1
|
Zhang F, Zheng Z, Wang L, Zeng W, Wei W, Zhang C, Zhao Z, Liang W. PKC-ζ mediated reduction of the extracellular vesicles-associated TGF-β1 overcomes radiotherapy resistance in breast cancer. Breast Cancer Res 2023; 25:38. [PMID: 37029374 PMCID: PMC10082517 DOI: 10.1186/s13058-023-01641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Radiotherapy is widely applied in breast cancer treatment, while radiotherapy resistance is inevitable. TGF-β1 has been considered to be an endogenous factor for the development of radiotherapy resistance. As a large portion of TGF-β1 is secreted in an extracellular vesicles-associated form (TGF-β1EV), particularly in radiated tumors. Thus, the understanding of the regulation mechanisms and the immunosuppressive functions of TGF-β1EV will pave a way for overcoming the radiotherapy resistance in cancer treatment. METHODS The superoxide-Zinc-PKC-ζ-TGF-β1EV pathway in breast cancer cells was identified through sequence alignments of different PKC isoforms, speculation and experimental confirmation. A series of functional and molecular studies were performed by quantitative real-time PCR, western blot and flow cytometry analysis. Mice survival and tumor growth were recorded. Student's t test or two-way ANOVA with correction was used for comparisons of groups. RESULTS The radiotherapy resulted in an increased expression of the intratumoral TGF-β1 and an enhanced infiltration of the Tregs in the breast cancer tissues. The intratumoral TGF-β1 was found mainly in the extracellular vesicles associated form both in the murine breast cancer model and in the human lung cancer tissues. Furthermore, radiation induced more TGF-β1EV secretion and higher percentage of Tregs by promoting the expression and phosphorylation of protein kinase C zeta (PKC-ζ). Importantly, we found that naringenin rather than 1D11 significantly improved radiotherapy efficacy with less side effects. Distinct from TGF-β1 neutralizing antibody 1D11, the mechanism of naringenin was to downregulate the radiation-activated superoxide-Zinc-PKC-ζ-TGF-β1EV pathway. CONCLUSIONS The superoxide-zinc-PKC-ζ-TGF-β1EV release pathway was elucidated to induce the accumulation of Tregs, resulting in radiotherapy resistance in the TME. Therefore, targeting PKC-ζ to counteract TGF-β1EV function could represent a novel strategy to overcome radiotherapy resistance in the treatment of breast cancer or other cancers. TRIAL REGISTRATION The using of patient tissues with malignant Non-Small Cell Lung Cancer (NSCLC) was approved by the ethics committees at Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (NCC2022C-702, from June 8th, 2022).
Collapse
Affiliation(s)
- Fayun Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zifeng Zheng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luoyang Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Wei
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunling Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziran Zhao
- Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Tu X, Chu TT, Jeltema D, Abbott K, Yang K, Xing C, Han J, Dobbs N, Yan N. Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nat Commun 2022; 13:6977. [PMID: 36379959 PMCID: PMC9666523 DOI: 10.1038/s41467-022-33765-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of the cGAS-STING pathway is traditionally considered a "trigger-release" mechanism where detection of microbial DNA or cyclic di-nucleotides sets off the type I interferon response. Whether this pathway can be activated without pathogenic ligand exposure is less well understood. Here we show that loss of Golgi-to-lysosome STING cofactors, but not ER-to-Golgi cofactors, selectively activates tonic interferon signalling. Impairment of post-Golgi trafficking extends STING Golgi-dwell time, resulting in elevated immune signalling and protection against infection. Mechanistically, trans-Golgi coiled coil protein GCC2 and several RAB GTPases act as key regulators of STING post-Golgi trafficking. Genomic deletion of these factors potently activates cGAS-STING signalling without instigating any pathogenic trigger for cGAS. Gcc2-/- mice develop STING-dependent serologic autoimmunity. Gcc2-deleted or Rab14-deleted cancer cells induce T-cell and IFN-dependent anti-tumour immunity and inhibit tumour growth in mice. In summary, we present a "basal flux" mechanism for tonic cGAS-STING signalling, regulated at the level of post-Golgi STING trafficking, which could be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Xintao Tu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ting-Ting Chu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jie Han
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Dadina N, Tyson J, Zheng S, Lesiak L, Schepartz A. Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Curr Opin Chem Biol 2021; 65:154-162. [PMID: 34715587 PMCID: PMC9904808 DOI: 10.1016/j.cbpa.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Understanding how organelles interact, exchange materials, assemble, disassemble, and evolve as a function of space, time, and environment is an exciting area at the very forefront of chemical and cell biology. Here, we bring attention to recent progress in the design and application of lipid-based tools to visualize and interrogate organelles in live cells, especially at super resolution. We highlight strategies that rely on modification of natural lipids or lipid-like small molecules ex cellula, where organelle specificity is provided by the structure of the chemically modified lipid, or in cellula using cellular machinery, where an enzyme labels the lipid in situ. We also describe recent improvements to the chemistry upon which lipid probes rely, many of which have already begun to broaden the scope of biological questions that can be addressed by imaging organelle membranes at the nanoscale.
Collapse
Affiliation(s)
- N. Dadina
- Department of Chemistry, University of California, Berkeley 94720, USA
| | - J. Tyson
- Department of Chemistry, University of California, Berkeley 94720, USA
| | - S. Zheng
- Department of Chemistry, University of California, Berkeley 94720, USA
| | - L. Lesiak
- Department of Chemistry, University of California, Berkeley 94720, USA
| | - A. Schepartz
- Department of Chemistry, University of California, Berkeley 94720, USA,Department of Molecular & Cell Biology, University of California, Berkeley 94720, USA,California Institute for Quantitative Biosciences, University of California, Berkeley 94720, USA
| |
Collapse
|
4
|
D’Amico AE, Lennartz MR. Protein Kinase C-epsilon in Membrane Delivery during Phagocytosis. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-32. [PMID: 30112519 PMCID: PMC6089528 DOI: 10.29245/2578-3009/2018/2.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During phagocytosis, internal membranes are recruited to the site of pathogen binding and fuse with the plasma membrane, providing the membrane needed for pseudopod extension and target uptake. The mechanism by which vesicles destined for the phagosome are generated, targeted, and fuse is unknown. We established that Golgi-associated protein kinase C-epsilon (PKC-ε) is necessary for the addition of membrane during FcyR-mediated phagocytosis. PKC-ε is tethered to the Golgi through interactions between its' regulatory domain and the Golgi lipids PI4P and diacylglycerol; disruption of these interactions prevents PKC-ε concentration at phagosomes and decreases phagocytosis. The accumulated evidence suggests that PKC-ε orchestrates vesicle formation at the Golgi by a mechanism requiring lipid binding but not enzymatic activity. This review discusses how PKC-ε might mediate vesicle formation at the level of budding and fission. Specifically, we discuss PKC-ε binding partners, the formation of lipid subdomains to generate membrane curvature, and PKC-ε mediated links to the actin and microtubule cytoskeleton to provide tension for vesicle fission. Assimilating information from several model systems, we propose a model for PKC-ε mediated vesicle formation for exocytosis during phagocytosis that may be applicable to other processes that require directed membrane delivery and fusion.
