1
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
2
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
3
|
Plattner H. Trichocysts-Paramecium'sProjectile-like Secretory Organelles. J Eukaryot Microbiol 2016; 64:106-133. [DOI: 10.1111/jeu.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Helmut Plattner
- Department of Biology; University of Konstanz; PO Box M625 78457 Konstanz Germany
| |
Collapse
|
4
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
5
|
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – The ciliated protozoan Paramecium in focus. Cell Calcium 2015; 57:174-85. [DOI: 10.1016/j.ceca.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
|
6
|
Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun 2014; 4:2862. [PMID: 24280897 PMCID: PMC3868333 DOI: 10.1038/ncomms3862] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/04/2013] [Indexed: 01/28/2023] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum merozoites is a complex multi-step process mediated by specific interactions between host receptors and parasite ligands. Reticulocyte-binding protein homologues (RHs) and erythrocyte-binding-like (EBL) proteins are discharged from specialized organelles and used in early steps of invasion. Here we show that monoclonal antibodies against PfRH1 (an RH) block merozoite invasion by specifically inhibiting calcium signalling in the parasite, whereas invasion-inhibiting monoclonal antibodies targeting EBA175 (an EBL protein) have no effect on signalling. We further show that inhibition of this calcium signalling prevents EBA175 discharge and thereby formation of the junction between parasite and host cell. Our results indicate that PfRH1 has an initial sensing as well as signal transduction role that leads to the subsequent release of EBA175. They also provide new insights on how RH-host cell interactions lead to essential downstream signalling events in the parasite, suggesting new targets for malaria intervention.
Collapse
|
7
|
Plattner H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels. Cell Calcium 2014; 57:203-13. [PMID: 25277862 DOI: 10.1016/j.ceca.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box M625, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Abstract
Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.
Collapse
|
9
|
Plattner H. Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 2013; 61:95-114. [PMID: 24001309 DOI: 10.1111/jeu.12070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5544, 78457, Konstanz, Germany
| |
Collapse
|
10
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS One 2011; 6:e27111. [PMID: 22102876 PMCID: PMC3213138 DOI: 10.1371/journal.pone.0027111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022] Open
Abstract
The release of Ca2+ from internal stores is a major source of signal Ca2+ in almost all cell types. The internal Ca2+ pools are activated via two main families of intracellular Ca2+-release channels, the ryanodine and the inositol 1,4,5-trisphosphate (InsP3) receptors. Among multicellular organisms these channel types are ubiquitous, whereas in most unicellular eukaryotes the identification of orthologs is impaired probably due to evolutionary sequence divergence. However, the ciliated protozoan Paramecium allowed us to prognosticate six groups, with a total of 34 genes, encoding proteins with characteristics typical of InsP3 and ryanodine receptors by BLAST search of the Paramecium database. We here report that these Ca2+-release channels may display all or only some of the characteristics of canonical InsP3 and ryanodine receptors. In all cases, prediction methods indicate the presence of six trans-membrane regions in the C-terminal domains, thus corresponding to canonical InsP3 receptors, while a sequence homologous to the InsP3-binding domain is present only in some types. Only two types have been analyzed in detail previously. We now show, by using antibodies and eventually by green fluorescent protein labeling, that the members of all six groups localize to distinct organelles known to participate in vesicle trafficking and, thus, may provide Ca2+ for local membrane-membrane interactions. Whole genome duplication can explain radiation within the six groups. Comparative and evolutionary evaluation suggests derivation from a common ancestor of canonical InsP3 and ryanodine receptors. With one group we could ascertain, to our knowledge for the first time, aberrant splicing in one thoroughly analyzed Paramecium gene. This yields truncated forms and, thus, may indicate a way to pseudogene formation. No comparable analysis is available for any other, free-living or parasitic/pathogenic protozoan.
Collapse
|
12
|
Ramoino P, Milanese M, Candiani S, Diaspro A, Fato M, Usai C, Bonanno G. γ-Amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis. J Exp Biol 2010; 213:1251-8. [DOI: 10.1242/jeb.039594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARY
Paramecium primaurelia expresses a significant amount of γ-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca2+ but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.
Collapse
Affiliation(s)
- P. Ramoino
- Department for the Study of Territory and its Resources (DIP.TE.RIS.), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - M. Milanese
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - S. Candiani
- Department of Biology, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
| | - A. Diaspro
- The Italian Institute of Technology (IIT), Nanophysics Unit, Via Morego 30, 16163 Genova, Italy
| | - M. Fato
- Department of Communication, Computer and System Sciences (DIST), University of Genoa, Viale Causa 13, 16145 Genova, Italy
| | - C. Usai
- Institute of Biophysics, CNR Genoa, Via De Marini 6, 16149 Genova, Italy
| | - G. Bonanno
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
- National Institute of Neuroscience, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
13
|
Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 2009; 29:3605-22. [PMID: 19380481 DOI: 10.1128/mcb.01592-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A database search of the Paramecium genome reveals 34 genes related to Ca(2+)-release channels of the inositol-1,4,5-trisphosphate (IP(3)) or ryanodine receptor type (IP(3)R, RyR). Phylogenetic analyses show that these Ca(2+) release channels (CRCs) can be subdivided into six groups (Paramecium tetraurelia CRC-I to CRC-VI), each one with features in part reminiscent of IP(3)Rs and RyRs. We characterize here the P. tetraurelia CRC-IV-1 gene family, whose relationship to IP(3)Rs and RyRs is restricted to their C-terminal channel domain. CRC-IV-1 channels localize to cortical Ca(2+) stores (alveolar sacs) and also to the endoplasmic reticulum. This is in contrast to a recently described true IP(3) channel, a group II member (P. tetraurelia IP(3)R(N)-1), found associated with the contractile vacuole system. Silencing of either one of these CRCs results in reduced exocytosis of dense core vesicles (trichocysts), although for different reasons. Knockdown of P. tetraurelia IP(3)R(N) affects trichocyst biogenesis, while CRC-IV-1 channels are involved in signal transduction since silenced cells show an impaired release of Ca(2+) from cortical stores in response to exocytotic stimuli. Our discovery of a range of CRCs in Paramecium indicates that protozoans already have evolved multiple ways for the use of Ca(2+) as signaling molecule.
