1
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 Tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640188. [PMID: 40060502 PMCID: PMC11888285 DOI: 10.1101/2025.02.25.640188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proper spindle assembly requires the Kinesin-14 family of motors to organize microtubules (MTs) into the bipolar spindle by cross-linking and sliding anti-parallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT binding domains (MBD1 and MBD2) within the Xenopus Kinesin-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable to full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid anti-parallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MT binding domains in the Kinesin-14 tail balance anti-parallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
2
|
Saito T, Espe M, Mommens M, Bock C, Fernandes JM, Skjærven KH. Altered spawning seasons of Atlantic salmon broodstock transcriptionally and epigenetically influence cell cycle and lipid-mediated regulations in their offspring. PLoS One 2025; 20:e0317770. [PMID: 39992963 PMCID: PMC11849821 DOI: 10.1371/journal.pone.0317770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Manipulating spawning seasons of Atlantic salmon (Salmo salar) is a common practice to facilitate year-round harvesting in salmon aquaculture. This process involves adjusting water temperature and light regime to control female broodstock maturation. However, recent studies have indicated that altered spawning seasons can significantly affect the nutritional status and growth performance of the offspring. Therefore, gaining a deeper understanding of the biological regulations influenced by these alterations is crucial to enhance the growth performance of fish over multiple generations. In this study, we investigated omics data from four different spawning seasons achieved through recirculating aquaculture systems (RAS) and sea-pen-based approaches. In addition to the normal spawning season in November (sea-pen), three altered seasons were designated: off-season (five-month advance, RAS), early season (two-month advance, sea-pen), and late season (two-month delay, sea-pen). We conducted comprehensive gene expression and DNA methylation analysis on liver samples collected from the start-feeding larvae of the next generation. Our results revealed distinct gene expression and DNA methylation patterns associated with the altered spawning seasons. Specifically, offspring from RAS-based off-season exhibited altered lipid-mediated regulation, while those from sea-pen-based early and late seasons showed changes in cellular processes, particularly in cell cycle regulation when compared to the normal season. The consequences of our findings are significant for growth and health, potentially providing information for developing valuable tools for assessing growth potential and optimizing production strategies in aquaculture.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research, Bergen, Norway
| | | | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
3
|
Aslan M, d'Amico EA, Cho NH, Taheri A, Zhao Y, Zhong X, Blaauw M, Carter AP, Dumont S, Yildiz A. Structural and functional insights into activation and regulation of the dynein-dynactin-NuMA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625568. [PMID: 39651296 PMCID: PMC11623564 DOI: 10.1101/2024.11.26.625568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells. The C-terminus of NuMA directly binds to and suppresses the dynamics of the microtubule minus-end. Full-length NuMA is autoinhibited, but mitotically phosphorylated NuMA activates dynein in vitro and interphase cells. Together with dynein, activated full-length NuMA focuses microtubule minus-ends into aster-like structures. The binding of the cortical protein LGN to the NuMA C-terminus results in preferential binding of NuMA to the microtubule plus-end. These results provide critical insights into the activation of NuMA and dynein for their functions in the spindle body and the cell cortex.
Collapse
|
4
|
Lemma B, Lemma LM, Ems-McClung SC, Walczak CE, Dogic Z, Needleman DJ. Structure and dynamics of motor-driven microtubule bundles. SOFT MATTER 2024; 20:5715-5723. [PMID: 38872426 PMCID: PMC11268426 DOI: 10.1039/d3sm01336g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Connecting the large-scale emergent behaviors of active cytoskeletal materials to the microscopic properties of their constituents is a challenge due to a lack of data on the multiscale dynamics and structure of such systems. We approach this problem by studying the impact of depletion attraction on bundles of microtubules and kinesin-14 molecular motors. For all depletant concentrations, kinesin-14 bundles generate comparable extensile dynamics. However, this invariable mesoscopic behavior masks the transition in the microscopic motion of microtubules. Specifically, with increasing attraction, we observe a transition from bi-directional sliding with extension to pure extension with no sliding. Small-angle X-ray scattering shows that the transition in microtubule dynamics is concurrent with a structural rearrangement of microtubules from an open hexagonal to a compressed rectangular lattice. These results demonstrate that bundles of microtubules and molecular motors can display the same mesoscopic extensile behaviors despite having different internal structures and microscopic dynamics. They provide essential information for developing multiscale models of active matter.
