropinocytosis of fluid in epithelial cells, independent of coat-mediated endocytic pathways. A general inhibition of Dyn2 was first performed using either microinjection of anti-dynamin antibodies or Dyn2-siRNA treatment. Both of these methods resulted in reduced uptake of transferrin, a marker for clathrin-mediated endocytosis, and, under unstimulated conditions, reduced the uptake of the fluid-phase markers dextran and horseradish peroxidase (HRP). By contrast, cells treated similarly but stimulated with serum or EGF internalized substantial amounts of dextran or HRP, indicating that Dyn2 is not required for stimulated fluid uptake via macropinocytosis. We next tested whether a specific spliced variant might selectively affect fluid-phase endocytosis. Mutation of specific Dyn2 spliced variants resulted in a differential attenuation of transferrin and dextran internalization. Furthermore, the reduction in fluid uptake in Dyn2-siRNA-treated cells was only rescued upon re-expression of select spliced variants. These findings suggest that Dyn2 function is required for the coat-independent internalization of fluid through endocytic pathways distinct from macropinocytosis and, in addition, implicate different Dyn2 spliced variants in specific endocytic functions.
Collapse
Affiliation(s)
- Hong Cao
- Mayo Clinic, Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
23
|
Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog Lipid Res 2007; 47:15-36. [PMID: 17980916 DOI: 10.1016/j.plipres.2007.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Lipidomics is the characterization of the molecular species of lipids in biological samples. The polar lipids that comprise the bilayer matrix of the constituent cell membranes of living tissues are highly complex and number many hundreds of distinct lipid species. These differ in the nature of the polar group representing the different classes of lipid. Each class consists of a range of molecular species depending on the length, position of attachment and number of unsaturated double bonds in the associated fatty acids. The origin of this complexity is described and the biochemical processes responsible for homeostasis of the lipid composition of each morphologically-distinct membrane is considered. The practical steps that have been developed for the isolation of membranes and the lipids there from, their storage, separation, detection and identification by liquid chromatography coupled to mass spectrometry are described. Application of lipidomic analyses and examples where clinical screening for lipidoses in collaboration with mass spectrometry facilities are considered from the user point of view.
Collapse
Affiliation(s)
- Claude Wolf
- UMRS 538, UMPC Faculté de Medecine Pierre et Marie Curie, 27 Rue Chaligny, 75012 Paris, France.
| | | |
Collapse
|
24
|
Zhang L, Wang X, Peng X, Wei Y, Cao R, Liu Z, Xiong J, Ying X, Chen P, Liang S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res 2007; 6:34-43. [PMID: 17203946 DOI: 10.1021/pr060069r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) has very important roles in cell-cell interaction and signal transduction, and it has been extensively targeted for drug design. A major prerequisite for the analysis of PM proteome is the preparation of PM with high purity. Density gradient centrifugation has been commonly employed to isolate PM, but it often occurred with contamination of internal membrane. Here we describe a method for plasma membrane purification using second antibody superparamagnetic beads that combines subcellular fractionation and immunoisolation strategies. Four methods of immunoaffinity were compared, and the variation of crude plasma membrane (CPM), superparamagnetic beads, and antibodies was studied. The optimized method and the number of CPM, beads, and antibodies suitable for proteome analysis were obtained. The PM of mouse liver was enriched 3-fold in comparison with the density gradient centrifugation method, and contamination from mitochondria was reduced 2-fold. The PM protein bands were extracted and trypsin-digested, and the resulting peptides were resolved and characterized by MALDI-TOF-TOF and ESI-Q-TOF, respectively. Mascot software was used to analyze the data against IPI-mouse protein database. Nonredundant proteins (248) were identified, of which 67% are PM or PM-related proteins. No endoplasmic reticulum (ER) or nuclear proteins were identified according to the GO annotation in the optimized method. Our protocol represents a simple, economic, and reproducible tool for the proteomic characterization of liver plasma membrane.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of National Education Committee, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Orlichenko L, Huang B, Krueger E, McNiven MA. Epithelial Growth Factor-induced Phosphorylation of Caveolin 1 at Tyrosine 14 Stimulates Caveolae Formation in Epithelial Cells. J Biol Chem 2006; 281:4570-9. [PMID: 16332692 DOI: 10.1074/jbc.m512088200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.