Collapse
Affiliation(s)
- Anna E. D’Amico
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| | - Michelle R. Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| |
Collapse
|
5
|
Medrano MC, Santamarta MT, Pablos P, Aira Z, Buesa I, Azkue JJ, Mendiguren A, Pineda J. Characterization of functional μ opioid receptor turnover in rat locus coeruleus: an electrophysiological and immunocytochemical study. Br J Pharmacol 2017; 174:2758-2772. [PMID: 28589556 DOI: 10.1111/bph.13901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulation of μ receptor dynamics such as its trafficking is a possible mechanism underlying opioid tolerance that contributes to inefficient recycling of opioid responses. We aimed to characterize the functional turnover of μ receptors in the noradrenergic nucleus locus coeruleus (LC). EXPERIMENTAL APPROACH We measured opioid effect by single-unit extracellular recordings of LC neurons from rat brain slices. Immunocytochemical techniques were used to evaluate μ receptor trafficking. KEY RESULTS After near-complete, irreversible μ receptor inactivation with β-funaltrexamine (β-FNA), opioid effect spontaneously recovered in a rapid and efficacious manner. In contrast, α2 -adrenoceptor-mediated effect hardly recovered after receptor inactivation with the irreversible antagonist EEDQ. When the recovery of opioid effect was tested after various inactivating time schedules, we found that the longer the β-FNA pre-exposure, the less efficient and slower the functional μ receptor turnover became. Interestingly, μ receptor turnover was slower when β-FNA challenge was repeated in the same cell, indicating constitutive μ receptor recycling by trafficking from a depletable pool. Double immunocytochemistry confirmed the constitutive nature of μ receptor trafficking from a cytoplasmic compartment. The μ receptor turnover was slowed down when LC neuron calcium- or firing-dependent processes were prevented or vesicular protein trafficking was blocked by a low temperature or transport inhibitor. CONCLUSIONS AND IMPLICATIONS Constitutive trafficking of μ receptors from a depletable intracellular pool (endosome) may account for its rapid and efficient functional turnover in the LC. A finely-tuned regulation of μ receptor trafficking and endosomes could explain neuroadaptive plasticity to opioids in the LC.
Collapse
Affiliation(s)
- María Carmen Medrano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Teresa Santamarta
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Patricia Pablos
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Zigor Aira
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itsaso Buesa
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Jatsu Azkue
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Joseba Pineda
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
6
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
7
|
Wu H, Devaraj NK. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions. Top Curr Chem (Cham) 2015; 374:3. [PMID: 27572986 DOI: 10.1007/s41061-015-0005-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Bioorthogonal reactions have been widely used over the last 10 years for imaging, detection, diagnostics, drug delivery, and biomaterials. Tetrazine reactions are a recently developed class of inverse electron-demand Diels-Alder reactions used in bioorthogonal applications. Given their rapid tunable reaction rate and highly fluorogenic properties, tetrazine bioorthogonal reactions have come to be considered highly attractive tools for elucidating biological functions and messages in vitro and in vivo. In this chapter, we present recent advances expanding the scope of precursor reactivity and we introduce new biomedical methodology based on bioorthogonal tetrazine chemistry. We specifically highlight novel applications for different kinds of biomolecules, including nucleic acid, protein, antibodies, lipids, glycans, and bioactive small molecules, in the areas of imaging, detection, and diagnostics. We also briefly present other recently developed inverse electron-demand Diels-Alder bioorthogonal reactions. Lastly, we consider future directions and potential roles that inverse electron-demand Diels-Alder reactions may play in the fields of bioorthogonal and biomedical chemistry.
Collapse
Affiliation(s)
- Haoxing Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Urey Hall 4120, La Jolla, CA, 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Urey Hall 4120, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Xie S, Naslavsky N, Caplan S. Diacylglycerol kinases in membrane trafficking. CELLULAR LOGISTICS 2015; 5:e1078431. [PMID: 27057419 DOI: 10.1080/21592799.2015.1078431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| |
Collapse
|
9
|
Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre DK, Schepartz A. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew Chem Int Ed Engl 2014; 53:10242-6. [PMID: 25081303 PMCID: PMC4593319 DOI: 10.1002/anie.201403349] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 01/18/2023]
Abstract
We report a lipid-based strategy to visualize Golgi structure and dynamics at super-resolution in live cells. The method is based on two novel reagents: a trans-cyclooctene-containing ceramide lipid (Cer-TCO) and a highly reactive, tetrazine-tagged near-IR dye (SiR-Tz). These reagents assemble via an extremely rapid "tetrazine-click" reaction into Cer-SiR, a highly photostable "vital dye" that enables prolonged live-cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer-SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi-resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.
Collapse
Affiliation(s)
- Roman S. Erdmann
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486. Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Hideo Takakura
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Alexander D. Thompson
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Edward S. Allgeyer
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Derek K. Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486
| |
Collapse
|
10
|
Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre D, Schepartz A. Hochaufgelöste Visualisierung des Golgi-Apparats in lebenden Zellen mit einem bioorthogonalen Ceramid. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV, Walther TC. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 2014; 3:e01607. [PMID: 24497546 PMCID: PMC3913038 DOI: 10.7554/elife.01607] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism. DOI: http://dx.doi.org/10.7554/eLife.01607.001.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Secretory granule biogenesis is a pivotal process for regulated release of hormones and neurotransmitters. A prominent example is the pancreatic β cell that secretes insulin, a major anabolic hormone controlling cellular metabolism upon nutrient availability. We recently described a checkpoint mechanism that halts scission of nascent secretory granules at the trans-Golgi network (TGN) until complete loading of insulin is achieved. We demonstrated that the Bin/Amphiphysin/Rvs (BAR) domain-containing protein Arfaptin-1 prevents granule scission until it is phosphorylated by Protein Kinase D (PKD). Arfaptin-1 phosphorylation releases its binding to ADP-rybosylation factor (ARF) allowing scission to occur. Lack of this control mechanism in β cells resulted in premature scission, generation of dysfunctional insulin granules and impaired regulated insulin secretion without affecting constitutive release of other transport carriers. Here we discuss two important questions related to this work: How might completion of granule loading be sensed by PKD, and how does Arfaptin-1 specifically regulate insulin granule formation in beta cells?