Collapse
Affiliation(s)
- Bezia Lemma
- Physics Department, Harvard University, Cambridge, MA 02138, USA
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
| | - Linnea M Lemma
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
| | | | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Zvonimir Dogic
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science & Engineering Department, University of California, Santa Barbara, CA 93106, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Molecular & Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
5
|
Meißner L, Niese L, Schüring I, Mitra A, Diez S. Human kinesin-5 KIF11 drives the helical motion of anti-parallel and parallel microtubules around each other. EMBO J 2024; 43:1244-1256. [PMID: 38424239 PMCID: PMC10987665 DOI: 10.1038/s44318-024-00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
During mitosis, motor proteins and microtubule-associated protein organize the spindle apparatus by cross-linking and sliding microtubules. Kinesin-5 plays a vital role in spindle formation and maintenance, potentially inducing twist in the spindle fibers. The off-axis power stroke of kinesin-5 could generate this twist, but its implications in microtubule organization remain unclear. Here, we investigate 3D microtubule-microtubule sliding mediated by the human kinesin-5, KIF11, and found that the motor caused right-handed helical motion of anti-parallel microtubules around each other. The sidestepping ratio increased with reduced ATP concentration, indicating that forward and sideways stepping of the motor are not strictly coupled. Further, the microtubule-microtubule distance (motor extension) during sliding decreased with increasing sliding velocity. Intriguingly, parallel microtubules cross-linked by KIF11 orbited without forward motion, with nearly full motor extension. Altering the length of the neck linker increased the forward velocity and pitch of microtubules in anti-parallel overlaps. Taken together, we suggest that helical motion and orbiting of microtubules, driven by KIF11, contributes to flexible and context-dependent filament organization, as well as torque regulation within the mitotic spindle.
Collapse
Affiliation(s)
- Laura Meißner
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
- BASS Center, Molecular Biophysics and Biochemistry Department, Yale University, 06511, New Haven, USA
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Irene Schüring
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Aniruddha Mitra
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584CH, Utrecht, Netherlands
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany.
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
6
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Lemma LM, Varghese M, Ross TD, Thomson M, Baskaran A, Dogic Z. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. PNAS NEXUS 2023; 2:pgad130. [PMID: 37168671 PMCID: PMC10165807 DOI: 10.1093/pnasnexus/pgad130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Microtubule-based active fluids exhibit turbulent-like autonomous flows, which are driven by the molecular motor powered motion of filamentous constituents. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile active fluids. We design single-headed kinesin molecular motors that exhibit optically enhanced clustering and thus enable precise and repeatable spatial and temporal control of extensile active stresses. Such motors enable rapid, reversible switching between flowing and quiescent states. In turn, spatio-temporal patterning of the active stress controls the evolution of the ubiquitous bend instability of extensile active fluids and determines its critical length dependence. Combining optically controlled clusters with conventional kinesin motors enables one-time switching from contractile to extensile active stresses. These results open a path towards real-time control of the autonomous flows generated by active fluids.
Collapse
Affiliation(s)
- Linnea M Lemma
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
- Department of Physics, University of California, Santa Barbara, 93106 CA, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
| | - Tyler D Ross
- Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. Pasadena, 91125 CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, 91125 CA, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
| | | |
Collapse
|
8
|
Henkin G, Chew WX, Nédélec F, Surrey T. Cross-linker design determines microtubule network organization by opposing motors. Proc Natl Acad Sci U S A 2022; 119:e2206398119. [PMID: 35960844 PMCID: PMC9388136 DOI: 10.1073/pnas.2206398119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
During cell division, cross-linking motors determine the architecture of the spindle, a dynamic microtubule network that segregates the chromosomes in eukaryotes. It is unclear how motors with opposite directionality coordinate to drive both contractile and extensile behaviors in the spindle. Particularly, the impact of different cross-linker designs on network self-organization is not understood, limiting our understanding of self-organizing structures in cells but also our ability to engineer new active materials. Here, we use experiment and theory to examine active microtubule networks driven by mixtures of motors with opposite directionality and different cross-linker design. We find that although the kinesin-14 HSET causes network contraction when dominant, it can also assist the opposing kinesin-5 KIF11 to generate extensile networks. This bifunctionality results from HSET's asymmetric design, distinct from symmetric KIF11. These findings expand the set of rules underlying patterning of active microtubule assemblies and allow a better understanding of motor cooperation in the spindle.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Wei-Xiang Chew
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Thomas Surrey
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Spain
| |
Collapse
|
9
|
So C, Menelaou K, Uraji J, Harasimov K, Steyer AM, Seres KB, Bucevičius J, Lukinavičius G, Möbius W, Sibold C, Tandler-Schneider A, Eckel H, Moltrecht R, Blayney M, Elder K, Schuh M. Mechanism of spindle pole organization and instability in human oocytes. Science 2022; 375:eabj3944. [PMID: 35143306 DOI: 10.1126/science.abj3944] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | | | | - Heike Eckel
- Kinderwunschzentrum Göttingen, Göttingen, Germany
| | | | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Ems-McClung SC, Walczak CE. Using FLIM-FRET for Characterizing Spatial Interactions in the Spindle. Methods Mol Biol 2022; 2415:221-243. [PMID: 34972958 PMCID: PMC8740612 DOI: 10.1007/978-1-0716-1904-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proper spindle assembly and the attachment of chromosomes to the spindle are key for the accurate segregation of chromosomes to daughter cells. Errors in these processes can lead to aneuploidy, which is a hallmark of cancer. Understanding the mechanisms that drive spindle assembly will provide fundamental insights into how accurate chromosome segregation is achieved. One challenge in elucidating the complexities of spindle assembly is to visualize protein interactions in space and time. The Xenopus egg extract system has been a valuable tool to probe protein function during spindle assembly in vitro. Tagging proteins with fluorescent proteins and utilizing fluorescence-based approaches, such as Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM), have provided visual clues about the mechanics of spindle assembly and its regulators. However, elucidating how spindle assembly factors are spatially regulated is still challenging. Combining the egg extract system and visual FRET approaches provides a powerful tool to probe the processes involved in spindle assembly. Here we describe how a FLIM-FRET biosensor can be used to study protein-protein interactions in spindles assembled in Xenopus egg extracts. This approach should be readily adaptable to a wide variety of proteins to allow for new insights into the regulation of spindle assembly.