Collapse
Affiliation(s)
- Anne K Warner
- Department of Physiology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
27
|
Dahan S, Anderson KL, Weller S, Krueger E, McNiven MA. Agonist-induced vesiculation of the Golgi apparatus in pancreatic acinar cells. Gastroenterology 2005; 129:2032-46. [PMID: 16344069 DOI: 10.1053/j.gastro.2005.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Accepted: 08/31/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The pancreatic acinar cell is known to regulate exocytosis, total protein synthesis, and secretory protein transport in response to a secretory stimulus. Whether secretory vesicle formation also is regulated is unclear. In this study, we determined whether agonist stimulation induces morphologic alterations in the acinar cell Golgi apparatus, and we evaluated the role of the vesicle severing protein dynamin. METHODS Changes in Golgi structural integrity by examining the distribution of various Golgi and TGN lipid and protein markers in live and fixed cells on stimulation with cholecystokinin were noted in a primary pancreatic acinar cell model. Multiple dynamin reagents were used to examine the distribution and function of this molecular pinchase in resting and stimulated cells. RESULTS Regulated secretion in acinar cells induced (1) marked fragmentation of the trans-Golgi network (TGN) that corresponded temporally with an increase in cytoplasmic calcium whereas pre-TGN compartments of the Golgi and regions of the TGN involved in the generation of constitutively trafficking vesicles were unaffected by agonist, and (2) significant recruitment of dynamin to the acinar cell Golgi apparatus that appeared to potentiate fragmentation of the TGN. CONCLUSIONS These results suggest that the TGN is a dynamic organelle that fragments in response to cholecystokinin stimulation, a process that may contribute to zymogen granule formation.
Collapse
Affiliation(s)
- Sophie Dahan
- Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
28
|
Yu T, Fox RJ, Burwell LS, Yoon Y. Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci 2005; 118:4141-51. [PMID: 16118244 DOI: 10.1242/jcs.02537] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission is a highly regulated process mediated by a defined set of protein factors and is involved in the early stage of apoptosis. In mammals, at least two proteins, the dynamin-like protein DLP1/Drp1 and the mitochondrial outer membrane protein hFis1, participate in mitochondrial fission. The cytosolic domain of hFis1 contains six alpha-helices that form two tetratricopeptide repeat (TPR) motifs. Overexpression of hFis1 induces DLP1-mediated fragmentation of mitochondria, suggesting that hFis1 is a limiting factor in mitochondrial fission by recruiting cytosolic DLP1. In the present study, we identified two regions of hFis1 that are necessary for correct fission of mitochondria. We found that the TPR region of hFis1 participates in the interaction with DLP1 or DLP1-containing complex and that the first helix (alpha1) of hFis1 is required for mitochondrial fission presumably by regulating DLP1-hFis1 interaction. Misregulated interaction between DLP1 and hFis1 by alpha1 deletion induced mitochondrial swelling, in part by the mitochondrial permeability transition, but significantly delayed cell death. Our data suggest that hFis1 is a main regulator of mitochondrial fission, controlling the recruitment and assembly of DLP1 during both normal and apoptotic fission processes.
Collapse
Affiliation(s)
- Tianzheng Yu
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
29
|
Bhattacharya R, Kang-Decker N, Hughes DA, Mukherjee P, Shah V, McNiven MA, Mukhopadhyay D. Regulatory role of dynamin-2 in VEGFR-2/KDR-mediated endothelial signaling. FASEB J 2005; 19:1692-4. [PMID: 16049137 DOI: 10.1096/fj.05-3889fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2, also known as KDR) is a receptor tyrosine kinase (RTK) regulating mitogenic, chemotactic, permeability, and survival signals in vascular endothelial cells (EC) in response to its ligand, vascular permeability factor/VEGF (VPF/VEGF), arguably the most important angiogenic cytokine. However, the compartmentalization of KDR in EC and the mechanisms regulating this process have not been well defined. Here, we demonstrate that KDR is present on the plasma membrane, on endosomes, and in the perinuclear region of EC and colocalizes with early endosomal antigen (EEA1), caveolin-1, and dynamin-2, a signal transducing GTPase involved in receptor endocytosis. Furthermore, we also observed that dynamin-2 coimmunoprecipitates with KDR and is required for EC signaling/survival. Interestingly, EC overexpressing a mutant form of dynamin deficient in GTP binding (K44A) caused a selective inhibition in KDR protein level and endosomal vesicle formation and induced cell cycle arrest by inducing p21. Taken together, our findings suggest that dynamin-2 regulates KDR expression and function and hence plays an important role in VPF/VEGF mediated angiogenesis.