Collapse
|
14
|
Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: amplification caused by intracellular Ca2+. ACTA ACUST UNITED AC 2009; 212:270-6. [PMID: 19112146 DOI: 10.1242/jeb.023283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Paramecium spontaneously changes its swimming direction in the absence of external stimuli. Such behavior is based on resting potential fluctuations, the amplitudes of which reach a few mV. When the resting potential fluctuation is positive and large, a spike-like depolarization is frequently elicited that reverses the beating of the cilia associated with directional changes during swimming. We aimed to study how the resting potential fluctuation is amplified. Simultaneous measurements of the resting potential and intracellular Ca(2+) ([Ca(2+)](i)) from a deciliated cell showed that positive potential fluctuations were frequently accompanied by a small increase in [Ca(2+)](i). This result suggests that Ca(2+) influx through the somatic membrane occurs during the resting state. The mean amplitude of the resting potential fluctuation was largely decreased by either an intracellular injection of a calcium chelater (BAPTA) or by an extracellular addition of Ba(2+). Hence, a small increase in [Ca(2+)](i) amplifies the resting potential fluctuation. Simulation analysis of the potential fluctuation was made by assuming that Ca(2+) and K(+) channels of surface membrane are fluctuating between open and closed states. The simulated fluctuation increased to exhibit almost the same amplitude as the measured fluctuation using the assumption that a small Ca(2+) influx activates Ca(2+) channels in a positive feedback manner.
Collapse
Affiliation(s)
- Yasuo Nakaoka
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
15
|
Plattner H, Sehring IM, Schilde C, Ladenburger E. Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:163-218. [DOI: 10.1016/s1937-6448(08)01805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Elde NC, Long M, Turkewitz AP. A role for convergent evolution in the secretory life of cells. Trends Cell Biol 2007; 17:157-64. [PMID: 17329106 DOI: 10.1016/j.tcb.2007.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/19/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The role of convergent evolution in biological adaptation is increasingly appreciated. Many clear examples have been described at the level of individual proteins and for organismal morphology, and convergent mechanisms have even been invoked to account for similar community structures that are shared between ecosystems. At the cellular level, an important area that has received scant attention is the potential influence of convergent evolution on complex subcellular features, such as organelles. Here, we show that existing data strongly argue that convergent evolution underlies the similar properties of specialized secretory vesicles, called dense core granules, in the animal and ciliate lineages. We discuss both the criteria for judging convergent evolution and the contribution that such evolutionary analysis can make to improve our understanding of processes in cell biology. The elucidation of these underlying evolutionary relationships is vital because cellular structures that are assumed to be analogous, owing to shared features, might in fact be governed by different molecular mechanisms.
Collapse
Affiliation(s)
- Nels C Elde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
17
|
Plattner H, Diehl S, Husser MR, Hentschel J. Sub-second calcium coupling between outside medium and subplasmalemmal stores during overstimulation/depolarisation-induced ciliary beat reversal in Paramecium cells. Cell Calcium 2006; 39:509-16. [PMID: 16524624 DOI: 10.1016/j.ceca.2006.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/17/2006] [Accepted: 01/30/2006] [Indexed: 11/19/2022]
Abstract
As amply documented by electrophysiology, depolarisation in Paramecium induces a Ca(2+) influx selectively via ciliary voltage-dependent Ca(2+)-channels, thus inducing ciliary beat reversal. Subsequent downregulation of ciliary Ca(2+) has remained enigmatic. We now analysed this aspect, eventually under overstimulation conditions, by quenched-flow/cryofixation, combined with electron microscope X-ray microanalysis which registers total calcium concentrations, [Ca]. This allows to follow Ca-signals within a time period (> or =30ms) smaller than one ciliary beat ( approximately 50ms) and beyond. Particularly under overstimulation conditions ( approximately 10(-5)M Ca(2+) before, 0.5mM Ca(2+) during stimulation) we find in cilia a [Ca] peak at approximately 80ms and its decay to near-basal levels within 110ms (90%) to 170ms (100% decay). This [Ca] wave is followed, with little delay, by a [Ca] wave into subplasmalemmal Ca-stores (alveolar sacs), culminating at approximately 100ms, with a decay to original levels within 170ms. Also with little delay [Ca] slightly increases in the cytoplasm below. This implies rapid dissipation of Ca(2+) through the ciliary basis, paralleled by a rapid, transient uptake by, and release from cortical stores, suggesting fast exchange mechanisms to be analysed as yet. This novel type of coupling may be relevant for some phenomena described for other cells.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
18
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
19
|
Plattner H, Kissmehl R. Molecular aspects of rapid, reversible, Ca2+-dependent de-phosphorylation of pp63/parafusin during stimulated exo-endocytosis in Paramecium cells. Cell Calcium 2005; 38:319-27. [PMID: 16102820 DOI: 10.1016/j.ceca.2005.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
Ca2+ signalling governs stimulated exocytosis and exocytosis-coupled endocytosis also in Paramecium cells. Upon stimulation, the < or =10(3) dense-core exocytotic organelles (trichocysts) can be synchronously (80 ms) released, followed by endocytotic membrane resealing (350 ms) and retrieval. Paramecium is the most synchronous dense-core exocytotic system known, allowing to dissect rapidly reversible Ca2+-dependent phenomena. This holds for the reversible de-/re-phosphorylation cycle of a 63 kD phosphoprotein, pp63/parafusin (pf), which we have cloned, immuno-localised, and characterised as phosphoglucomutase, the enzyme funneling glucose into the glycolytic pathway. It was isolated ex vivo, followed by MALDI analysis, while X-ray structure analysis was performed after heterologous expression. We found multiple phosphorylation of superficial Ser/Thr residues. Although present also in exo(-) mutants, pp63/pf is selectively de-phosphorylated only in exo(+) strains during synchronous exocytosis (80 ms) and re-phosphorylated within approximately 20 s, i.e., the time required to re-establish [Ca2+] homeostasis. We have isolated relevant protein phosphatases and kinases and probed their activity on pp63/pf in vitro. We consider Ca2+/calmodulin-activated PP2B (calcineurin, whose subunits have been cloned) relevant for de-phosphorylation. Re-phosphorylation can be achieved by two protein kinases that also have been cloned. One is activated by cGMP (PKG) which in turn is formed by Ca2+-activated guanylate cyclase. Another kinase, casein kinase 2, is inhibited by Ca2+ and, hence, activated with some delay in parallel to decreasing [Ca2+] after exocytosis. In total, several Ca2+-sensitive cycles cooperate whose protein components have been localised to the cell cortex. Regulation of the phosphorylation degree of pp63/pf may affect structure binding on a microscale and/or its enzymatic activity. All this may serve fueling substrate into glycolysis with increased ATP re-formation (compromised in exo(-) mutants) and NADH formation, with effects on Ca2+ signalling including mobilisation from cortical stores (alveolar sacs) and overall effects on ATP and Ca2+ dynamics during synchronous exo- and endocytosis.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | |
Collapse
|
20
|
Sehring IM, Plattner H. Ca2+ oscillations mediated by exogenous GTP in Paramecium cells: assessment of possible Ca2+ sources. Cell Calcium 2005; 36:409-20. [PMID: 15451624 DOI: 10.1016/j.ceca.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 02/27/2004] [Accepted: 04/05/2004] [Indexed: 11/20/2022]
Abstract
We applied exogenous guanosine trisphosphate, GTP, to Paramecium tetraurelia cells injected with Fura Red for analysing changes of free intracellular Ca(2+) concentrations, [Ca(2+)](i), during periodic back-/forward swimming thus induced. Strain ginA (non-responsive to GTP) shows no Ca(2+) signal upon GTP application. In strain nd6 (normal Ca(2+) signalling) an oscillating [Ca(2+)](i) response with a prominent first peak occurs upon GTP stimulation, but none after mock-stimulation or after 15 min adaptation to GTP. While this is in agreement with previous electrophysiological analyses, we now try to identify more clearly the source(s) of Ca(2+). Stimulation of nd6 cells, after depletion of Ca(2+) from their cortical stores (alveolar sacs), shows the same Ca(2+) oscillation pattern but with reduced amplitudes, and a normal behavioural response is observed. Stimulation with GTP, supplemented with the Ca(2+) chelator BAPTA, results in loss of the first prominent Ca(2+) peak, in reduction of the following Ca(2+) amplitudes, and in the absence of any behavioural response. Both these observations strongly suggest that for the initiation of GTP-mediated back-/forward swimming Ca(2+) from the extracellular medium is needed. For the maintenance of the Ca(2+) oscillations a considerable fraction must come from internal stores, probably other than alveolar sacs, rather likely from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | |
Collapse
|
21
|
Chen XM, O'Hara SP, Huang BQ, Nelson JB, Lin JJC, Zhu G, Ward HD, LaRusso NF. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect Immun 2004; 72:6806-16. [PMID: 15557601 PMCID: PMC529161 DOI: 10.1128/iai.72.12.6806-6816.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apical organelles in apicomplexan parasites are characteristic secretory vesicles containing complex mixtures of molecules. While apical organelle discharge has been demonstrated to be involved in the cellular invasion of some apicomplexan parasites, including Toxoplasma gondii and Plasmodium spp., the mechanisms of apical organelle discharge by Cryptosporidium parvum sporozoites and its role in host cell invasion are unclear. Here we show that the discharge of C. parvum apical organelles occurs in a temperature-dependent fashion. The inhibition of parasite actin and tubulin polymerization by cytochalasin D and colchicines, respectively, inhibited parasite apical organelle discharge. Chelation of the parasite's intracellular calcium also inhibited apical organelle discharge, and this process was partially reversed by raising the intracellular calcium concentration by use of the ionophore A23187. The inhibition of parasite cytoskeleton polymerization by cytochalasin D and colchicine and the depletion of intracellular calcium also decreased the gliding motility of C. parvum sporozoites. Importantly, the inhibition of apical organelle discharge by C. parvum sporozoites blocked parasite invasion of, but not attachment to, host cells (i.e., cultured human cholangiocytes). Moreover, the translocation of a parasite protein, CP2, to the host cell membrane at the region of the host cell-parasite interface was detected; an antibody to CP2 decreased the C. parvum invasion of cholangiocytes. These data demonstrate that the discharge of C. parvum sporozoite apical organelle contents occurs and that it is temperature, intracellular calcium, and cytoskeleton dependent and required for host cell invasion, confirming that apical organelles play a central role in C. parvum entry into host cells.
Collapse
Affiliation(s)
- Xian-Ming Chen
- Center for Basic Research in Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Husser MR, Hardt M, Blanchard MP, Hentschel J, Klauke N, Plattner H. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction. Cell Calcium 2004; 36:349-58. [PMID: 15451619 DOI: 10.1016/j.ceca.2004.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/23/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.
Collapse
Affiliation(s)
- Marc R Husser
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Vetter D, Kissmehl R, Treptau T, Hauser K, Kellermann J, Plattner H. Molecular identification of a calcium-inhibited catalytic subunit of casein kinase type 2 from Paramecium tetraurelia. EUKARYOTIC CELL 2004; 2:1220-33. [PMID: 14665457 PMCID: PMC326640 DOI: 10.1128/ec.2.6.1220-1233.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described the occurrence in Paramecium of a casein kinase (CK) activity (EC 2.7.1.37) with some unusual properties, including inhibition by Ca(2+) (R. Kissmehl, T. Treptau, K. Hauser, and H. Plattner, FEBS Lett. 402:227-235, 1995). We now have cloned four genes, PtCK2alpha1 to PtCK2alpha4, all of which encode the catalytic alpha subunit of type 2 CK (CK2) with calculated molecular masses ranging from 38.9 to 39.4 kDa and pI values ranging from 8.8 to 9.0. They can be classified into two groups, which differ from each other by 28% on the nucleotide level and by 18% on the derived amino acid level. One of them, PtCK2alpha3, has been expressed in Escherichia coli and characterized in vitro. As we also have observed with the isolated CK, the recombinant protein preferentially phosphorylates casein but also phosphorylates some Paramecium-specific substrates, including the exocytosis-sensitive phosphoprotein pp63/parafusin. Characteristically, Ca(2+) inhibits the phosphorylation at elevated concentrations occurring during stimulation of a cell. Reconstitution with a recombinant form of the regulatory subunit from Xenopus laevis, XlCK2beta, confirms Ca(2+) sensitivity also under conditions of autophosphorylation. This is unusual for CK2 but correlates with the presence of two EF-hand calcium-binding motifs, one of which is located in the N-terminal segment essential for constitutive activity, as well as with an aberrant composition of normally basic domains recognizing acidic substrate domains. Immunogold localization reveals a considerable enrichment in the outermost cell cortex layers, excluding cilia. We discuss a potential role of this Ca(2+)-inhibited PtCK2alpha species in a late step of signal transduction.