Collapse
Affiliation(s)
- Helmuth Gehart
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire); INSERM; CNRS; Université de Strasbourg; Illkirch, France ; Institute of Cell Biology; ETH Zurich; Zurich, Switzerland
| | | |
Collapse
|
13
|
Park JJ, Gondré-Lewis MC, Eiden LE, Loh YP. A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells. J Cell Sci 2011; 124:735-44. [PMID: 21321327 DOI: 10.1242/jcs.076372] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block-release experiments showed that VAChT-GFP, SYN-GFP and CgA-RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
14
|
S655 phosphorylation enhances APP secretory traffic. Mol Cell Biochem 2009; 328:145-54. [DOI: 10.1007/s11010-009-0084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
|
15
|
Siddiqi SA, Mansbach CM. PKC zeta-mediated phosphorylation controls budding of the pre-chylomicron transport vesicle. J Cell Sci 2008; 121:2327-38. [PMID: 18577579 DOI: 10.1242/jcs.022780] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary triacylglycerols are absorbed by enterocytes and packaged in the endoplasmic reticulum (ER) in the intestinal specific lipoprotein, the chylomicron, for export into mesenteric lymph. Chylomicrons exit the ER in an ER-to-Golgi transport vesicle, the pre-chylomicron transport vesicle (PCTV), which is the rate-limiting step in the transit of chylomicrons across the cell. Here, we focus on potential mechanisms of control of the PCTV-budding step from the intestinal ER. We incubated intestinal ER with intestinal cytosol and ATP to cause PCTV budding. The budding reaction was inhibited by 60 nM of the PKC inhibitor Gö 6983, suggesting the importance of PKCzeta in the generation of PCTV. Immunodepletion of PKCzeta from the cytosol and the use of washed ER greatly inhibited the generation of PCTVs, but was restored following the addition of recombinant PKCzeta. Intestinal ER incubated with intestinal cytosol and [gamma-(32)P]ATP under conditions supporting the generation of PCTVs showed the phosphorylation of a 9-kDa band following autoradiography. The phosphorylation of this protein correlated with the generation of PCTVs but not the formation of protein vesicles and was inhibited by depletion of PKCzeta. Phosphorylation of the 9-kDa protein was restored following the addition of recombinant PKCzeta. The association of the 9-kDa protein with proteins that are important for PCTV budding was phosphorylation dependent. We conclude that PKCzeta activity is required for PCTV budding from intestinal ER, and is associated with phosphorylation of a 9-kDa protein that might regulate PCTV budding.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- The Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
16
|
Wang CW, Hamamoto S, Orci L, Schekman R. Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. ACTA ACUST UNITED AC 2006; 174:973-83. [PMID: 17000877 PMCID: PMC2064389 DOI: 10.1083/jcb.200605106] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ayeast plasma membrane protein, Chs3p, transits to the mother–bud neck from a reservoir comprising the trans-Golgi network (TGN) and endosomal system. Two TGN/endosomal peripheral proteins, Chs5p and Chs6p, and three Chs6p paralogues form a complex that is required for the TGN to cell surface transport of Chs3p. The role of these peripheral proteins has not been clear, and we now provide evidence that they create a coat complex required for the capture of membrane proteins en route to the cell surface. Sec7p, a Golgi protein required for general membrane traffic and functioning as a nucleotide exchange factor for the guanosine triphosphate (GTP)–binding protein Arf1p, is required to recruit Chs5p to the TGN surface in vivo. Recombinant forms of Chs5p, Chs6p, and the Chs6p paralogues expressed in baculovirus form a complex of approximately 1 MD that binds synthetic liposomes in a reaction requiring acidic phospholipids, Arf1p, and the nonhydrolyzable GTPγS. The complex remains bound to liposomes centrifuged on a sucrose density gradient. Thin section electron microscopy reveals a spiky coat structure on liposomes incubated with the full complex, Arf1p, and GTPγS. We termed the novel coat exomer for its role in exocytosis from the TGN to the cell surface. Unlike other coats (e.g., coat protein complex I, II, and clathrin/adaptor protein complex), the exomer does not form buds or vesicles on liposomes.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
17
|
Sallese M, Pulvirenti T, Luini A. The physiology of membrane transport and endomembrane-based signalling. EMBO J 2006; 25:2663-73. [PMID: 16763561 PMCID: PMC1500860 DOI: 10.1038/sj.emboj.7601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023] Open
Abstract
Some of the important open questions concerning the physiology of the secretory pathway relate to its homeostasis. Secretion involves a number of separate compartments for which their transport activities should be precisely cross-coordinated to avoid gross imbalances in the trafficking system. Moreover, the membrane fluxes across these compartments should be able to adapt to environmental 'requests' and to respond to extracellular signals. How is this regulation effected? Here, we consider evidence that endomembrane-based signalling cascades that are similar in organization to those used at the plasma membrane coordinate membrane traffic. If this is the case, this would also represent a model for a more general inter-organelle signalling network for functionally interconnecting different intracellular activities, a necessity for the maintenance of cellular homeostasis and to express harmonic global cellular responses.
Collapse
Affiliation(s)
- Michele Sallese
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario, Negri Sud, Santa Maria Imbaro, Chieti 66030, Italy. Tel.: +39 0872 570355; Fax: +39 0872 570412; E-mail:
| |
Collapse
|
18
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
19
|
Shen SS, Steinhardt RA. The mechanisms of cell membrane resealing in rabbit corneal epithelial cells. Curr Eye Res 2005; 30:543-54. [PMID: 16020288 DOI: 10.1080/02713680590968574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine membrane repair mechanisms in rabbit corneal epithelial (RCE) cells. METHODS Microneedle puncture and fluorescent dye loss were used to wound membranes and assay resealing, respectively. Different repair mechanisms were detected pharmacologically and with antisense oligonucleotides. RESULTS The RCE cells rapidly reseal plasma membranes by calcium-dependent exocytotic mechanisms that exhibit both facilitated and potentiated responses to multiple wounding. The facilitated response was inhibited by specific inhibitors of protein kinase C (PKC) and brefeldin A, and the potentiated response was blocked by inhibitors of cAMP-dependent protein kinase (PKA). Reduction of myosin IIA inhibited the facilitated response, and reduction of IIB inhibited the initial resealing. CONCLUSIONS RCE cells rapidly repair plasma membrane disruptions. At a second wound at the same site, PKC stimulated vesicle formation from the Golgi apparatus, resulting in more rapid membrane resealing for a facilitated response. The RCE cell also contains a PKA-dependent global potentiation of membrane resealing.
Collapse
Affiliation(s)
- Sheldon S Shen
- Department of Genetics, Development and Cellular Biology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
20
|
Webb RJ, Judah JD, Lo LC, Thomas GMH. Constitutive secretion of serum albumin requires reversible protein tyrosine phosphorylation events intrans-Golgi. Am J Physiol Cell Physiol 2005; 289:C748-56. [PMID: 15843442 DOI: 10.1152/ajpcell.00019.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serum albumin secretion from rat hepatocytes proceeds via the constitutive pathway. Although much is known about the role of protein tyrosine phosphorylation in regulated secretion, nothing is known about its function in the constitutive process. Here we show that albumin secretion is inhibited by the tyrosine kinase inhibitor genistein but relatively insensitive to subtype-selective inhibitors or treatments. Secretion is also blocked in a physiologically identical manner by the tyrosine phosphatase inhibitors pervanadate and bisperoxo(1,10-phenanthroline)-oxovanadate. Inhibition of either the kinase(s) or phosphatase(s) leads to the accumulation of albumin between the trans-Golgi and the plasma membrane, whereas the immediate precursor proalbumin builds up in a proximal compartment. The trans-Golgi marker TGN38 is rapidly dispersed under conditions that inhibit tyrosine phosphatase action, whereas the distribution of the cis-Golgi marker GM130 is insensitive to genistein or pervanadate. By using a specifically reactive biotinylation probe, we detected protein tyrosine phosphatases in highly purified rat liver Golgi membranes. These membranes also contain both endogenous tyrosine kinases and their substrates, indicating that enzymes and substrates for reversible tyrosine phosphorylation are normal membrane-resident components of this trafficking compartment. In the absence of perturbation of actin filaments and microtubules, we conclude that reversible protein tyrosine phosphorylation in the trans-Golgi network is essential for albumin secretion and propose that the constitutive secretion of albumin is in fact a regulated process.
Collapse
Affiliation(s)
- Rachel J Webb
- Dept. of Physiology, University College London, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
21
|
Péchoux C, Boisgard R, Chanat E, Lavialle F. Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:317-29. [PMID: 15843044 DOI: 10.1016/j.bbamcr.2005.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Changes in the lipid composition of intracellular membranes are believed to take part in the molecular processes that sustain traffic between organelles of the endocytic and exocytic transport pathways. Here, we investigated the participation of the calcium-independent phospholipase A2 in the secretory pathway of mammary epithelial cells. Treatment with bromoenol lactone, a suicide substrate which interferes with the production of lysophospholipids by the calcium-independent phospholipase A2, resulted in the reduction of milk proteins secretion. The inhibitor slowed down transport of the caseins from the endoplasmic reticulum to the Golgi apparatus and affected the distribution of p58 and p23, indicating that the optimal process of transport of these proteins between the endoplasmic reticulum, the endoplasmic reticulum/Golgi intermediate compartment and/or the cis-side of the Golgi was dependent upon the production of lysolipids. Moreover, bromoenol lactone was found to delay the rate of protein transport from the trans-Golgi network to the plasma membrane. Concomitantly, membrane-bound structures containing casein accumulated in the juxtanuclear Golgi region. We concluded from these results that efficient formation of post-Golgi carriers also requires the phospholipase activity. These data further support the participation of calcium-independent phospholipase A2 in membrane trafficking and shed a new light on the tubulo/vesicular transport of milk protein through the secretory pathway.