Collapse
Affiliation(s)
- Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Tomás M, Marín P, Megías L, Egea G, Renau-Piqueras J. Ethanol perturbs the secretory pathway in astrocytes. Neurobiol Dis 2005; 20:773-84. [PMID: 15953732 DOI: 10.1016/j.nbd.2005.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022] Open
Abstract
Ethanol exposure induces retention of glycoproteins in growing astrocytes. We examined the intracellular sites at which this retention occurs and investigated whether this effect is accompanied by alterations in the Golgi complex and microtubular system. We studied the effects of ethanol on the Golgi complex structure, as well as on the secretory pathway functionality by monitoring both the transport of the VSV-G protein and the protein levels of several molecules involved in the regulation of this pathway. Ethanol was found to delay VSV-G transport, modify Golgi complex morphology, and reduce the number of secretory vesicles. Moreover, ethanol affected the levels of mannosidase II, p58, betaCOP, rbet1, and several Rab GTPases. It also affected microtubule organization and polymerization and the levels of the motor proteins kinesin and dynein. Most of these effects were dose-dependent. These alterations, together with those previously reported concerning biosynthesis of glycoconjugates, provide novel insights into how ethanol impairs brain development.
Collapse
Affiliation(s)
- Mónica Tomás
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Av. Campanar 21, E-46009 Valencia, Spain
| | | | | | | | | |
Collapse
|
31
|
Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA. Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 2005; 7:483-92. [PMID: 15821732 DOI: 10.1038/ncb1246] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 03/09/2005] [Indexed: 11/09/2022]
Abstract
Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo. Cortactin antibodies stain the Golgi apparatus, labelling peripheral buds and vesicles that are associated with the cisternae. Notably, in vitro or intact-cell experiments show that activation of Arf1 mediates the recruitment of actin, cortactin and Dyn2 to Golgi membranes. Furthermore, selective disruption of the cortactin-Dyn2 interaction significantly reduces the levels of Dyn2 at the Golgi and blocks the transit of nascent proteins from the trans-Golgi network, resulting in swollen and distended cisternae. These findings support the idea of an Arf1-activated recruitment of an actin, cortactin and Dyn2 complex that is essential for Golgi function.
Collapse
Affiliation(s)
- Hong Cao
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoo J, Jeong MJ, Cho HJ, Oh ES, Han MY. Dynamin II interacts with syndecan-4, a regulator of focal adhesion and stress-fiber formation. Biochem Biophys Res Commun 2005; 328:424-31. [PMID: 15694365 DOI: 10.1016/j.bbrc.2004.12.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Indexed: 10/25/2022]
Abstract
Dynamin is a large mechanochemical GTPase that has been implicated in vesicle formation in multiple cellular compartments. It is believed that dynamin interacts with a variety of cellular proteins to constrict membranes. To identify potential intracellular proteins that interact with the PH domain of dynamin II, we carried out a yeast two-hybrid screen in which the PH domain of dynamin II was used as bait. The cell surface heparan sulfate proteoglycan syndecan-4 that acts in conjunction with integrins to promote the formation of actin stress fibers and focal adhesions was isolated as a binding partner for the PH domain of dynamin II. In vitro binding assays, immunoprecipitation, and confocal microscopy analysis confirmed the association of dynamin II with syndecan-4. Most dramatic finding of our study is that the cytoplasmic distribution of dynamin II and syndecan-4 changes in fibroblasts that have been stimulated to form the focal adhesions and stress fibers with LPA. In quiescent cells, dynamin II is evenly distributed in the cytoplasm and colocalizes with syndecan-4 near the nucleus. Upon treatment with LPA to induce focal adhesions and stress-fiber formation, dynamin II becomes markedly associated with syndecan-4 at focal adhesion sites. We further established the colocalization of syndecan-4 and dynamin with paxillin and actin as marker proteins for focal adhesions and stress fibers, respectively. All of these results suggest that the interaction between dynamin II and syndecan-4 is important in mediating focal adhesion and stress-fiber formation.