Collapse
Affiliation(s)
- Daniel Vetter
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Plattner H, Kissmehl R. Dense-core secretory vesicle docking and exocytotic membrane fusion in Paramecium cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:183-93. [PMID: 12914959 DOI: 10.1016/s0167-4889(03)00092-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Work with Paramecium has contributed to the actual understanding of certain aspects of exocytosis regulation, including membrane fusion. The system is faster and more synchronous than any other dense-core vesicle system described and its highly regular design facilitates correlation of functional and ultrastructural (freeze-fracture) features. From early times on, several crucial aspects of exocytosis regulation have been found in Paramecium cells, e.g. genetically controlled microdomains (with distinct ultrastructure) for organelle docking and membrane fusion, involvement of calmodulin in establishing such microdomains, priming by ATP, occurrence of focal fusion with active participation of integral and peripheral proteins, decay of a population of integral proteins ("rosettes", mandatory for fusion capacity) into subunits and their lateral dispersal during fusion, etc. The size of rosette particles and their dispersal upon focal fusion would be directly compatible with proteolipid V(0) subunits of a V-ATPase, much better than the size predicted for oligomeric SNARE pins (SCAMPs are unknown from Paramecium at this time). However, there are some restrictions for a straightforward interpretation of ultrastructural results. The rather pointed, nipple-like tip of the trichocyst membrane could accommodate only one (or very few) potential V(0) counterpart(s), while the overlaying domain of the cell membrane contains numerous rosette particles. Particle size is compatible with V(0), but larger than that assumed for the SNARE complexes. When membrane fusion is induced in the presence of antibodies against cell surface components, focal fusion is seen to occur with dispersing rosette particles but without dispersal of their subunits and without pore expansion. Clearly, this is required for completing fusion and pore expansion. After cloning SNARE and V(0) components in Paramecium (with increasing details becoming rapidly available), we may soon be able to address the question more directly, whether any of these components or some new ones to be detected, serve exocytotic and/or any other membrane fusions in Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Fachbereich Biologie, Universität Konstanz, P.O. Box 5560, 78457, Konstanz, Germany.
| | | |
Collapse
|
25
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
26
|
Plattner H, Kissmehl R. Molecular Aspects of Membrane Trafficking in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:185-216. [PMID: 14711119 DOI: 10.1016/s0074-7696(03)32005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
27
|
von Dassow P, Latz MI. The role of Ca2+ in stimulated bioluminescence of the dinoflagellateLingulodinium polyedrum. J Exp Biol 2002; 205:2971-86. [PMID: 12200401 DOI: 10.1242/jeb.205.19.2971] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMany marine dinoflagellates emit bright discrete flashes of light nearly instantaneously in response to either laminar or turbulent flows as well as to direct mechanical stimulation. The flash involves a unique pH-dependent luciferase and a proton-mediated action potential across the vacuole membrane. The mechanotransduction process initiating this action potential is unknown. The present study investigated the role of Ca2+ in the mechanotransduction process regulating bioluminescence in the dinoflagellate Lingulodinium polyedrum. Calcium ionophores and digitonin stimulated luminescence in a Ca2+-dependent manner in the absence of mechanical stimulation. Mechanically sensitive luminescence was strongly inhibited by the intracellular Ca2+ chelator BAPTA-AM[1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester]; there was only a partial and irreversible dependence on extracellular Ca2+. Ruthenium Red, a blocker of intracellular Ca2+ release channels, inhibited mechanically sensitive luminescence. Luminescence was also stimulated by increasing K+, even in the absence of extracellular Ca2+; K+ stimulation was inhibited both by BAPTA-AM and Ruthenium Red. These results support the hypothesis that Ca2+mediates stimulated bioluminescence and also indicate the involvement of intracellular Ca2+ stores. Rapid coupling between mechanical stimulation and mobilization of intracellular Ca2+ stores might occur through a mechanism similar to excitation-contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Peter von Dassow
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037-0202, USA.
| | | |
Collapse
|
28
|
Abstract
A Paramecium cell has a stereotypically patterned surface, with regularly arranged cilia, dense-core secretory vesicles and subplasmalemmal calcium stores. Less strikingly, there is also a patterning of molecules; for instance, some ion channels are restricted to certain regions of the cell surface. This design may explain very effective and selective responses, such as that to Ca(2+) upon stimulation. It enables the cell to respond to a Ca(2+) signal precisely secretion (exocytosis) or by changing its ciliary activity. These responses depend on the location and/or type of signal, even though these two target structures co-exist side-by-side, and normally only limited overlap occurs between the different functions. Furthermore, the patterning of exocytotic sites and the possibility of synchronous exocytosis induction in the sub-second time range have considerably facilitated analyses, and thus led to new concepts of exocytotic membrane fusion. It has been possible to dissect complicated events like overlapping Ca(2+) fluxes produced from external sources and from internal stores. Since molecular genetic approaches have become available for Paramecium, many different gene products have been identified only some of which are known from "higher" eukaryotes. Although a variety of basic cellular functions are briefly addressed to demonstrate the uniqueness of this unicellular organism, this article focuses on exocytosis regulation.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
29
|
Iwadate Y, Kikuyama M. Contribution of Calcium Influx on Trichocyst Discharge in Paramecium caudatum. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Plattner H, Klauke N. Calcium in ciliated protozoa: sources, regulation, and calcium-regulated cell functions. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 201:115-208. [PMID: 11057832 DOI: 10.1016/s0074-7696(01)01003-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In ciliates, a variety of processes are regulated by Ca2+, e.g., exocytosis, endocytosis, ciliary beat, cell contraction, and nuclear migration. Differential microdomain regulation may occur by activation of specific channels in different cell regions (e.g., voltage-dependent Ca2+ channels in cilia), by local, nonpropagated activation of subplasmalemmal Ca stores (alveolar sacs), by different sensitivity thresholds, and eventually by interplay with additional second messengers (cilia). During stimulus-secretion coupling, Ca2+ as the only known second messenger operates at approximately 5 microM, whereby mobilization from alveolar sacs is superimposed by "store-operated Ca2+ influx" (SOC), to drive exocytotic and endocytotic membrane fusion. (Content discharge requires binding of extracellular Ca2+ to some secretory proteins.) Ca2+ homeostasis is reestablished by binding to cytosolic Ca2+-binding proteins (e.g., calmodulin), by sequestration into mitochondria (perhaps by Ca2+ uniporter) and into endoplasmic reticulum and alveolar sacs (with a SERCA-type pump), and by extrusion via a plasmalemmal Ca2+ pump and a Na+/Ca2+ exchanger. Comparison of free vs total concentration, [Ca2+] vs [Ca], during activation, using time-resolved fluorochrome analysis and X-ray microanalysis, respectively, reveals that altogether activation requires a calcium flux that is orders of magnitude larger than that expected from the [Ca2+] actually required for local activation.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
31
|
Hardt M, Plattner H. Sub-second quenched-flow/X-ray microanalysis shows rapid Ca2+ mobilization from cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells. Eur J Cell Biol 2000; 79:642-52. [PMID: 11043405 DOI: 10.1078/0171-9335-00087] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.