Collapse
Affiliation(s)
- Christine Péchoux
- Institut National de la Recherche Agronomique, Laboratoire de Génomique et Physiologie de la Lactation. F-78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
22
|
Alroy I, Tuvia S, Greener T, Gordon D, Barr HM, Taglicht D, Mandil-Levin R, Ben-Avraham D, Konforty D, Nir A, Levius O, Bicoviski V, Dori M, Cohen S, Yaar L, Erez O, Propheta-Meiran O, Koskas M, Caspi-Bachar E, Alchanati I, Sela-Brown A, Moskowitz H, Tessmer U, Schubert U, Reiss Y. The trans-Golgi network-associated human ubiquitin-protein ligase POSH is essential for HIV type 1 production. Proc Natl Acad Sci U S A 2005; 102:1478-83. [PMID: 15659549 PMCID: PMC545085 DOI: 10.1073/pnas.0408717102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV type 1 (HIV-1) was shown to assemble either at the plasma membrane or in the membrane of late endosomes. Now, we report an essential role for human ubiquitin ligase POSH (Plenty of SH3s; hPOSH), a trans-Golgi network-associated protein, in the targeting of HIV-1 to the plasma membrane. Small inhibitory RNA-mediated silencing of hPOSH ablates virus secretion and Gag plasma membrane localization. Reintroduction of native, but not a RING finger mutant, hPOSH restores virus release and Gag plasma membrane localization in hPOSH-depleted cells. Furthermore, expression of the RING finger mutant hPOSH inhibits virus release and induces accumulation of intracellular Gag in normal cells. Together, our results identify a previously undescribed step in HIV biogenesis and suggest a direct function for hPOSH-mediated ubiquitination in protein sorting at the trans-Golgi network. Consequently, hPOSH may be a useful host target for therapeutic intervention.
Collapse
Affiliation(s)
- Iris Alroy
- Proteologics Ltd., 2 Holzman Street, Rehovot Science Park, Rehovot 76124, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Staneva G, Angelova MI, Koumanov K. Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem Phys Lipids 2004; 129:53-62. [PMID: 14998727 DOI: 10.1016/j.chemphyslip.2003.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/30/2003] [Indexed: 11/26/2022]
Abstract
Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends Cell Biol. 12 (2002) 296; Biochemistry 27 (1988) 6197]. In addition, the participation of phospholipases in the vesiculation of Golgi and other membranes has been already established [Traffic 1 (2000) 504] essentially in their role in the production of second messenger molecules. In this work we illustrate with raft-containing giant lipid vesicles a mechanism for raft-vesicle expulsion from the membrane due to the activity of a single enzyme-phospholipase A(2) (PLA(2)). This leads to the hypothesis that the PLA(2), apart from its role in second messenger generation, might play a direct and general role in the vesiculation processes underlying the intermembrane transport of rafts through purely physicochemical mechanisms. These mechanisms would be: enzyme adsorption leading to membrane curvature generation (budding), and enzyme activity modulation of the line tension at the raft boundaries, which induces vesicle fission.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl.21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
24
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Yeaman C, Ayala MI, Wright JR, Bard F, Bossard C, Ang A, Maeda Y, Seufferlein T, Mellman I, Nelson WJ, Malhotra V. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol 2004; 6:106-12. [PMID: 14743217 PMCID: PMC3372901 DOI: 10.1038/ncb1090] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 01/05/2004] [Indexed: 11/09/2022]
Abstract
Protein kinase D (PKD) binds to diacylglycerol (DAG) in the trans-Golgi network (TGN) and is activated by trimeric G-protein subunits beta gamma. This complex then regulates the formation of transport carriers in the TGN that traffic to the plasma membrane in non-polarized cells. Here we report specificity of different PKD isoforms in regulating protein trafficking from the TGN. Kinase-inactive forms of PKD1, PKD2 and PKD3 localize to the TGN in polarized and non-polarized cells. PKD activity is required only for the transport of proteins containing basolateral sorting information, and seems to be cargo specific.
Collapse
Affiliation(s)
- Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - M. Inmaculada Ayala
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0347, USA
| | - Jessica R. Wright
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Frederic Bard
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0347, USA
| | - Carine Bossard
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0347, USA
| | - Agnes Ang
- Department of Cell Biology, Yale University, New Haven, CT 06520-8002, USA
| | - Yusuke Maeda
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Thomas Seufferlein
- Department of Internal Medicine I, University of Ulm, 89071 Ulm, Germany
| | - Ira Mellman
- Department of Cell Biology, Yale University, New Haven, CT 06520-8002, USA
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Vivek Malhotra
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0347, USA
- Correspondence should be addressed to V.M. ()
| |
Collapse
|
26
|
Brose N, Rosenmund C. Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 2002; 115:4399-411. [PMID: 12414987 DOI: 10.1242/jcs.00122] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol is an essential second messenger in mammalian cells. The most prominent intracellular targets of diacylglycerol and of the functionally analogous phorbol esters belong to the protein kinase C (PKC) family. However, at least five alternative types of high-affinity diacylglycerol/phorbol-ester receptor are known: chimaerins, protein kinase D, RasGRPs, Munc13s and DAG kinase gamma. Recent evidence indicates that these have functional roles in diacylglycerol second messenger signalling in vivo and that several cellular processes depend on these targets rather than protein kinase C isozymes. These findings contradict the still prevalent view according to which all diacylglycerol/phorbol-ester effects are caused by the activation of protein kinase C isozymes. RasGRP1 (in Ras/Raf/MEK/ERK signalling) and Munc13-1 (in neurotransmitter secretion) are examples of non-PKC diacylglycerol/phorbol-ester receptors that mediate diacylglycerol and phorbol-ester effects originally thought to be caused by PKC isozymes. In the future, pharmacological studies on PKC must be complemented with alternative experimental approaches to allow the separation of PKC-mediated effects from those caused by alternative targets of the diacylglycerol second messenger pathway. The examples of RasGRP1 and Munc13-1 show that detailed genetic analyses of C(1)-domain-containing non-PKC diacylglycerol/phorbol-ester receptors in mammals are ideally suited to achieve this goal.
Collapse
Affiliation(s)
- Nils Brose
- Abteilung Molekulare Neurobiologie, Max-Planck-Institut für Experimentelle Medizin, D-37075 Göttingen, Germany.
| | | |
Collapse
|
27
|
Husain M, Moss B. Similarities in the induction of post-Golgi vesicles by the vaccinia virus F13L protein and phospholipase D. J Virol 2002; 76:7777-89. [PMID: 12097590 PMCID: PMC136368 DOI: 10.1128/jvi.76.15.7777-7789.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature vaccinia virions are wrapped by cisternae, derived from virus-modified trans-Golgi or endosomal membranes, and then transported via microtubules to the cell periphery. Two viral proteins, encoded by the F13L and B5R open reading frames, are essential for the membrane-wrapping step. Previous transfection studies indicated that F13L induces the formation of post-Golgi vesicles that incorporate the B5R protein and that this activity depends on an intact F13L phospholipase motif. Here we show that the F13L protein has a general effect on the trafficking of integral membrane proteins from the Golgi apparatus, as both the vaccinia virus A36R protein and the vesicular stomatitis virus G protein also colocalized with the F13L protein in vesicles. In addition, increased expression of cellular phospholipase D, which has a similar phospholipase motif as, but little amino acid sequence identity with, F13L, induced post-Golgi vesicles that contained B5R and A36R proteins. Butanol-1, which prevents the formation of phosphatidic acid by phospholipase D and specifically inhibits phospholipase D-mediated vesicle formation, also inhibited F13L-induced vesicle formation, whereas secondary and tertiary alcohols had no effect. Moreover, inhibition of phospholipase activity by butanol-1 also reduced plaque size and decreased the formation of extracellular vaccinia virus without affecting the yield of intracellular mature virus. Phospholipase D, however, could not complement a vaccinia virus F13L deletion mutant, indicating that F13L has additional virus-specific properties. Taken together, these data support an important role for F13L in inducing the formation of vesicle precursors of the vaccinia virus membrane via phospholipase activity or activation.