Collapse
|
11
|
Solon AL, Tan Z, Schutt KL, Jepsen L, Haynes SE, Nesvizhskii AI, Sept D, Stumpff J, Ohi R, Cianfrocco MA. Kinesin-binding protein remodels the kinesin motor to prevent microtubule binding. SCIENCE ADVANCES 2021; 7:eabj9812. [PMID: 34797717 PMCID: PMC8604404 DOI: 10.1126/sciadv.abj9812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
Kinesins are regulated in space and time to ensure activation only in the presence of cargo. Kinesin-binding protein (KIFBP), which is mutated in Goldberg-Shprintzen syndrome, binds to and inhibits the catalytic motor heads of 8 of 45 kinesin superfamily members, but the mechanism remains poorly defined. Here, we used cryo–electron microscopy and cross-linking mass spectrometry to determine high-resolution structures of KIFBP alone and in complex with two mitotic kinesins, revealing structural remodeling of kinesin by KIFBP. We find that KIFBP remodels kinesin motors and blocks microtubule binding (i) via allosteric changes to kinesin and (ii) by sterically blocking access to the microtubule. We identified two regions of KIFBP necessary for kinesin binding and cellular regulation during mitosis. Together, this work further elucidates the molecular mechanism of KIFBP-mediated kinesin inhibition and supports a model in which structural rearrangement of kinesin motor domains by KIFBP abrogates motor protein activity.
Collapse
Affiliation(s)
- April L. Solon
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenyu Tan
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Katherine L. Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Lauren Jepsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah E. Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Kornakov N, Möllers B, Westermann S. The EB1-Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation. J Cell Biol 2021; 219:211447. [PMID: 33044553 PMCID: PMC7545359 DOI: 10.1083/jcb.202003072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.
Collapse
Affiliation(s)
- Nikolay Kornakov
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian Möllers
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
14
|
Ems-McClung SC, Emch M, Zhang S, Mahnoor S, Weaver LN, Walczak CE. RanGTP induces an effector gradient of XCTK2 and importin α/β for spindle microtubule cross-linking. J Cell Biol 2020; 219:133528. [PMID: 31865374 PMCID: PMC7041689 DOI: 10.1083/jcb.201906045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
High RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin α/β. Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin α/β form an effector gradient that is highest at the poles and diminishes toward the chromatin, which is opposite the RanGTP gradient. Importin α and β preferentially inhibit XCTK2 antiparallel microtubule cross-linking and sliding by decreasing the microtubule affinity of the XCTK2 tail domain. This change in microtubule affinity enables RanGTP to target endogenous XCTK2 to the spindle. We propose that these combined actions of the Ran pathway are critical to promote Kinesin-14 parallel microtubule cross-linking to help focus spindle poles for efficient bipolar spindle assembly. Furthermore, our work illustrates that RanGTP regulation in the spindle is not simply a switch, but rather generates effector gradients where importins α and β gradually tune the activities of spindle assembly factors.
Collapse
Affiliation(s)
| | - Mackenzie Emch
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Serena Mahnoor
- Indiana University International Summer Undergraduate Research Program, Bloomington, IN
| | | | | |
Collapse
|
15
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
16
|
Zheng F, Dong F, Yu S, Li T, Jian Y, Nie L, Fu C. Klp2 and Ase1 synergize to maintain meiotic spindle stability during metaphase I. J Biol Chem 2020; 295:13287-13298. [PMID: 32723864 DOI: 10.1074/jbc.ra120.012905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.
Collapse
Affiliation(s)
- Fan Zheng
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fenfen Dong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuo Yu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianpeng Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanze Jian
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J Cell Sci 2020; 133:133/12/jcs234393. [PMID: 32540925 DOI: 10.1242/jcs.234393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany .,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| |
Collapse
|
18
|
Targeting centrosome amplification, an Achilles' heel of cancer. Biochem Soc Trans 2020; 47:1209-1222. [PMID: 31506331 PMCID: PMC6824836 DOI: 10.1042/bst20190034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.