Collapse
Affiliation(s)
- M Hardt
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
32
|
Hauser K, Pavlovic N, Klauke N, Geissinger D, Plattner H. Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2+-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol Microbiol 2000; 37:773-87. [PMID: 10972800 DOI: 10.1046/j.1365-2958.2000.02038.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have followed the time-dependent transfection of Paramecium cells with a vector containing the gene of green fluorescent protein (GFP) attached to the C-terminus of the PtSERCA1 gene. The outlines of alveolar sacs (ASs) are labelled, as is the endoplasmic reticulum (ER) throughout the cell. When GFP fluorescence is compared with previous anti-PtSERCA1 antibody labelling, the much wider distribution of GFP (ER+ASs) indicates that only a small amount of SERCA molecules is normally retained in the ER. A second isoform, PtSERCA2, also occurs and its C-terminal GFP-tagging results in the same distribution pattern. However, when GFP is inserted in the major cytoplasmic loop, PtSERCA1 and two fusion proteins are mostly retained in the ER, probably because of the presence of the overt C-terminal KKXX ER-retention signal and/or masking of a signal for transfer into ASs. On the overall cell surface, new SERCA molecules seem to be permanently delivered from the ER to ASs by vesicle transport, whereas in the fission zone of dividing cells ASs may form anew. In cells overexpressing PtSERCA1 (with C-terminal GFP) in ASs, [Ca2+]i regulation during exocytosis is not significantly different from controls, probably because their Ca2+ pump has to mediate only slow reuptake.
Collapse
Affiliation(s)
- K Hauser
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
33
|
Allen RD, Fok AK. Membrane trafficking and processing in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:277-318. [PMID: 10804465 DOI: 10.1016/s0074-7696(00)98007-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular membranes are made in a cell's biosynthetic pathway and are composed of similar biochemical constituents. Nevertheless, they become differentiated as membrane components are sorted into different membrane-limited compartments. We summarize the morphological and immunological similarities and differences seen in the membranes of the various interacting compartments in the single-celled organism, Paramecium. Besides the biosynthetic pathway, membranes of the regulated secretory pathway, endocytic pathway, and phagocytic pathway are highlighted. Paramecium is a multipolarized cell in the sense that several different pools of membrane-limited compartments are targeted for exocytosis at very specific sites at the cell surface. Thus, the method used by this cell to sort and package its membrane subunits into different compartments, the processes used to transport these compartments to specific locations at the plasma membrane and to other intracellular fusion sites, the processes of membrane retrieval, and the processes of membrane docking and fusion are reviewed. Paramecium has provided an excellent model for studying the complexities of membrane trafficking in one cell using both morphological and immunocytochemical techniques. This cell also promises to be a useful model for studying aspects of the molecular biology of membrane sorting, retrieval, transport, and fusion.
Collapse
Affiliation(s)
- R D Allen
- Pacific Biomedical Research Center, Department of Microbiology, University of Hawaii, Manoa, USA
| | | |
Collapse
|
34
|
Galvani A, Sperling L. Regulation of secretory protein gene expression in paramecium role of the cortical exocytotic sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3226-34. [PMID: 10824107 DOI: 10.1046/j.1432-1327.2000.01341.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cells that possess a regulated secretory pathway, exocytosis can lead to transcriptional activation of genes encoding products stored in secretory granules as well as genes required for granule biogenesis. With the objective of understanding this response, we have examined the expression of Paramecium secretory protein genes in different physiological and genetic contexts. The genes belong to the trichocyst matrix protein (TMP) multigene family, encoding polypeptides that form the crystalline matrix of the secretory granules, known as trichocysts. Approximately 1000 trichocysts per cell are docked at pre-formed cortical exocytotic sites. Their rapid and synchronous exocytosis can be triggered by vital secretagogues such as aminoethyldextran without harming the cells. Using this exocytotic trigger, we found that the transcription of TMP genes undergoes rapid, transient and co-ordinate 10-fold activation in response to massive exocytosis, leading to a 2.5-fold increase in the pool of TMP mRNA. Experiments with exocytosis-deficient mutants show that the secretagogue-induced increase in intracellular free calcium implicated in stimulus/secretion coupling is not sufficient to activate TMP gene expression. We present evidence that the state of occupation of the cortical exocytotic sites can affect TMP gene expression and suggest that these sites play a role in gene activation in response to exocytosis.
Collapse
Affiliation(s)
- A Galvani
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
35
|
Abstract
Paramecium is a unicell in which cellular processes are amenable to genetic dissection. Regulated secretion, which designates a secretory pathway where secretory products are first stored in intracellular granules and then released by exocytotic membrane fusion upon external trigger, is an important function in Paramecium, involved in defensive response through the release of organelles called trichocysts. In this review, we focus on recent advances in the molecular genetics of two major aspects of the regulated pathway in Paramecium, the biogenesis of the secretory organelles and their exocytosis.