Collapse
Affiliation(s)
- Jiyun Yoo
- Department of Microbiology/Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | |
Collapse
|
33
|
Gomez TS, Hamann MJ, McCarney S, Savoy DN, Lubking CM, Heldebrant MP, Labno CM, McKean DJ, McNiven MA, Burkhardt JK, Billadeau DD. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 2005; 6:261-70. [PMID: 15696170 DOI: 10.1038/ni1168] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 01/18/2005] [Indexed: 01/01/2023]
Abstract
Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor-stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation. These data identify a functionally important interaction between Dyn2 and Vav1 that regulates actin reorganization and multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Timothy S Gomez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA. Endocytotic cycling of PM proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:221-51. [PMID: 15862095 DOI: 10.1146/annurev.arplant.56.032604.144150] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plasma membrane protein internalization and recycling mechanisms in plants share many features with other eukaryotic organisms. However, functional and structural differences at the cellular and organismal level mandate specialized mechanisms for uptake, sorting, trafficking, and recycling in plants. Recent evidence of plasma membrane cycling of members of the PIN auxin efflux facilitator family and the KAT1 inwardly rectifying potassium channel demonstrates that endocytotic cycling of some form occurs in plants. However, the mechanisms underlying protein internalization and the signals that stimulate endocytosis of proteins from the cell-environment interface are poorly understood. Here we summarize what is known of endocytotic cycling in animals and compare those mechanisms with what is known in plants. We discuss plant orthologs of mammalian-trafficking proteins involved in endocytotic cycling. The use of the styryl dye FM4-64 to define the course of endocytotic uptake and the fungal toxin brefeldin A to dissect the internalization pathways are particularly emphasized. Additionally, we discuss progress in identifying distinct endosomal populations marked by the small GTPases Ara6 and Ara7 as well as recently described examples of apparent cycling of plasma membrane proteins.
Collapse
Affiliation(s)
- Angus S Murphy
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
35
|
Pitts KR, McNiven MA, Yoon Y. Mitochondria-specific Function of the Dynamin Family Protein DLP1 Is Mediated by Its C-terminal Domains. J Biol Chem 2004; 279:50286-94. [PMID: 15364948 DOI: 10.1074/jbc.m405531200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dynamin superfamily of large GTPases has been implicated in a variety of distinct intracellular membrane remodeling events. One of these family members, DLP1/Drp1, is similar to conventional dynamins as it contains an N-terminal GTPase domain followed by a middle region (MID), an unconserved region (UC), and a coiled-coil (CC) domain. DLP1 has been shown to function in membrane-based processes distinct from conventional dynamin, most notably mitochondrial fission. In this study, we tested whether the functional specificities of DLP1 and dynamin stems from differences in the individual domains of these proteins by generating dynamin/DLP1 chimeras in which correlate domains had been interchanged. Here we report that three consecutive C-terminal domains of DLP1 (MID-UC-CC) contain information necessary for DLP1-specific function and removing any one of these domains results in a loss of DLP1 function. Importantly, the coiled-coil (CC) domain of DLP1 alone targets specifically and exclusively to mitochondria, implicating its involvement in localizing DLP1 to this organelle in vivo. The mitochondrial targeting information within the DLP1 CC domain is not sufficient to retarget dynamin to mitochondria but is still able to adequately function as an assembly domain in a dynamin background. These data suggest that whereas the GTPase domain of DLP1 provides an enzymatic function, other domains contain information for intermolecular assembly and mitochondrial targeting.
Collapse
Affiliation(s)
- Kelly R Pitts
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
36
|
Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 2004; 6:335-42. [PMID: 15048127 DOI: 10.1038/ncb1112] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/12/2004] [Indexed: 11/09/2022]
Abstract
Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with gamma-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2 was detected in the pericentriolar material as well as on centrioles. Exogenously expressed green fluorescent protein (GFP)-tagged Dyn2 also localized to the centrosome, whereas glutathione S-transferase (GST)-tagged Dyn2 pulled down a protein complex(es) containing actin, alpha-tubulin and gamma-tubulin from liver homogenate. Furthermore, gel overlay and immunoprecipitation indicated a direct interaction between gamma-tubulin and a 219-amino-acid middle domain of Dyn2. Reduction of Dyn2 protein levels with small-interfering RNA (siRNA) resulted in centrosome splitting, whereas microtubule nucleation from centrosomes was not affected, suggesting a role for Dyn2 in centrosome cohesion. Finally, fluorescence recovery after photobleaching (FRAP) analysis of a GFP-tagged Dyn2 middle domain indicated that Dyn2 is a dynamic exchangeable component of the centrosome. These findings suggest a novel function for Dyn2 as a participant in centrosome cohesion.