Collapse
|
19
|
Ems-McClung SC, Walczak CE. In Vitro FRET- and Fluorescence-Based Assays to Study Protein Conformation and Protein-Protein Interactions in Mitosis. Methods Mol Biol 2020; 2101:93-122. [PMID: 31879900 PMCID: PMC7189611 DOI: 10.1007/978-1-0716-0219-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proper cell division and the equal segregation of genetic material are essential for life. Cell division is mediated by the mitotic spindle, which is composed of microtubules (MTs) and MT-associated proteins that help align and segregate the chromosomes. The localization and characterization of many spindle proteins have been greatly aided by using GFP-tagged proteins in vivo, but these tools typically do not allow for understanding how their activity is regulated biochemically. With the recent explosion of the pallet of GFP-derived fluorescent proteins, fluorescence-based biosensors are becoming useful tools for the quantitative analysis of protein activity and protein-protein interactions. Here, we describe solution-based Förster resonance energy transfer (FRET) and fluorescence assays that can be used to quantify protein-protein interactions and to characterize protein conformations of MT-associated proteins involved in mitosis.
Collapse
Affiliation(s)
| | - Claire E Walczak
- Indiana University School of Medicine-Bloomington, Medical Sciences, Bloomington, IN, USA.
| |
Collapse
|
20
|
Brownlee C, Heald R. Importin α Partitioning to the Plasma Membrane Regulates Intracellular Scaling. Cell 2019; 176:805-815.e8. [PMID: 30639102 DOI: 10.1016/j.cell.2018.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
Early embryogenesis is accompanied by reductive cell divisions requiring that subcellular structures adapt to a range of cell sizes. The interphase nucleus and mitotic spindle scale with cell size through both physical and biochemical mechanisms, but control systems that coordinately scale intracellular structures are unknown. We show that the nuclear transport receptor importin α is modified by palmitoylation, which targets it to the plasma membrane and modulates its binding to nuclear localization signal (NLS)-containing proteins that regulate nuclear and spindle size in Xenopus egg extracts. Reconstitution of importin α targeting to the outer boundary of extract droplets mimicking cell-like compartments recapitulated scaling relationships observed during embryogenesis, which were altered by inhibitors that shift levels of importin α palmitoylation. Modulation of importin α palmitoylation in human cells similarly affected nuclear and spindle size. These experiments identify importin α as a conserved surface area-to-volume sensor that scales intracellular structures to cell size.
Collapse
Affiliation(s)
- Christopher Brownlee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster Procambarus clarkii. Oncotarget 2018; 8:36082-36098. [PMID: 28415605 PMCID: PMC5482640 DOI: 10.18632/oncotarget.16429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023] Open
Abstract
In order to study the function of kinesin-14 motor protein KIFC1 during spermatogenesis of Procambarus clarkii, the full length of kifc1 was cloned from testes cDNA using Rapid-Amplification of cDNA Ends (RACE). The deduced KIFC1 protein sequence showed the highest similarity between Procambarus clarkii and Eriocheir senensis (similarity rate as 64%). According to the results of in situ hybridization (ISH), the kifc1 mRNA was gathered in the acrosome location above nucleus in the mid- and late-stage spermatids. Immunofluorescence results were partly consistent with the ISH in middle spermatids, while in the late spermatids the KIFC1 was distributed around the nucleus which had large deformation and formed four to six nuclear arms. In the mature sperm, KIFC1 and microtubules were distributed around the sperm, playing a role in maintaining the sperm morphology and normal function. Overexpression of P. clarkii kifc1 in GC1 cells for 24 hours resulted in disorganization of microtubules which changed the cell morphology from circular and spherical into fusiform. In addition, the overexpression also resulted in triple centrosomes during mitosis which eventually led to cell apoptosis. RNAi experiments showed that decreased KIFC1 protein levels resulted in total inhibition of spermatogenesis, with only mature sperm found in the RNAi-testis, implying an indispensable role of KIFC1 during P. clarkii spermiogenesis.
Collapse
|
22
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
23
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Juniper MPN, Weiss M, Platzman I, Spatz JP, Surrey T. Spherical network contraction forms microtubule asters in confinement. SOFT MATTER 2018; 14:901-909. [PMID: 29364311 DOI: 10.1039/c7sm01718a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microtubules and motor proteins form active filament networks that are critical for a variety of functions in living cells. Network topology and dynamics are the result of a self-organisation process that takes place within the boundaries of the cell. Previous biochemical in vitro studies with biomimetic systems consisting of purified motors and microtubules have demonstrated that confinement has an important effect on the outcome of the self-organisation process. However, the pathway of motor/microtubule self-organisation under confinement and its effects on network morphology are still poorly understood. Here, we have investigated how minus-end directed microtubule cross-linking kinesins organise microtubules inside polymer-stabilised microfluidic droplets of well-controlled size. We find that confinement can impose a novel pathway of microtubule aster formation proceeding via the constriction of an initially spherical motor/microtubule network. This mechanism illustrates the close relationship between confinement, network contraction, and aster formation. The spherical constriction pathway robustly produces single, well-centred asters with remarkable reproducibility across thousands of droplets. These results show that the additional constraint of well-defined confinement can improve the robustness of active network self-organisation, providing insight into the design principles of self-organising active networks in micro-scale confinement.