Collapse
Affiliation(s)
- L Vayssié
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
36
|
Hauser K, Haynes WJ, Kung C, Plattner H, Kissmehl R. Expression of the green fluorescent protein in Paramecium tetraurelia. Eur J Cell Biol 2000; 79:144-9. [PMID: 10727022 DOI: 10.1078/s0171-9335(04)70016-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper we describe the expression of green fluorescent protein (GFP) as a reporter in vivo to monitor transformation in Paramecium cells. This is not trivial because of the limited number of strong promoters available for heterologous expression and the very high AT content of the genomic DNA, the consequence of which is a very aberrant codon usage. Taking into account differences in codon usage we selected and modified the original GFP open reading frame (ORF) from Aequorea victoria and placed the altered ORF into the Paramecium expression vector pPXV. Injection of the linearized plasmid into the macronucleus resulted in a cytoplasmic fluorescence signal in the clonal descendants, which was proportional to the number of copies injected. Southern hybridization indicated the establishment and replication of the plasmid during vegetative growth. Expression was also monitored by Northern and Western analysis. The results indicate that the modified GFP can be used in Paramecium as a reporter for transformation as an alternative to selection with antibiotics and that it may also be used to construct and localize fusion proteins.
Collapse
Affiliation(s)
- K Hauser
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
38
|
Abstract
The past two years have seen vigorous attempts to elucidate the mechanism driving intracellular membrane fusion. Much attention was focused on the role of SNARE complexes. Their crystal structure was solved and fusion was reconstituted using proteoliposomes with purified SNAREs suggesting them to be the minimal machinery for fusion. Work on physiological membranes, however, points in another direction and has spurred a hot debate on the function of SNAREs.
Collapse
Affiliation(s)
- A Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstrasse 37-39, 72076, Tübingen.
| |
Collapse
|
39
|
Plattner H, Flötenmeyer M, Kissmehl R, Pavlovic N, Hauser K, Momayezi M, Braun N, Tack J, Bachmann L. Microdomain arrangement of the SERCA-type Ca2+ pump (Ca2+-ATPase) in subplasmalemmal calcium stores of paramecium cells. J Histochem Cytochem 1999; 47:841-54. [PMID: 10375372 DOI: 10.1177/002215549904700701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We localized SERCA pumps to the inner region of alveolar sac membranes, facing the cell interior, by combining ultrastructural and biochemical methods. Immunogold labeling largely predominated in the inner alveolar sac region which displayed aggregates of intramembrane particles (IMPs). On image analysis, these represented oligomeric arrangements of approximately 8-nm large IMP subunits, suggesting formation of SERCA aggregates (as known from sarcoplasmic reticulum). We found not only monomers of typical molecular size ( approximately 106 kD) but also oligomeric forms on Western blots (using anti-SERCA antibodies, also against endogenous SERCA from alveolar sacs) and on electrophoresis gelautoradiographs of 32P-labeled phosphoenzyme intermediates. Selective enrichment of SERCA-pump molecules in the inner alveolar sac membrane region may eliminate Ca2+ after centripetal spread observed during exocytosis activation, while the plasmalemmal Ca2+ pump may maintain or reestablish [Ca2+] in the narrow subplasmalemmal space between the outer alveolar sac membrane region and the cell membrane. We show for the first time the microzonal arrangement of SERCA molecules in a Ca2+ store of a secretory system, an intensely discussed issue in stimulus-secretion coupling research.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang MI, O'Neil RG. The diversity of calcium channels and their regulation in epithelial cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:43-83. [PMID: 10332501 DOI: 10.1016/s1054-3589(08)60469-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
41
|
Carruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999; 31:421-8. [PMID: 10027960 DOI: 10.1046/j.1365-2958.1999.01174.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apicomplexan parasites, including Toxoplasma gondii, apically attach to their host cells before invasion. Recent studies have implicated the contents of micronemes, which are small secretory organelles confined to the apical region of the parasite, in the process of host cell attachment. Here, we demonstrate that microneme discharge is regulated by parasite cytoplasmic free Ca2+ and that the micronemal contents, including the MIC2 adhesin, are released through the extreme apical tip of the parasite. Microneme secretion was triggered by Ca2+ ionophores in both the presence and the absence of external Ca2+, while chelation of intracellular Ca2+ prevented release. Mobilization of intracellular calcium with thapsagargin or NH4Cl also triggered microneme secretion, indicating that intracellular calcium stores are sufficient to stimulate release. Following activation of secretion by the Ca2+ ionophore A23187, MIC2 initially occupied the apical surface of the parasite, but was then rapidly treadmilled to the posterior end and released into the culture supernatant. This capping and release of MIC2 by ionophore-stimulated tachyzoites mimics the redistribution of MIC2 that occurs during attachment and penetration of host cells, and both events are dependent on the actin-myosin cytoskeleton of the parasite. These studies indicate that microneme release is a stimulus-coupled secretion system responsible for releasing adhesins involved in cell attachment.