Collapse
Affiliation(s)
- Heather M Thompson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
37
|
Sarret P, Esdaile MJ, McPherson PS, Schonbrunn A, Kreienkamp HJ, Beaudet A. Role of Amphiphysin II in Somatostatin Receptor Trafficking in Neuroendocrine Cells. J Biol Chem 2004; 279:8029-37. [PMID: 14660576 DOI: 10.1074/jbc.m310792200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiphysins are SH3 domain-containing proteins thought to function in clathrin-mediated endocytosis. To investigate the potential role of amphiphysin II in cellular trafficking of G protein-coupled somatostatin (SRIF) receptors, we generated an AtT-20 cell line stably overexpressing amphiphysin IIb, a splice variant that does not bind clathrin. Endocytosis of (125)I-[d-Trp(8)]SRIF was not affected by amphiphysin IIb overexpression. However, the maximal binding capacity (B(max)) of the ligand on intact cells was significantly lower in amphiphysin IIb overexpressing than in non-transfected cells. This difference was no longer apparent when the experiments were performed on crude cell homogenates, suggesting that amphiphysin IIb overexpression interferes with SRIF receptor targeting to the cell surface and not with receptor synthesis. Accordingly, immunofluorescence experiments demonstrated that, in amphiphysin overexpressing cells, sst(2A) and sst(5) receptors were segregated in a juxtanuclear compartment identified as the trans-Golgi network. Amphiphysin IIb overexpression had no effect on corticotrophin-releasing factor 41-stimulated adrenocorticotropic hormone secretion, suggesting that it is not involved in the regulated secretory pathway. Taken together, these results suggest that amphiphysin II is not necessary for SRIF receptor endocytosis but is critical for its constitutive targeting to the plasma membrane. Therefore, amphiphysin IIb may be an important component of the constitutive secretory pathway.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Yoon Y, Krueger EW, Oswald BJ, McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 2003; 23:5409-20. [PMID: 12861026 PMCID: PMC165727 DOI: 10.1128/mcb.23.15.5409-5420.2003] [Citation(s) in RCA: 606] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The yeast protein Fis1p has been shown to participate in mitochondrial fission mediated by the dynamin-related protein Dnm1p. In mammalian cells, the dynamin-like protein DLP1/Drp1 functions as a mitochondrial fission protein, but the mechanisms by which DLP1/Drp1 and the mitochondrial membrane interact during the fission process are undefined. In this study, we have tested the role of a mammalian homologue of Fis1p, hFis1, and provided new and mechanistic information about the control of mitochondrial fission in mammalian cells. Through differential tagging and deletion experiments, we demonstrate that the intact C-terminal structure of hFis1 is essential for mitochondrial localization, whereas the N-terminal region of hFis1 is necessary for mitochondrial fission. Remarkably, an increased level of cellular hFis1 strongly promotes mitochondrial fission, resulting in an accumulation of fragmented mitochondria. Conversely, cell microinjection of hFis1 antibodies or treatment with hFis1 antisense oligonucleotides induces an elongated and collapsed mitochondrial morphology. Further, fluorescence resonance energy transfer and coimmunoprecipitation studies demonstrate that hFis1 interacts with DLP1. These results suggest that hFis1 participates in mitochondrial fission through an interaction that recruits DLP1 from the cytosol. We propose that hFis1 is a limiting factor in mitochondrial fission and that the number of hFis1 molecules on the mitochondrial surface determines fission frequency.
Collapse
Affiliation(s)
- Yisang Yoon
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
39
|
Torre ER, Coleman S, Yi H, Gutekunst CA. A protocol for isolation and biochemical characterization of stigmoid bodies from rat brain. J Neurosci Methods 2003; 125:27-32. [PMID: 12763227 DOI: 10.1016/s0165-0270(03)00026-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stigmoid bodies (SBs) are structures present in the cytoplasm of neurons. Many brain regions including hypothalamus, thalamus, amygdala, septum, hippocampus, colliculi, and brainstem contain neurons with at least one SB. Despite this widespread distribution their function remains unknown. SBs contain a brain protein called huntingtin-associated protein 1 (HAP1) and have more recently been found to contain the apolipoprotein E receptor LR11 (Lipoprotein Receptor containing 11 LDL binding domains, also called SorLA for sorting protein-related receptor containing LDLR class A repeats) and sortilin. To provide a first step towards further identification of their components and perhaps shed some light on their neurobiological role, we have developed a method for isolating SBs from rat brain. The protocol relies on a combination of centrifugational forces, sucrose gradient, and immunoisolation. Samples enriched in SBs were incubated with antibodies to HAP1B or to LR11 followed by incubation with FITC conjugated secondary antibodies. Anti-FITC coated beads were incubated with samples and SB-bead complexes formed were separated by magnetic sorting without pelleting the complexes during the isolation procedure. Immunopurified SBs, visualized by light and electron microscopy, show similar ultrastructure to those present in neurons.