Collapse
Affiliation(s)
| | - Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
25
|
Bennabi I, Quéguiner I, Kolano A, Boudier T, Mailly P, Verlhac MH, Terret ME. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Rep 2018; 19:368-381. [PMID: 29330318 PMCID: PMC5797964 DOI: 10.15252/embr.201745225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles. We used HSET (kinesin-14) as a tool to shift meiotic spindle assembly toward a mitotic "outside-in" mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic-like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique "inside-out" mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.
Collapse
Affiliation(s)
- Isma Bennabi
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Isabelle Quéguiner
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thomas Boudier
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| |
Collapse
|
26
|
Zhang DD, Gao XM, Zhao YQ, Hou CC, Zhu JQ. The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1351-1371. [PMID: 28534180 DOI: 10.1007/s10695-017-0377-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Spermatogenesis is a highly ordered process in the differentiation of male germ cells. Nuclear morphogenesis is one of the most fundamental cellular transformations to take place during spermatogenesis. These striking transformations from spermatogonia to spermatozoa are a result of phase-specific adaption of the cytoskeleton and its association with molecular motor proteins. KIFC1 is a C-terminal kinesin motor protein that plays an essential role in acrosome formation and nuclear reshaping during spermiogenesis in mammals. To explore its functions during the same process in Larimichthys crocea, we cloned and characterized the cDNA of a mammalian KIFC1 homolog (termed lc-KIFC1) from the total RNA of the testis. The 2481 bp complete lc-KIFC1 cDNA contained a 53 bp 5' untranslated region, a 535 bp 3' untranslated region, and a 1893 bp open reading frame that encoded a special protein of 630 amino acids. The predicted lc-KIFC1 protein possesses a divergent tail region, stalk region, and conserved carboxyl motor region. Protein alignment demonstrated that lc-KIFC1 had 73.2, 49.8, 49.3, 54.6, 56.5, 53.1, and 52.1% identity with its homologs in Danio rerio, Eriocheir sinensis, Octopus tankahkeei, Gallus gallus, Xenopus laevis, Mus musculus, and Homo sapiens, respectively. Tissue expression analysis revealed that lc-kifc1 mRNA was mainly expressed in the testis. The trend of lc-kifc1 mRNA expression at different growth stages of the testis showed that the expression increased first and then decreased, in the stage IV of testis, its expression quantity achieved the highest level. In situ hybridization and immunofluorescence results showed that KIFC1 was localized around the nucleus in early spermatids. As spermatid development progressed, the signals increased substantially. These signals peaked and were concentrated at one end of the nucleus when the spermatids began to undergo dramatic changes. In the mature sperm, the signal for KIFC1 gradually became weak and was mainly localized in the tail. In summary, evaluation of the expression pattern for lc-KIFC1 at specific stages of spermiogenesis has shed light on the potential functions of this motor protein in major cytological transformations. In addition, this study may provide a model for researching the molecular mechanisms involved in spermatogenesis in other teleost species, which will lead to a better understanding of the teleost fertilization process.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin-Ming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
27
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 2017; 8:13999. [PMID: 28051135 PMCID: PMC5216134 DOI: 10.1038/ncomms13999] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Kinesin-14s are commonly known as nonprocessive minus end-directed microtubule motors that function mainly for mitotic spindle assembly. Here we show using total internal reflection fluorescence microscopy that KlpA—a kinesin-14 from Aspergillus nidulans—is a context-dependent bidirectional motor. KlpA exhibits plus end-directed processive motility on single microtubules, but reverts to canonical minus end-directed motility when anchored on the surface in microtubule-gliding experiments or interacting with a pair of microtubules in microtubule-sliding experiments. Plus end-directed processive motility of KlpA on single microtubules depends on its N-terminal nonmotor microtubule-binding tail, as KlpA without the tail is nonprocessive and minus end-directed. We suggest that the tail is a de facto directionality switch for KlpA motility: when the tail binds to the same microtubule as the motor domain, KlpA is a plus end-directed processive motor; in contrast, when the tail detaches from the microtubule to which the motor domain binds, KlpA becomes minus end-directed. Kinesin-14s are commonly considered to be minus end-directed microtubule motor proteins. Here the authors show that KlpA, a fungal kinesin-14 orthologue, relies on its N-terminal nonmotor microtubule-binding tail to achieve context-dependent bidirectional motility.