Collapse
Affiliation(s)
- Matloob Husain
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
28
|
Wang H, Kazanietz MG. Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain. J Biol Chem 2002; 277:4541-50. [PMID: 11689559 DOI: 10.1074/jbc.m107150200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulation and function of chimaerins, a family of "non-protein kinase C" (PKC) phorbol ester/diacylglycerol receptors with Rac-GAP activity, is largely unknown. In a search for chimaerin-interacting proteins, we isolated Tmp21-I (p23), a protein localized at the perinuclear Golgi area. Remarkably, phorbol esters translocate beta2-chimaerin to the perinuclear region and promote its association with Tmp21-I in a PKC-independent manner. A deletional analysis revealed that the C1 domain in chimaerins is required for the interaction with Tmp21-I, thereby implying a novel function for this domain in protein-protein associations in addition to its role in lipid and phorbol ester binding. Our results support the emerging concept that multiple pathways transduce signaling by phorbol esters and revealed that, like PKC isozymes, chimaerins are subject to a positional regulation. In this setting, Tmp21-I serves as an anchoring protein that determines the intracellular localization of these novel phorbol ester receptors.
Collapse
Affiliation(s)
- HongBin Wang
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
29
|
Sweeney DA, Siddhanta A, Shields D. Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem 2002; 277:3030-9. [PMID: 11704660 DOI: 10.1074/jbc.m104639200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work from our laboratory demonstrated that phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), are required to maintain the structural integrity of the Golgi apparatus. To investigate the role of these lipids in regulating Golgi structure and function, we developed a novel assay to follow the release of post-Golgi vesicles. Isolated rat liver Golgi membranes were incubated with [(3)H]CMP sialic acid to radiolabel endogenous soluble and membrane glycoproteins present in the late Golgi and trans-Golgi network. The release of post-Golgi secretory vesicles was determined by measuring incorporation of (3)H-labeled proteins into a medium speed supernatant. Vesicle budding was dependent on temperature, cytosol, energy and time. Electron microscopy of Golgi fractions prior to and after incubation demonstrated that the stacked Golgi cisternae generated a heterogeneous population of vesicles (50- to 350-nm diameter). Inhibition of phospholipase D-mediated PA synthesis, by incubation with 1-butanol, resulted in the complete fragmentation of the Golgi membranes in vitro into 50- to 100-nm vesicles; this correlated with diminished PtdIns(4,5)P(2) synthesis. Following alcohol washout, PA synthesis resumed and in the presence of cytosol PtdIns(4,5)P(2) synthesis was restored. Most significantly, under these conditions the fragmented Golgi elements reformed into flattened cisternae and the re-assembled Golgi supported vesicle release. These data demonstrate that inositol phospholipid synthesis is essential for the structure and function of the Golgi apparatus.
Collapse
Affiliation(s)
- David A Sweeney
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
30
|
Bruns JR, Ellis MA, Jeromin A, Weisz OA. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 2002; 277:2012-8. [PMID: 11704666 DOI: 10.1074/jbc.m108571200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositols (PI) play important roles in regulating numerous cellular processes including cytoskeletal organization and membrane trafficking. The control of PI metabolism by phosphatidylinositol kinases has been the subject of extensive investigation; however, little is known about how phosphatidylinositol kinases regulate traffic in polarized epithelial cells. Because phosphatidylinositol 4-kinase (PI4K)-mediated phosphatidylinositol 4-phosphate (PI(4)P) production has been suggested to regulate biosynthetic traffic in yeast and mammalian cells, we have examined the role of PI4Kbeta in protein delivery in polarized MDCK cells, at different levels of the biosynthetic pathway. Expression of wild type PI4Kbeta had no effect on the rate of transport of influenza hemagglutinin (HA) through the Golgi complex, but inhibited the rate of trans-Golgi network (TGN)-to-cell surface delivery of this protein. By contrast, expression of dominant-negative, kinase-dead PI4Kbeta (PI4Kbeta(D656A)) inhibited intra-Golgi transport but stimulated TGN-to-cell surface delivery of HA. Moreover, expression of PI4Kbeta(D656A) significantly increased the solubility in cold Triton X-100 of HA staged in the TGN, suggesting that altered association of HA with lipid rafts may be responsible for the enhanced transport rate. Both wild type and kinase-dead PI4Kbeta inhibited basolateral delivery of vesicular stomatitis virus G protein, suggesting an effector function for PI4Kbeta in the regulation of basolateral traffic. Thus, by contrast with the observed requirement for PI4Kbeta activity and PI(4)P for efficient transport in yeast, our data suggest that changes in PI(4)P levels can stimulate and inhibit Golgi to cell surface delivery in mammalian cells.
Collapse
Affiliation(s)
- Jennifer R Bruns
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261,USA
| | | | | | | |
Collapse
|
31
|
Husain M, Moss B. Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 2001; 75:7528-42. [PMID: 11462025 PMCID: PMC114988 DOI: 10.1128/jvi.75.16.7528-7542.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wrapping of intracellular mature vaccinia virions by modified trans-Golgi or endosomal cisternae to form intracellular enveloped virions is dependent on at least two viral proteins encoded by the B5R and F13L open reading frames. B5R is a type I integral membrane glycoprotein, whereas F13L is an unglycosylated, palmitylated protein with a motif that is conserved in a superfamily of phospholipid-metabolizing enzymes. Microscopic visualization of the F13L protein was achieved by fusing it to the enhanced green fluorescent protein (GFP). F13L-GFP was functional when expressed by a recombinant vaccinia virus in which it replaced the wild-type F13L gene or by transfection of uninfected cells with a plasmid vector followed by infection with an F13L deletion mutant. In uninfected or infected cells, F13L-GFP was associated with Golgi cisternae and post-Golgi vesicles containing the LAMP 2 late endosomal-lysosomal marker. Association of F13L-GFP with vesicles was dependent on an intact phospholipase catalytic motif and sites of palmitylation. The B5R protein was also associated with LAMP2-containing vesicles when F13L-GFP was coexpressed, but was largely restricted to Golgi cisternae in the absence of F13L-GFP or when the F13L moiety was mutated. We suggest that the F13L protein, like its human phospholipase D homolog, regulates vesicle formation and that this process is involved in intracellular enveloped virion membrane formation.
Collapse
Affiliation(s)
- M Husain
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | |
Collapse
|
32
|
Caloca MJ, Wang H, Delemos A, Wang S, Kazanietz MG. Phorbol esters and related analogs regulate the subcellular localization of beta 2-chimaerin, a non-protein kinase C phorbol ester receptor. J Biol Chem 2001; 276:18303-12. [PMID: 11278894 DOI: 10.1074/jbc.m011368200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel phorbol ester receptor beta2-chimaerin is a Rac-GAP protein possessing a single copy of the C1 domain, a 50-amino acid motif initially identified in protein kinase C (PKC) isozymes that is involved in phorbol ester and diacylglycerol binding. We have previously shown that, like PKCs, beta2-chimaerin binds phorbol esters with high affinity in a phospholipid-dependent manner (Caloca, M. J., Fernandez, M. N., Lewin, N. E., Ching, D., Modali, R., Blumberg, P. M., and Kazanietz, M. G. (1997) J. Biol. Chem. 272, 26488-26496). In this paper we report that like PKC isozymes, beta2-chimaerin is translocated by phorbol esters from the cytosolic to particulate fraction. Phorbol esters also induce translocation of alpha1 (n)- and beta1-chimaerins, suggesting common regulatory mechanisms for all chimaerin isoforms. The subcellular redistribution of beta2-chimaerin by phorbol esters is entirely dependent on the C1 domain, as revealed by deletional analysis and site-directed mutagenesis. Interestingly, beta2-chimaerin translocates to the Golgi apparatus after phorbol ester treatment, as revealed by co-staining with the Golgi marker BODIPY-TR-ceramide. Structure relationship analysis of translocation using a series of PKC ligands revealed substantial differences between translocation of beta2-chimaerin and PKCalpha. Strikingly, the mezerein analog thymeleatoxin is not able to translocate beta2-chimaerin, although it very efficiently translocates PKCalpha. Phorbol esters also promote the association of beta2-chimaerin with Rac in cells. These data suggest that chimaerins can be positionally regulated by phorbol esters and that each phorbol ester receptor class has distinct pharmacological properties and targeting mechanisms. The identification of selective ligands for each phorbol ester receptor class represents an important step in dissecting their specific cellular functions.