Collapse
Affiliation(s)
- Enrique R Torre
- Department of Neurology, Emory University School of Medicine, Woodruff Memorial Research Building, 30322, Atlanta, GA, USA
| | | | | | | |
Collapse
|
40
|
Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 2003; 14:1074-84. [PMID: 12631724 PMCID: PMC151580 DOI: 10.1091/mbc.e02-05-0308] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by matrix metalloproteases is crucial in physiological and pathological cell invasion alike. Degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Herein, we show that the dynamin 2 (Dyn2), a GTPase implicated in the control of actin-driven cytoskeletal remodeling events and membrane transport, is necessary for focalized matrix degradation at invadopodia. Dynamin was inhibited by using two approaches: 1) expression of dominant negative GTPase-impaired or proline-rich domain-deleted Dyn2 mutants; and 2) inhibition of the dynamin regulator calcineurin by cyclosporin A. In both cases, the number and extension of ECM degradation foci were drastically reduced. To understand the site and mechanism of dynamin action, the cellular structures devoted to ECM degradation were analyzed by correlative confocal light-electron microscopy. Invadopodia were found to be organized into a previously undescribed ECM-degradation structure consisting of a large invagination of the ventral plasma membrane surface in close spatial relationship with the Golgi complex. Dyn2 seemed to be concentrated at invadopodia.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), 66030 Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Many important cellular processes such as phagocytosis, cell motility and endocytosis require the participation of a dynamic and interactive actin cytoskeleton that acts to deform cellular membranes. The extensive family of non-traditional myosins has been implicated in linking the cortical actin gel with the plasma membrane. Recently, however, the dynamins have also been included in these cell processes as a second family of mechanochemical enzymes that self-associate and hydrolyze nucleotides to perform 'work' while linking cellular membranes to the actin cytoskeleton. The dynamins are believed to form large helical polymers from which extend many interactive proline-rich tail domains, and these domains bind to a variety of SH3-domain-containing proteins, many of which appear to be actin-binding proteins. Recent data support the concept that the dynamin family might act as a 'polymeric contractile scaffold' at the interface between biological membranes and filamentous actin.
Collapse
Affiliation(s)
- James D Orth
- Department of Biochemistry and Molecular Biology and the Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 2002; 12:2111-7. [PMID: 12498685 PMCID: PMC3690653 DOI: 10.1016/s0960-9822(02)01390-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells.
Collapse
Affiliation(s)
- Heather M. Thompson
- GI Basic Research and Department of Biochemistry and Molecular Biology, Mayo Clinic and Mayo Graduate School Rochester, Minnesota 55905
| | - Ahna R. Skop
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720
- Howard, Hughes Medical Institute, University of California, Berkeley Berkeley, California 94720
| | | | - Barbara J. Meyer
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720
- Howard, Hughes Medical Institute, University of California, Berkeley Berkeley, California 94720
| | - Mark A. McNiven
- GI Basic Research and Department of Biochemistry and Molecular Biology, Mayo Clinic and Mayo Graduate School Rochester, Minnesota 55905
| |
Collapse
|
43
|
Abstract
The Golgi apparatus is a dynamic organelle through which nascent secretory and transmembrane proteins are transported, post-translationally modified and finally packaged into carrier vesicles for transport along the cytoskeleton to a variety of destinations. In the past decade, studies have shown that a number of 'molecular motors' are involved in maintaining the proper structure and function of the Golgi apparatus. Here, we review just some of the many functions performed by these mechanochemical enzymes - dyneins, kinesins, myosins and dynamin - in relation to the Golgi apparatus.