Collapse
|
29
|
Ori-McKenney KM, McKenney RJ, Huang HH, Li T, Meltzer S, Jan LY, Vale RD, Wiita AP, Jan YN. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis. Neuron 2016; 90:551-63. [PMID: 27112495 DOI: 10.1016/j.neuron.2016.03.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/02/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Dendritic arborization patterns are consistent anatomical correlates of genetic disorders such as Down syndrome (DS) and autism spectrum disorders (ASDs). In a screen for abnormal dendrite development, we identified Minibrain (MNB)/DYRK1a, a kinase implicated in DS and ASDs, as a regulator of the microtubule cytoskeleton. We show that MNB is necessary to establish the length and cytoskeletal composition of terminal dendrites by controlling microtubule growth. Altering MNB levels disrupts dendrite morphology and perturbs neuronal electrophysiological activity, resulting in larval mechanosensation defects. Using in vivo and in vitro approaches, we uncover a molecular pathway whereby direct phosphorylation of β-tubulin by MNB inhibits tubulin polymerization, a function that is conserved for mammalian DYRK1a. Our results demonstrate that phosphoregulation of microtubule dynamics by MNB/DYRK1a is critical for dendritic patterning and neuronal function, revealing a previously unidentified mode of posttranslational microtubule regulation in neurons and uncovering a conserved pathway for a DS- and ASD-associated kinase.
Collapse
Affiliation(s)
- Kassandra M Ori-McKenney
- Department of Physiology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard J McKenney
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hector H Huang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tun Li
- Department of Physiology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shan Meltzer
- Department of Physiology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Department of Physiology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Department of Physiology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Zong H, Carnes SK, Moe C, Walczak CE, Ems-McClung SC. The far C-terminus of MCAK regulates its conformation and spindle pole focusing. Mol Biol Cell 2016; 27:1451-64. [PMID: 26941326 PMCID: PMC4850033 DOI: 10.1091/mbc.e15-10-0699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Spatial regulation of microtubule dynamics is critical for proper spindle assembly. The far C-terminus of the microtubule-depolymerizing kinesin-13 MCAK regulates MCAK localization at spindle poles, which is needed for proper pole focusing. To ensure proper spindle assembly, microtubule (MT) dynamics needs to be spatially regulated within the cell. The kinesin-13 MCAK is a potent MT depolymerase with a complex subcellular localization, yet how MCAK spatial regulation contributes to spindle assembly is not understood. Here we show that the far C-terminus of MCAK plays a critical role in regulating MCAK conformation, subspindle localization, and spindle assembly in Xenopus egg extracts. Alteration of MCAK conformation by the point mutation E715A/E716A in the far C-terminus increased MCAK targeting to the poles and reduced MT lifetimes, which induced spindles with unfocused poles. These effects were phenocopied by the Aurora A phosphomimetic mutation, S719E. Furthermore, addition of the kinesin-14 XCTK2 to spindle assembly reactions rescued the unfocused-pole phenotype. Collectively our work shows how the regional targeting of MCAK regulates MT dynamics, highlighting the idea that multiple phosphorylation pathways of MCAK cooperate to spatially control MT dynamics to maintain spindle architecture.
Collapse
Affiliation(s)
- Hailing Zong
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Christina Moe
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| | | |
Collapse
|
31
|
Cavazza T, Vernos I. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Front Cell Dev Biol 2016; 3:82. [PMID: 26793706 PMCID: PMC4707252 DOI: 10.3389/fcell.2015.00082] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023] Open
Abstract
The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca I Estudis AvançatsBarcelona, Spain
| |
Collapse
|
32
|
Higgins DM, Nannas NJ, Dawe RK. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization. FRONTIERS IN PLANT SCIENCE 2016; 7:1277. [PMID: 27610117 PMCID: PMC4997046 DOI: 10.3389/fpls.2016.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/11/2016] [Indexed: 05/02/2023]
Abstract
The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation.