Collapse
Affiliation(s)
- M J Caloca
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | |
Collapse
|
33
|
Brede G, Solheim J, Tröen G, Prydz H. Characterization of PSKH1, a novel human protein serine kinase with centrosomal, golgi, and nuclear localization. Genomics 2000; 70:82-92. [PMID: 11087665 DOI: 10.1006/geno.2000.6365] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the characterization of PSKH1, a novel human protein serine kinase with multiple intracellular localizations. The gene consists of three exons distributed over 35 kb of genomic DNA in region 16q22.1. The 3.4-kb cDNA predicts a protein of 424 amino acids with a calculated molecular mass of 48.1 kDa and pI of 9.6. PSKH1 is expressed in all tissues and cell lines tested as shown by Northern blots, with the highest level of abundance in testis. PSKH1 displays the highest level of similarity with rat CaM kinase I (50. 2%) over 259 amino acids in the conserved catalytic region, but lacks significant homology with proteins in the database outside the catalytic core. Polyclonal antibodies have been raised, and indirect immunofluorescence microscopy of untransfected COS-1 cells suggests that PSKH1 is localized in the Brefeldin A-sensitive Golgi compartment, at centrosomes, in the nucleus with a somewhat speckle-like presence, and more diffusely in the cytoplasm. The presence in the centrosome appears to be enhanced during osmotic stress. Immunoisolated PSKH1 does not phosphorylate any of the common kinase substrates in vitro, but autophosphorylates exclusively serines within its COOH-terminal region in an intermolecular fashion. Furthermore, autophosphorylation activity is repressed upon addition of Ca(2+)/CaM, suggesting that PSKH1 activity depends on Ca(2+) concentration in vivo.
Collapse
Affiliation(s)
- G Brede
- Biotechnology Center of Oslo, University of Oslo, Gaustadalleen 21, Oslo, 0349, Norway
| | | | | | | |
Collapse
|
34
|
Abstract
The small GTPase Rab2 initiates the recruitment of soluble components necessary for protein sorting and recycling from pre-Golgi intermediates. Our previous studies showed that Rab2 required protein kinase C (PKC) or a PKC-like protein to recruit beta-COP to membrane (Tisdale EJ, Jackson M. Rab2 protein enhances coatomer recruitment to pre-Golgi intermediates. J Biol Chem 1998;273: 17269-17277). We investigated the role of PKC in Rab2 function by first determining the active isoform that associates with membranes used in our assay. Western blot analysis detected three isoforms: PKC alpha, gamma and iota/lambda. A quantitative binding assay was used to measure recruitment of these kinases when incubated with Rab2. Only PKC iota/lambda translocated to membrane in a dose-dependent manner. Microsomes treated with anti-PKC iota/lambda lost the ability to bind beta-COP, suggesting that Rab2 requires PKC iota/lambda for beta-COP recruitment. The recruitment of beta-COP to membranes is not regulated by PKC iota/lambda kinase activity. However, PKC iota/lambda activity was necessary for Rab2-mediated vesicle budding. We found that the addition of either a kinase-deficient PKC iota/lambda mutant or atypical PKC pseudosubstrate peptide to the binding assay drastically reduced vesicle formation. These data suggest that Rab2 causes translocation of PKC iota/lambda to vesicular tubular clusters (VTCs), which promotes the recruitment of COPI to generate retrograde-transport vesicles.
Collapse
Affiliation(s)
- E J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| |
Collapse
|
35
|
Affiliation(s)
- D Deretic
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor 48105, USA
| |
Collapse
|
36
|
Simon JP, Ivanov IE, Adesnik M, Sabatini DD. In vitro generation from the trans-Golgi network of coatomer-coated vesicles containing sialylated vesicular stomatitis virus-G protein. Methods 2000; 20:437-54. [PMID: 10720465 DOI: 10.1006/meth.2000.0957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe an in vitro system in which post-Golgi vesicles containing metabolically labeled, sialylated, vesicular stomatitis virus (VSV) G protein molecules (VSV-G) are produced from the trans-Golgi network (TGN) of an isolated Golgi membrane fraction. This fraction is prepared from VSV-infected Madin-Darby canine kidney (MDCK) cells in which the (35)S-labeled viral envelope glycoprotein was allowed to accumulate in the trans-Golgi network during a prolonged incubation at 20 degrees C. The vesicles produced in this system are separated from the remnant Golgi membranes by differential centrifugation or by velocity sedimentation in a sucrose gradient. Vesicle production, quantified as the percentage of labeled VSV-G released from the Golgi membranes, is optimal at 37 degrees C and does not occur below 20 degrees C. It requires GTP and the small GTP-binding protein Arf (ADP-ribosylation factor), as well as coat protein type I (COPI) coat components (coatomer) and vesicle scission factors-one of which corresponds to the phosphatidylinositol transfer protein (PITP). Formation of the vesicles does not require GTP hydrolysis which, however, is necessary for their uncoating. Thus, vesicles generated in the presence of the nonhydrolyzable GTP analogs, GTPgammaS or GMP-PNP, retain a coatomer coat visible in the electron microscope, sediment more rapidly in sucrose density gradients than those generated with ATP or GTP, and can be captured with anticoatomerantibodies. The process of coatomer-coated vesicle formation from the TGN can be dissected into two distinct sequential phases, corresponding to coat assembly/bud formation and vesicle scission. The first phase is completed when Golgi fractions are incubated with cytosolic proteins and nonhydrolyzable GTP analogs at 20 degrees C. The scission phase, which leads to vesicle release, takes place when coated Golgi membranes, recovered after phase I, are incubated at higher temperatures in the presence of cytosolic proteins. The scission phase does not take place if protein kinase C inhibitors are added during the first phase, even though these inhibitors do not prevent membrane coating and bud formation. The phosphorylating activity of a protein kinase C, however, plays no role in vesicle formation, since this process does not require ATP.
Collapse
Affiliation(s)
- J P Simon
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
37
|
Boisgard R, Chanat E. Phospholipase D-dependent and -independent mechanisms are involved in milk protein secretion in rabbit mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1495:281-96. [PMID: 10699466 DOI: 10.1016/s0167-4889(99)00167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase D has been implicated in membrane traffic in the secretory pathway of yeast and of some mammalian cell lines. Here we investigated the involvement of phospholipase D in protein transport at various steps of the secretory pathway of mammary epithelial cells. Treatment of rabbit mammary explants with butanol, which blocks the formation of phosphatidic acid, decreased the secretion of caseins and to a lesser extent that of whey acidic protein. Butanol interfered with both the endoplasmic reticulum to Golgi complex transport of the caseins and secretory vesicle formation from the trans-Golgi network. In contrast, the transport of whey acidic protein to the Golgi was less affected. Activation of protein kinase C enhanced the overall secretion of both markers and interestingly, this stimulation of secretion was maintained for whey acidic protein in the presence of butanol. Transphosphatidylation assays demonstrated the existence of a constitutive phospholipase D activity which was stimulated by the activation of protein kinase C. We conclude that phospholipase D plays a role in casein transport from the endoplasmic reticulum to the Golgi and in the secretory vesicle formation from the trans-Golgi network. Moreover, our results suggest a differential requirement for phospholipase D in the secretion of caseins and that of whey acidic protein.