Collapse
Affiliation(s)
- Victoria J Allan
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
44
|
Sexton PS, Cenedella RJ. Immunomagnetic capture of lens membrane fractions containing steroid binding protein. Biochem Biophys Res Commun 2002; 295:1027-31. [PMID: 12127999 DOI: 10.1016/s0006-291x(02)00770-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes the use of magnetic Dynabeads to purify microsomes from a crude microsomal fraction. A 28 kDa membrane-associated protein is proposed to mediate the binding of progesterone and other steroid hormones to ocular lens membranes and the rapid-nongenomic actions of these steroids. The subcellular location of this membrane steroid binding protein (MSBP) was probed by capture of organelles containing MSBP by magnetic beads displaying an antibody to a cytoplasmic domain of the protein. The beads were exposed to a crude microsomal fraction from lens epithelia. Western blotting was used to identify captured organelles and confirm the presence of MSBP. Microsomes and trace fiber cell plasma membrane were captured. Microsomes contained the 28 kDa MSBP. Lens fiber cell membrane contained a 55 kDa immunoreactive protein. The role of this serendipitously recognized protein in binding of steroids is unknown.
Collapse
Affiliation(s)
- Patricia S Sexton
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, 800 West Jefferson, Kirksville, MO 63501, USA
| | | |
Collapse
|
45
|
Accola MA, Huang B, Al Masri A, McNiven MA. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J Biol Chem 2002; 277:21829-35. [PMID: 11916975 DOI: 10.1074/jbc.m201641200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mx proteins are induced by type I interferon and inhibit a broad range of viruses by undefined mechanisms. They are included within the dynamin family of large GTPases, which are involved in vesicle trafficking and share common biophysical features. These properties include the propensity to self-assemble, an affinity for lipids, and the ability to tubulate membranes. In this report we establish that human MxA, despite sharing only 30% homology with conventional dynamin, possesses many of these properties. We demonstrate for the first time that MxA self-assembles into rings that tubulate lipids in vitro, and associates with a specific membrane compartment in cells, the smooth endoplasmic reticulum.
Collapse
Affiliation(s)
- Molly A Accola
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
46
|
Hyde GJ, Davies D, Cole L, Ashford AE. Regulators of GTP-binding proteins cause morphological changes in the vacuole system of the filamentous fungus, Pisolithus tinctorius. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:133-46. [PMID: 11921170 DOI: 10.1002/cm.10015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tubule formation is a widespread feature of the endomembrane system of eukaryotic cells, serving as an alternative to the better-known transport process of vesicular shuttling. In filamentous fungi, tubule formation by vacuoles is particularly pronounced, but little is known of its regulation. Using the hyphae of the basidiomycete Pisolithus tinctorius as our test system, we have investigated the effects of four drugs whose modulation, in animal cells, of the tubule/vesicle equilibrium is believed to be due to the altered activity of a GTP-binding protein (GTP gamma S, GDP beta S, aluminium fluoride, and Brefeldin A). In Pisolithus tinctorius, GTP gamma S, a non-hydrolysable form of GTP, strongly promoted vacuolar tubule formation in the tip cell and next four cells. The effects of GTP gamma S could be antagonised by pre-treatment of hyphae with GDP beta S, a non-phosphorylatable form of GDP. These results support the idea that a GTP-binding protein plays a regulatory role in vacuolar tubule formation. This could be a dynamin-like GTP-ase, since GTP gamma S-stimulated tubule formation has only been reported previously in cases where a dynamin is involved. Treatment with aluminium fluoride stimulated vacuolar tubule formation at a distance from the tip cell, but NaF controls indicated that this was not a GTP-binding-protein specific effect. Brefeldin A antagonised GTP gamma S, and inhibited tubule formation in the tip cell. Given that Brefeldin A also affects the ER and Golgi bodies of Pisolithus tinctorius, as shown previously, it is not clear yet whether the effects of Brefeldin A on the vacuole system are direct or indirect.
Collapse
Affiliation(s)
- Geoffrey J Hyde
- School of Biological Earth and Environmental Science, University of New South Wales, Kensington, Sydney, Australia.