Collapse
Affiliation(s)
- David M. Higgins
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
| | | | - R. Kelly Dawe
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- *Correspondence: R. Kelly Dawe
| |
Collapse
|
33
|
Syrovatkina V, Tran PT. Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut. Nat Commun 2015; 6:7322. [PMID: 26031557 PMCID: PMC4720966 DOI: 10.1038/ncomms8322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/27/2015] [Indexed: 11/11/2022] Open
Abstract
Aneuploidy – chromosome instability leading to incorrect chromosome number in dividing cells – can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring, or cytokinesis. As most tumors show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research to provide potential therapeutics. Here, we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA
| | - Phong T Tran
- 1] Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA [2] Institut Curie, PSL Research University, Paris F-75248, France [3] Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, Paris F-75248, France
| |
Collapse
|
34
|
Weaver LN, Ems-McClung SC, Chen SHR, Yang G, Shaw SL, Walczak CE. The Ran-GTP gradient spatially regulates XCTK2 in the spindle. Curr Biol 2015; 25:1509-14. [PMID: 25981788 DOI: 10.1016/j.cub.2015.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/11/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
Ran is a small GTP binding protein that was originally identified as a regulator of nucleocytoplasmic transport [1] and subsequently found to be important for spindle formation [2-5]. In mitosis, a gradient of Ran-GTP emanates from chromatin and diminishes toward spindle poles [6]. Ran-GTP promotes spindle self-organization through the release of importin-bound spindle assembly factors (SAFs), which stimulate microtubule (MT) nucleation and organization and regulate MT dynamics [7-9]. Although many SAFs are non-motile MT-associated proteins, such as NuMA, TPX2, and HURP [7, 10-12], Ran also controls motor proteins, including Kid and HSET/XCTK2 [13, 14]. The Kinesin-14 XCKT2 is important for spindle assembly and pole organization [15-20], and Ran-GTP is proposed to promote XCKT2 MT crosslinking activity by releasing importin α/β from a bipartite nuclear localization signal (NLS) located in the tail domain [14]. Here, we show that the Ran-GTP gradient spatially regulates XCTK2 within the spindle. A flattened Ran-GTP gradient blocked the ability of excess XCTK2 to stimulate bipolar spindle assembly and resulted in XCTK2-mediated bundling of free MTs. These effects required the XCTK2 tail, which promoted the motility of XCTK2 within the spindle independent of the Ran-GTP gradient. In addition, the turnover kinetics of XCTK2 were spatially controlled: they were faster near the poles relative to the chromatin, but not with a mutant XCTK2 that cannot bind to importin α/β. Our results support a model in which the Ran-GTP gradient spatially coordinates motor localization with motility to ensure efficient spindle formation.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biology, Indiana University, 915 E. 3(rd) Street, Bloomington, IN 47405, USA
| | | | - Sez-Hon R Chen
- Department of Biomedical Engineering and Computational Biology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Ge Yang
- Department of Biomedical Engineering and Computational Biology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, 915 E. 3(rd) Street, Bloomington, IN 47405, USA
| | - Claire E Walczak
- Medical Sciences, Indiana University, 915 E. 3(rd) Street, Bloomington, IN 47405, USA.
| |
Collapse
|
35
|
Yang B, Lamb ML, Zhang T, Hennessy EJ, Grewal G, Sha L, Zambrowski M, Block MH, Dowling JE, Su N, Wu J, Deegan T, Mikule K, Wang W, Kaspera R, Chuaqui C, Chen H. Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening. J Med Chem 2014; 57:9958-70. [PMID: 25458601 DOI: 10.1021/jm501179r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.
Collapse
Affiliation(s)
- Bin Yang
- Oncology Innovative Medicine Unit, AstraZeneca R&D Boston , 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baumann H, Surrey T. Motor-mediated cortical versus astral microtubule organization in lipid-monolayered droplets. J Biol Chem 2014; 289:22524-35. [PMID: 24966327 PMCID: PMC4139258 DOI: 10.1074/jbc.m114.582015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Indexed: 01/19/2023] Open
Abstract
The correct spatial organization of microtubules is of crucial importance for determining the internal architecture of eukaryotic cells. Microtubules are arranged in space by a multitude of biochemical activities and by spatial constraints imposed by the cell boundary. The principles underlying the establishment of distinct intracellular architectures are only poorly understood. Here, we studied the effect of spatial confinement on the self-organization of purified motors and microtubules that are encapsulated in lipid-monolayered droplets in oil, varying in diameter from 5-100 μm, which covers the size range of typical cell bodies. We found that droplet size alone had a major organizing influence. The presence of a microtubule-crosslinking motor protein decreased the number of accessible types of microtubule organizations. Depending on the degree of spatial confinement, the presence of the motor caused either the formation of a cortical array of bent microtubule bundles or the generation of single microtubule asters in the droplets. These are two of the most prominent forms of microtubule arrangements in plant and metazoan cells. Our results provide insights into the combined organizing influence of spatial constraints and cross-linking motor activities determining distinct microtubule architectures in a minimal biomimetic system. In the future, this simple lipid-monolayered droplet system characterized here can be expanded readily to include further biochemical activities or used as the starting point for the investigation of motor-mediated microtubule organization inside liposomes surrounded by a deformable lipid bilayer.
Collapse
Affiliation(s)
- Hella Baumann
- From the London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Thomas Surrey
- From the London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
37
|
Raaijmakers JA, Medema RH. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 2014; 123:407-22. [PMID: 24871939 DOI: 10.1007/s00412-014-0468-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.
Collapse
Affiliation(s)
- J A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
38
|
Singh SA, Winter D, Kirchner M, Chauhan R, Ahmed S, Ozlu N, Tzur A, Steen JA, Steen H. Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J 2014; 33:385-99. [PMID: 24510915 DOI: 10.1002/embj.201385876] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using multiplexed quantitative proteomics, we analyzed cell cycle-dependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/C(CDH1)-dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.