Collapse
Affiliation(s)
- R Boisgard
- Institut National de la Recherche Agronomique, Laboratoire de Biologie Cellulaire et Moleculaire, F-78352, Jouy-en-Josas, France
| | | |
Collapse
|
38
|
Baldassarre M, Dragonetti A, Marra P, Luini A, Isidoro C, Buccione R. Regulation of protein sorting at the TGN by plasma membrane receptor activation. J Cell Sci 2000; 113 ( Pt 4):741-8. [PMID: 10652266 DOI: 10.1242/jcs.113.4.741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We show that in the rat basophilic leukemia cell line RBL, the physiological stimulation of the IgE receptor or direct activation of PKC leads to the missorting of proteins to the plasma membrane, diverting them from their normal intracellular destination. This is demonstrated for two classes of proteins that are normally targeted to the secretory lysosomes via completely different mechanisms, i.e. proteoglycans and the aspartic protease cathepsin D. In the latter case, normal processing of the enzyme is also affected, leading to secretion of the immature form of cathepsin. The present study shows how completely different sorting mechanisms, such as those for delivering proteoglycans and cathepsin D to secretory lysosomes, might share common regulatory signals and are similarly affected when the levels of these signals are perturbed. Finally, protein kinase C appears to be a major player in the signal transduction pathways, leading to proteoglycan and cathepsin D missorting.
Collapse
Affiliation(s)
- M Baldassarre
- Department of Cell Biology, Istituto di Ricerche Farmacologiche 'Mario Negri', Chieti 66030, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
40
|
Martín ME, Hidalgo J, Vega FM, Velasco A. Trimeric G proteins modulate the dynamic interaction of PKAII with the Golgi complex. J Cell Sci 1999; 112 ( Pt 22):3869-78. [PMID: 10547348 DOI: 10.1242/jcs.112.22.3869] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex represents a major subcellular location of protein kinase A (PKA) concentration in mammalian cells where it has been previously shown to be involved in vesicle-mediated protein transport processes. We have studied the factors that influence the interaction of PKA typeII subunits with the Golgi complex. In addition to the cytosol, both the catalytic (Calpha) and regulatory (RIIalpha) subunits of PKAII were detected at both sides of the Golgi stack, particularly in elements of the cis- and trans-Golgi networks. PKAII subunits, in contrast, were practically absent from the middle Golgi cisternae. Cell treatment with either brefeldin A, AlF(4-) or at low temperature induced PKAII dissociation from the Golgi complex and redistribution to the cytosol. This suggested the existence of a cycle of association/dissociation of PKAII holoenzyme to the Golgi. The interaction of purified RIIalpha with Golgi membranes was studied in vitro and found not to be affected by brefeldin A while it was sensitive to modulators of heterotrimeric G proteins such as AlF(4-), GTPgammaS, beta(gamma) subunits and mastoparan. RII(alphaa) binding was stimulated by recombinant, myristoylated Galpha(i3) subunit and inhibited by cAMP. Pretreatment of Golgi membranes with bacterial toxins known to catalyze ADP-ribosylation of selected Galpha subunits also modified RIIalpha binding. Taken together the data support a regulatory role for Golgi-associated Galpha proteins in PKAII recruitment from the cytosol.
Collapse
Affiliation(s)
- M E Martín
- Department of Cell Biology, Faculty of Biology, University of Seville, Spain
| | | | | | | |
Collapse
|
41
|
Auger R, Robin P, Camier B, Vial G, Rossignol B, Tenu JP, Raymond MN. Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A. J Biol Chem 1999; 274:28652-9. [PMID: 10497234 DOI: 10.1074/jbc.274.40.28652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colonic epithelial HT29-cl19A cells are polarized and secrete proteins among which alpha(1)-antitrypsin represents about 95%. Secretion occurs via a constitutive pathway, so that the rates of secretion directly reflect the rates of protein transit. In this paper we have demonstrated that: 1) in resting cells phospholipase D (PLD) is implicated in the control of apical protein transit; 2) phorbol esters stimulate apical protein transit (stimulation factor 2.2), which is correlated with a PLD-catalyzed production of phosphatidic acid (PA) (2.45-fold increase); 3) the stimulation of cholinergic receptors by carbachol results in an increase (stimulation factor 1.45) of apical protein transit which is independent of protein kinase C and PLD activities, but related to PA formation (1.7-fold increase) via phospholipase(s) C and diacylglycerol kinase activation; 4) an elevation of the cAMP level enhances apical protein transit by a PA-independent mechanism; 5) a trans-Golgi network or post-trans-Golgi network step of the transit is the target for the regulatory events. In conclusion, we have shown that PA can be produced by two independent signaling pathways; whatever the pathway followed, a close relationship between the amount of PA and the level of secretion was observed.
Collapse
Affiliation(s)
- R Auger
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, Unité Mixte de Recherche 8619, Bâtiment 432, Université Paris XI, 91 405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Aballay A, Stahl PD, Mayorga LS. Phorbol ester promotes endocytosis by activating a factor involved in endosome fusion. J Cell Sci 1999; 112 ( Pt 15):2549-57. [PMID: 10393811 DOI: 10.1242/jcs.112.15.2549] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies indicate that a zinc- and phorbol ester-binding factor is necessary for in vitro endosome fusion and for the effect of Rab5 on endosome fusion. Rab5 is a small GTPase that regulates membrane fusion between early endosomes derived from either receptor-mediated endocytosis or fluid-phase endocytosis. In its GTP-bound form, Rab5 promotes endocytosis and enhances fusion among early endosomes. To determine if PMA stimulates endocytosis by activating a factor required for endosome fusion, we overexpressed wild-type Rab5, a dominant negative mutant (Rab5:S34N), and a GTPase deficient mutant (Rab5:Q79L) in BHK-21 cells. The phorbol ester PMA stimulates endocytosis and increases the number and the size of endocytic vesicles, even in the presence of Rab5:S34N. Zinc depletion with N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and addition of calphostin C (CPC), an inhibitor of PKC that interacts with zinc and phorbol ester binding motifs, inhibited both basal and Rab5-stimulated fluid phase endocytosis. These two reagents also inhibited the size and number of endocytic vesicles promoted by Rab5. These results suggest that PMA stimulates endocytosis by regulating the dynamics of the early endosome compartment.
Collapse
Affiliation(s)
- A Aballay
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
Abstract
Phospholipase D (PLD) is a widely distributed enzyme that is under elaborate control by hormones, neurotransmitters, growth factors and cytokines in mammalian cells. Protein kinase C (PKC) plays a major role in the regulation of the PLD1 isozyme through interaction with its N-terminus. PKC activates this isozyme by a non-phosphorylation mechanism in vitro, but phosphorylation plays a role in the action of PKC on the enzyme in vivo. Although PLD1 can be phosphorylated by PKC in vitro, it is unclear that this occurs in vivo. Small GTPases of the ADP-ribosylation factor (ARF) and Rho families directly activate PLD1 in vitro and there is evidence that Rho proteins are involved in agonist regulation of PLD1 in vivo. ARF proteins stimulate PLD activity in the Golgi apparatus, but the role of these proteins in agonist regulation of the enzyme is less clear. PLD1 undergoes tyrosine phosphorylation in response to H(2)O(2) treatment of cells. The functional consequence of this phosphorylation and soluble tyrosine kinase(s) involved are presently unknown.