Collapse
Affiliation(s)
- V B Carruthers
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Kissmehl R, Huber S, Kottwitz B, Hauser K, Plattner H. Subplasmalemmal Ca-stores in Paramecium tetraurelia. Identification and characterisation of a sarco(endo)plasmic reticulum-like Ca(2+)-ATPase by phosphoenzyme intermediate formation and its inhibition by caffeine. Cell Calcium 1998; 24:193-203. [PMID: 9883273 DOI: 10.1016/s0143-4160(98)90128-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considering increasing interest in calcium stores in protozoa, including parasitic forms, and specifically in subplasmalemmal stores in higher eukaryotes, we have isolated subplasmalemmal calcium stores (alveolar sacs) from the ciliated protozoan, Paramecium tetraurelia. Using antibodies against established sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCAs) we detected in Western blots of subcellular fractions a band of approximately 106 kDa size selectively in alveolar sacs--but not, for example, in plasma membranes--and concomitant restriction of immunofluorecence labelling to the cell cortex of permeabilised cells. These results are the same as with ABs against a peptide derived from a cloned SERCA-like gene from Paramecium [Hauser K., Pavlovic N., Kissmehl R., Plattner H. Molecular characterization of a sarco(endo)plasmic reticulum Ca(2+)-ATPase gene from Paramecium tetraurelia and localisation of its gene product to subplasmalemmal calcium stores. Biochem J 1998; 334: 31-38]. When such isolated alveolar sacs were now tested for phosphoenzyme intermediate (EP) formation, a phosphoprotein of the same apparent molecular mass (approximately 106 kDa) as in blots could be identified in gel autoradiograms. This EP corresponds to that formed in the reaction cycle of different SERCA-types, with dependency on Ca2+ and Mg2+, sensitivity to La3+ or insensitivity towards calmodulin, calmodulin antagonists and vanadate. However, EP formation in alveolar sacs is not inhibited by established SERCA inhibitors (e.g. thapsigargi[ci]n tested up to 100 microM). Surprisingly, caffeine, which is frequently used to mobilise Ca2+ from intracellular stores, strongly inhibits EP formation. In parallel experiments, we did not find any similar effect with sarcoplasmic reticulum isolated from skeletal muscle. We conclude that the approximately 106 kDa protein of alveolar sacs in Paramecium may represent a SERCA-like Ca(2+)-ATPase with some unorthodox features, which might be relevant also for some other protozoan systems. In this case, the established Ca(2+)-mobilizing effect of caffeine may be amplified by inhibiting store refilling.
Collapse
Affiliation(s)
- R Kissmehl
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
43
|
Hauser K, Pavlovic N, Kissmehl R, Plattner H. Molecular characterization of a sarco(endo)plasmic reticulum Ca2+-ATPase gene from Paramecium tetraurelia and localization of its gene product to sub-plasmalemmal calcium stores. Biochem J 1998; 334 ( Pt 1):31-8. [PMID: 9693098 PMCID: PMC1219657 DOI: 10.1042/bj3340031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A cDNA encoding the gene for a sarco(endo)plasmic reticulum-type Ca2+-ATPase (SERCA) was isolated from a cDNA library of Paramecium tetraurelia by using degenerated primers according to conserved domains of SERCA-type ATPases. The identified nucleotide sequence (PtSERCA) is 3114 nucleotides in length with an open reading frame of 1037 amino acids. An intron of only 22 nucleotides occurs. Homology searches for the deduced amino acid sequence revealed 38-49% similarity to SERCA-type ATPases from organisms ranging from protozoans to mammals, with no more similarity to some parasitic protozoa of the same phylum. The calculated molecular mass of the encoded protein is 114.7 kDa. It contains the typical 10 transmembrane domains of SERCA-type ATPases and other conserved domains, such as the phosphorylation site and the ATP binding site. However, there are no binding sites for phospholamban and thapsigargin present in the PtSERCA. Antibodies raised against a cytoplasmic loop peptide between the phosphorylation site and the ATP binding site recognize on Western blots a protein of 106 kDa, exclusively in the fraction of sub-plasmalemmal calcium stores ('alveolar sacs'). In immunofluorescence studies the antibodies show labelling exclusively in the cell cortex of permeabilized cells in a pattern characteristic of the arrangement of alveolar sacs. When alveolar sacs where tested for phosphoenzyme-intermediate formation a phosphoprotein of the same molecular mass (106 kDa) could be identified.
Collapse
Affiliation(s)
- K Hauser
- Faculty of Biology, University of Konstanz, P.O. Box 5560, D-78434 Konstanz, Germany.
| | | | | | | |
Collapse
|
44
|
Klauke N, Kissmehl R, Plattner H, Haga N, Watanabe T. An exocytotic mutant of Paramecium caudatum: membrane fusion without secretory contents release. Cell Calcium 1998; 23:349-60. [PMID: 9681197 DOI: 10.1016/s0143-4160(98)90030-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This is a detailed characterization of a secretory mutant incapable of releasing secretory contents despite normal exocytotic membrane fusion performance. Trichocyst non-discharge strain tnd1 of Paramecium caudatum and its wildtype (wt) both show a transient cortical [Ca2+]i increase and exocytotic membrane fusion in response to the polyamine secretagogue, aminoethyldextran (AED), or to caffeine. tnd1 cells frequently display spontaneous Ca2+ signals parallelled by spontaneous exocytotic membrane fusion. This remains undetected, unless the trichocyst matrix is shown to be freely accessible to the inert, non-membrane permeable fluorochrome, F2FITC, from the outside. In these tnd1 cells, spontaneous and AED- or caffeine-induced membrane fusion, always without contents expulsion by decondensation (i.e. several-fold stretching), is ascertained by electron microscopy. Exocytotic openings, with condensed trichocysts retained, may persist for hours without impairing cells. Trichocyst decondensation normally requires micromolar [Ca2+]e, but an increase to 10 mM has no effect on tnd1 trichocyst expansion in vivo or in vitro (when isolated and exposed to ionophore A23187 + Ca2+). Paracrystalline packing of the major secretory components (trichynins) does occur, despite incomplete proteolytic precursor processing (according to SDS-PAGE). However, 45Ca(2+)-binding by secretory components is considerably reduced--the likely cause of the non-discharge phenotype. Our findings imply significant untriggered membrane fusion in a system normally following the triggered pathway and clear separation of exocytotic membrane fusion from any later Ca(2+)-dependent steps of the secretory cycle.
Collapse
Affiliation(s)
- N Klauke
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
45
|
Melia SM, Cole ES, Turkewitz AP. Mutational analysis of regulated exocytosis in Tetrahymena. J Cell Sci 1998; 111 ( Pt 1):131-40. [PMID: 9394019 DOI: 10.1242/jcs.111.1.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of regulated exocytosis can be accomplished in ciliates, since mutants defective in stimulus-dependent secretion of dense-core vesicles can be identified. In Tetrahymena thermophila, secretion in wild-type cells can result in their encapsulation by the proteins released from vesicle cores. Cells with defects in secretion were isolated from mutagenized homozygous cells that were generated using a highly efficient method. Screening was based both on a visual assay for encapsulation, and on a novel panning step using differential centrifugation to take advantage of the selective mobility of mutants that fail to encapsulate upon stimulation. 18 mutants with defects in several ordered steps have been identified. Defects in a set of these could be localized to three stages: granule formation, transport to cell surface docking sites, and exocytosis itself. Mutants with defects in this last stage can be ordered into successive steps based on several criteria, including their responsiveness to multiple secretagogues and Ca2+ ionophores. The results of both somatic and genetic complementation on selected pairs also help to characterize the defective factors.