| | | | | | | |
Collapse
|
47
|
Orth JD, Krueger EW, Cao H, McNiven MA. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A 2002; 99:167-72. [PMID: 11782546 PMCID: PMC117533 DOI: 10.1073/pnas.012607899] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Accepted: 11/14/2001] [Indexed: 11/18/2022] Open
Abstract
The large GTPase dynamin (Dyn2) has been demonstrated by us and others to interact with several different actin-binding proteins. To define how Dyn2 might participate in actin dynamics in livings cells we have expressed green fluorescent protein (GFP)-tagged Dyn2 in cultured cells and observed labeling of comet-like vesicles and macropinosomes. The comet structures progressed with a constant velocity and were reminiscent of actin comets associated with motile vesicles in cells expressing type I phosphatidylinositol phosphate 5-kinases. Based on these observations we sought to determine whether Dyn2 is an integral component of actin comets. Cells expressing type I phosphatidylinositol phosphate 5-kinase and Dyn2-GFP revealed a prominent colocalization of Dyn2 and actin in comet structures. Interestingly, comet formation and motility were normal in cells expressing wild-type Dyn2-GFP but altered markedly in Dyn2 mutant-expressing cells. Dyn2K44A-GFP mutant cells displayed a significant reduction in comet number, length, velocity, and efficiency of movement. In contrast, comets in cells expressing Dyn2DeltaPRD-GFP appeared dark and did not incorporate the mutant Dyn2 protein, indicating that the proline-rich domain (PRD) is required for Dyn2 recruitment. Further, these comets were significantly longer and slower than those in control cells. These findings demonstrate a role for Dyn2 in actin-based vesicle motility.
Collapse
Affiliation(s)
- James D Orth
- Department of Biochemistry and Molecular Biology, 1721 Guggenheim Building, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
48
|
van Dam EM, Stoorvogel W. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell 2002; 13:169-82. [PMID: 11809831 PMCID: PMC65080 DOI: 10.1091/mbc.01-07-0380] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.
Collapse
Affiliation(s)
- Ellen M van Dam
- Department of Cell Biology, University Medical Center and Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
49
|
Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem 2001; 276:48458-65. [PMID: 11583995 PMCID: PMC2715172 DOI: 10.1074/jbc.m104927200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dynamin is a GTPase involved in endocytosis and other aspects of membrane trafficking. A critical function in the presynaptic compartment attributed to the brain-specific dynamin isoform, dynamin-1, is in synaptic vesicle recycling. We report that dynamin-2 specifically interacts with members of the Shank/ProSAP family of postsynaptic density scaffolding proteins and present evidence that dynamin-2 is specifically associated with the postsynaptic density. These data are consistent with a role for this otherwise broadly distributed form of dynamin in glutamate receptor down-regulation and other aspects of postsynaptic membrane turnover.
Collapse
Affiliation(s)
- Patricia M. Okamoto
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Chantal Gamby
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David Wells
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Justin Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Richard B. Vallee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- To whom correspondence should be addressed: Dept. of Cell Biology, University of Massachusetts Medical School, 377 Plantation St., Worcester, MA 01605. Tel.: 508-856-8504; Fax: 508-856-8987; E-mail:
| |
Collapse
|
50
|
Abstract
Dynamins are large GTPases with mechanochemical properties that are known to constrict and tubulate membranes. A recently identified mammalian dynamin-like protein (DLP1) is essential for the proper cellular distribution of mitochondria and the endoplasmic reticulum in cultured cells. In this study, we investigated the ability of DLP1 to remodel membranes similar to conventional dynamin. We found that the expression of a GTPase-defective mutant, DLP1-K38A, in cultured cells led to the formation of large cytoplasmic aggregates. Electron microscopy (EM) of cells expressing DLP1-K38A revealed that these aggregates were comprised of membrane tubules of a consistent diameter. High-magnification EM revealed the presence of many regular striations along individual membrane tubules, and immunogold labeling confirmed the association of DLP1 with these structures. Biochemical experiments with the use of recombinant DLP1 and labeled GTP demonstrated that DLP1-K38A binds but does not hydrolyze or release GTP. Furthermore, the affinity of DLP1-K38A for membrane is increased compared with wild-type DLP1. To test whether DLP1 could tubulate membrane in vitro, recombinant DLP1 was combined with synthetic liposomes and nucleotides. We found that DLP1 protein alone assembled into sedimentable macromolecular structures in the presence of guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) but not GTP. EM of the GTPgammaS-treated DLP1 revealed clusters of stacked helical ring structures. When liposomes were included with DLP1, formation of long membrane tubules similar in size to those formed in vivo was observed. Addition of GTPgammaS greatly enhanced membrane tubule formation, suggesting the GTP-bound form of DLP1 deforms liposomes into tubules as the DLP1-K38A does in vivo. These results provide the first evidence that the dynamin family member, DLP1, is able to tubulate membranes both in living cells and in vitro. Furthermore, these findings also indicate that despite the limited homology to conventional dynamins (35%) these proteins remodel membranes in a similar manner.
Collapse
Affiliation(s)
- Y Yoon
- Center for Basic Research in Digestive Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|