Collapse
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA.
| |
Collapse
|
44
|
Anner BM, Volet B. Uptake of reconstituted Na,K-ATPase vesicles by isolated lymphocytes measured by FACS, confocal microscopy and spectrofluorometry. Cell Biochem Biophys 1999; 30:437-54. [PMID: 10403060 DOI: 10.1007/bf02738123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Na,K-ATPase (EC 3.6.1.37, Na,K-ATPase) is a fundamental vital membrane transport and receptor system which, after biosynthesis, is exported to the plasma membrane in inside-out vesicles. Na,K-ATPase can be extracted form the natural membrane and inserted into artificially formed phosphatidylcholine vesicles (liposomes). The ultrastructure of the reconstituted vesicles has been fully described. In the present work, the Na,K-ATPase-vesicles were labeled with fluorescent tracers either in their water or membrane phase, incubated with freshly isolated human lymphocytes, and the resulting cellular fluorescence measured with fluorescence activated cell sorting (FACS), confocal microscopy and spectrofluorometry. The FACS data show that all lymphocytes take up Na,K-ATPase-vesicles in a dose- and temperature-dependent fashion. Three-dimensional analysis of the fluorescence by confocal microscopy reveals that the fluorescence is contained within the cells. Quantitative determination by spectrofluorometry indicates that depending on the vesicle/cell ratio, a single lymphocyte takes up 650 to 36,500 vesicles within 30 min at 37 degrees C together with up to about 200,000 renal Na,K-ATPase molecules.
Collapse
Affiliation(s)
- B M Anner
- Department of Pharmacology, Geneva University Medical School, Switzerland.
| | | |
Collapse
|
45
|
Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 1999; 98:59-68. [PMID: 10412981 DOI: 10.1016/s0092-8674(00)80606-6] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have shown previously that the betagamma subunits of the heterotrimeric G proteins regulate the organization of the pericentriolarly localized Golgi stacks. In this report, evidence is presented that the downstream target of Gbetagamma is protein kinase D (PKD), an isoform of protein kinase C. PKD, unlike other members of this class of serine/threonine kinases, contains a pleckstrin homology (PH) domain. Our results demonstrate that Gbetagamma directly activates PKD by interacting with its PH domain. Inhibition of PKD activity through the use of pharmacological agents, synthetic peptide substrates, and, more specifically, the PH domain of PKD prevents Gbetagamma-mediated Golgi breakdown. Our findings suggest a possible mechanism by which the direct interaction of Gbetagamma with PKD regulates the dynamics of Golgi membranes and protein secretion.
Collapse
Affiliation(s)
- C Jamora
- Biology Department, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Enzymes that modify phospholipids play necessary, but poorly understood, roles in constitutive membrane traffic. Local production of specific phosphoinositides is required for endocytosis and regulated exocytosis, and enzymes that produce and consume phosphoinositides are components of post-Golgi membrane vesicles. Both biochemical and genetic data indicate that regulation of the membrane content of phosphatidic acid, diacylglycerol and phosphoinositides is necessary for protein traffic from the Golgi complex. Evidence for a regulatory role for lipids earlier in the constitutive secretory pathway is more limited and controversial. Although the mechanisms that regulate traffic between the endoplasmic reticulum and Golgi might be qualitatively different from those that control later membrane transport pathways, recent studies suggest that production of specific lipids is important for transport both into and out of the Golgi. As discussed in this article, one potential mechanism for the involvement of lipids is to control the GTPase cycle of a small GTP-binding protein, ARF (ADP-ribosylation factor).
Collapse
Affiliation(s)
- M G Roth
- Dept of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9038, USA.
| |
Collapse
|
47
|
Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 1999; 19:2338-50. [PMID: 10022920 PMCID: PMC84026 DOI: 10.1128/mcb.19.3.2338] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a stable complex with Pyk2 and that activation of Pyk2 leads to tyrosine phosphorylation of Pap in living cells. Immunofluorescence experiments demonstrate that Pap is localized in the Golgi apparatus and at the plasma membrane, where it is colocalized with Pyk2. In addition, in vitro recombinant Pap exhibits strong GTPase-activating protein (GAP) activity towards the small GTPases Arf1 and Arf5 and weak activity towards Arf6. Addition of recombinant Pap protein to Golgi preparations prevented Arf-dependent generation of post-Golgi vesicles in vitro. Moreover, overexpression of Pap in cultured cells reduced the constitutive secretion of a marker protein. We propose that Pap functions as a GAP for Arf and that Pyk2 may be involved in regulation of vesicular transport through its interaction with Pap.
Collapse
Affiliation(s)
- J Andreev
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 ( Pt 5):719-31. [PMID: 9973606 DOI: 10.1242/jcs.112.5.719] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Go-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Go-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing of the second membrane disruption. Since vesicle pools were implicated in both membrane resealing and facilitation of membrane resealing, we reasoned that artificial decreases in membrane surface tension would have the same result. Decreases in surface tension induced by the addition of a surfactant (Pluronic F68 NF) or cytochalasin D facilitated resealing at first wounding. Furthermore, Pluronic F68 NF restored resealing when exocytosis was blocked by tetanus toxin. These results suggest that membrane resealing requires a decrease in surface tension and under natural conditions this is provided by Ca2+-dependent exocytosis of new membrane near the site of disruption.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
49
|
Rodríguez-Martín E, Boyano-Adánez MC, Bodega G, Martín M, Hernández C, Quin Y, Vadillo M, Arilla-Ferreiro E. Redistribution of protein kinase C isoforms in rat pancreatic acini during lactation and weaning. FEBS Lett 1999; 445:356-60. [PMID: 10094489 DOI: 10.1016/s0014-5793(99)00133-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.
Collapse
Affiliation(s)
- E Rodríguez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Babiá T, Ayala I, Valderrama F, Mato E, Bosch M, Santarén JF, Renau-Piqueras J, Kok JW, Thomson TM, Egea G. N-Ras induces alterations in Golgi complex architecture and in constitutive protein transport. J Cell Sci 1999; 112 ( Pt 4):477-89. [PMID: 9914160 DOI: 10.1242/jcs.112.4.477] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant glycosylation of proteins and lipids is a common feature of many tumor cell types, and is often accompanied by alterations in membrane traffic and an anomalous localization of Golgi-resident proteins and glycans. These observations suggest that the Golgi complex is a key organelle for at least some of the functional changes associated with malignant transformation. To gain insight into this possibility, we have analyzed changes in the structure and function of the Golgi complex induced by the conditional expression of the transforming N-Ras(K61) mutant in the NRK cell line. A remarkable and specific effect associated with this N-Ras-induced transformation was a conspicuous rearrangement of the Golgi complex into a collapsed morphology. Ultrastructural and stereological analyses demonstrated that the Golgi complex was extensively fragmented. The collapse of the Golgi complex was also accompanied by a disruption of the actin cytoskeleton. Functionally, N-Ras-transformed KT8 cells showed an increase in the constitutive protein transport from the trans-Golgi network to the cell surface, and did not induce the appearance of aberrant cell surface glycans. The Golgi complex collapse, the actin disassembly, and the increased constitutive secretion were all partially inhibited by the phospholipase A2 inhibitor 4-bromophenylacyl bromide. The results thus suggest the involvement of the actin cytoskeleton in the shape of the Golgi complex, and intracellular phospholipase A2 in its architecture and secretory function.
Collapse
Affiliation(s)
- T Babiá
- Departament de Biologia Cel.lular, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, C/Casanova, 08036 Barcelona (Spain).
| | | | | | | | | | | | | | | | | | | |
Collapse
|