Collapse
Affiliation(s)
- S M Melia
- Department of Molecular Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
46
|
Zhao H, Satir BH. Parafusin is a membrane and vesicle associated protein that cycles at exocytosis. Eur J Cell Biol 1998; 75:46-53. [PMID: 9523154 DOI: 10.1016/s0171-9335(98)80045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the unicellular eukaryote Paramecium tetraurelia, stimulation of exocytosis leads to Ca2+ activation of an alpha Glc-1-phosphodiesterase that dephosphoglucosylates the phosphoglycoprotein parafusin (PFUS). This process fails in exo mutant nd9 and also in the absence of Ca2+ influx upon stimulation suggesting that PFUS dephosphoglucosylation may be causally related to exocytosis. To further corroborate the hypothesis that PFUS is involved in the molecular events in exocytosis, we used laser confocal scanning microscopy and a PFUS specific peptide antibody to perform localization studies of PFUS in wild type (wt) and mutant Paramecium. In unstimulated wt cells, PFUS was associated both with the exocytic site of the cell membrane and with the membrane of the dense core secretory vesicles. Localization at these two sites was shown to be independent of each other since the exocytosis mutant (exo-) tam8, in which docking of its vesicles is blocked, still showed cell membrane staining. Immunofluorescence and immunoblotting of isolated intact secretory vesicles also revealed PFUS association. Upon stimulation of exocytosis, PFUS dissociated from both the dense core secretory vesicles and the cell membrane in a Ca(2+)-dependent manner. During recovery of exocytic capacity, PFUS reassociated with the newly formed secretory vesicles in the cytoplasm prior to their docking at the exocytic sites. Immunoblot analysis of PFUS during this time showed no changes in levels of the protein. Stimulation of exocytosis in wt in Mg2+ buffer or in the exo- temperature sensitive mutant (nd9) at the non-permissive temperature did not lead to dissociation of the PFUS. We conclude that PFUS is a novel critical component whose cycling probably participates in the molecular exocytic fusion machinery in these cells.
Collapse
Affiliation(s)
- H Zhao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | |
Collapse
|
47
|
Chilcoat ND, Turkewitz AP. In vivo analysis of the major exocytosis-sensitive phosphoprotein in Tetrahymena. J Cell Biol 1997; 139:1197-207. [PMID: 9382866 PMCID: PMC2140215 DOI: 10.1083/jcb.139.5.1197] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Revised: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
Phosphoglucomutase (PGM) is a ubiquitous highly conserved enzyme involved in carbohydrate metabolism. A number of recently discovered PGM-like proteins in a variety of organisms have been proposed to function in processes other than metabolism. In addition, sequence analysis suggests that several of these may lack PGM enzymatic activity. The best studied PGM-like protein is parafusin, a major phosphoprotein in the ciliate Paramecium tetraurelia that undergoes rapid and massive dephosphorylation when cells undergo synchronous exocytosis of their dense-core secretory granules. Indirect genetic and biochemical evidence also supports a role in regulated exocytotic membrane fusion. To examine this matter directly, we have identified and cloned the parafusin homologue in Tetrahymena thermophila, a ciliate in which protein function can be studied in vivo. The unique T. thermophila gene, called PGM1, encodes a protein that is closely related to parafusin by sequence and by characteristic post-translational modifications. Comparison of deduced protein sequences, taking advantage of the known atomic structure of rabbit muscle PGM, suggests that both ciliate enzymes and all other PGM-like proteins have PGM activity. We evaluated the activity and function of PGM1 through gene disruption. Surprisingly, DeltaPGM1 cells displayed no detectable defect in exocytosis, but showed a dramatic decrease in PGM activity. Both our results, and reinterpretation of previous data, suggest that any potential role for PGM-like proteins in regulated exocytosis is unlikely to precede membrane fusion.
Collapse
Affiliation(s)
- N D Chilcoat
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
48
|
Klauke N, Plattner H. Imaging of Ca2+ transients induced in Paramecium cells by a polyamine secretagogue. J Cell Sci 1997; 110 ( Pt 8):975-83. [PMID: 9152023 DOI: 10.1242/jcs.110.8.975] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Paramecium tetraurelia cells analysis of transient changes in Ca2+ concentration, [Ca2+]i, during aminoethyldextran (AED) stimulated synchronous (<1 second) trichocyst exocytosis has been hampered by various technical problems which we now have overcome. While Fura Red was found appropriate for quantitative double wavelength recordings, Fluo-3 allowed to follow, semi-quantitatively but with high time resolution, [Ca2+]i changes by rapid confocal laser scanning microscopy (CLSM). Resting values are between 50 and 70 nM in the strains analysed (7S wild type, as well as a non-discharge and a trichocyst-free mutant, nd9-28 degrees C and tl). In all strains [Ca2+]i first increases at the site of AED application, up to 10-fold above basal values, followed by a spillover into deeper cell regions. This might: (i) allow a vigorous Ca2+ flush during activation, and subsequently (ii) facilitate re-establishment of Ca2+ homeostasis within > or =20 seconds. Because of cell dislocation during vigorous trichocyst exocytosis, 7S cells could be reasonably analysed only by CLSM after Fluo-3 injection. In 7S cells cortical [Ca2+]i transients are strictly parallelled by trichocyst exocytosis, i.e. in the subsecond time range and precisely at the site of AED application. Injection of Ca2+ is a much less efficient trigger for exocytosis. Ca2+-buffer injections suggest a requirement of [Ca2+]i >1 to 10 microM for exocytosis to occur in response to AED. In conclusion, our data indicate: (i) correlation of cortical [Ca2+]i transients with exocytosis, as well as (ii) occurrence of a similar signal transduction mechanism in mutant cells where target structures may be defective or absent.
Collapse
Affiliation(s)
- N Klauke
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|