Collapse
Affiliation(s)
- Sasha A Singh
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nachbar J, Lázaro-Diéguez F, Prekeris R, Cohen D, Müsch A. KIFC3 promotes mitotic progression and integrity of the central spindle in cytokinesis. Cell Cycle 2013; 13:426-33. [PMID: 24275865 DOI: 10.4161/cc.27266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3's unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.
Collapse
Affiliation(s)
- Jeannette Nachbar
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | - Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | | | - David Cohen
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | - Anne Müsch
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| |
Collapse
|
40
|
Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A. Common mechanistic themes for the powerstroke of kinesin-14 motors. J Struct Biol 2013; 184:335-44. [PMID: 24099757 PMCID: PMC3851574 DOI: 10.1016/j.jsb.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.
Collapse
Affiliation(s)
- Miguel A. Gonzalez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Julia Cope
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Katherine C. Rank
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Chun Ju Chen
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter Tittmann
- EMEZ, Swiss Federal Institute of Technology, Hoenggerberg, 8093 Zuerich, Switzerland
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Susan P. Gilbert
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andreas Hoenger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
41
|
Wu J, Mikule K, Wang W, Su N, Petteruti P, Gharahdaghi F, Code E, Zhu X, Jacques K, Lai Z, Yang B, Lamb ML, Chuaqui C, Keen N, Chen H. Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 2013; 8:2201-8. [PMID: 23895133 DOI: 10.1021/cb400186w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Centrosome amplification is observed in many human cancers and has been proposed to be a driver of both genetic instability and tumorigenesis. Cancer cells have evolved mechanisms to bundle multiple centrosomes into two spindle poles to avoid multipolar mitosis that can lead to chromosomal segregation defects and eventually cell death. KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. To this end, we have identified the first reported small molecule inhibitor AZ82 for KIFC1. AZ82 bound specifically to the KIFC1/microtubule (MT) binary complex and inhibited the MT-stimulated KIFC1 enzymatic activity in an ATP-competitive and MT-noncompetitive manner with a Ki of 0.043 μM. AZ82 effectively engaged with the minus end-directed KIFC1 motor inside cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5. Treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Consistent with genetic studies, our data confirmed that KIFC1 inhibition by a small molecule holds promise for targeting cancer cells with amplified centrosomes and provided evidence that functional suppression of KIFC1 by inhibiting its enzymatic activity could be an effective means for developing cancer therapeutics.
Collapse
Affiliation(s)
- Jiaquan Wu
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Keith Mikule
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Wenxian Wang
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Philip Petteruti
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Farzin Gharahdaghi
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Erin Code
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Xiahui Zhu
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Kelly Jacques
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Zhongwu Lai
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Bin Yang
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Michelle L. Lamb
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Claudio Chuaqui
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Nicholas Keen
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Huawei Chen
- Discovery Sciences and ‡Oncology Innovative Medicine Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| |
Collapse
|
42
|
The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni. Gene 2013; 532:53-62. [PMID: 24035901 DOI: 10.1016/j.gene.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/07/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structures, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, the testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the nucleus or influence the shaping process through indirect regulation.
Collapse
|
43
|
Dietrich D, Seiler F, Essmann F, Dodt G. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3013-3024. [PMID: 23954441 DOI: 10.1016/j.bbamcr.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.
Collapse
Affiliation(s)
- Denise Dietrich
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Florian Seiler
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Frank Essmann
- Interfaculty Institute of Biochemistry, Molecular Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Gabriele Dodt
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|
44
|
Yoshida Y, Fujiwara T, Imoto Y, Yoshida M, Ohnuma M, Hirooka S, Misumi O, Kuroiwa H, Kato S, Matsunaga S, Kuroiwa T. The kinesin-like protein TOP promotes Aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 2013; 126:2392-400. [DOI: 10.1242/jcs.116798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However an integrated control system that initiates division of the three organelles has not been found. We first report that a novel C-terminal kinesin-like protein, three-organelle divisions inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in red alga Cyanidioschyzon merolae. A proteomics revealed that TOP was contained in the complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localized on the MD/PD machinery complex, mitochondrial and chloroplast divisions were performed and the components of the MD/PD machinery complexes were phosphorylated. Furthermore, TOP down-regulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction whereas AUR was dispersed in cytosol by TOP down-regulation, suggesting that AUR is presumably required for the constriction. Taken together, TOP is likely to induce protein phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division by transferring of AUR. Concurrently, the involvement of TOP in mitochondrial and chloroplast division, given the presence of TOP homologs throughout eukaryotes, may illuminate the original function of C-terminal kinesin-like proteins.
Collapse
|
45
|
Kleylein-Sohn J, Pöllinger B, Ohmer M, Hofmann F, Nigg EA, Hemmings BA, Wartmann M. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 2012; 125:5391-402. [PMID: 22946058 DOI: 10.1242/jcs.107474] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Centrosomes represent the major microtubule organizing centers (MTOCs) of animal somatic cells and orchestrate bipolar spindle assembly during mitotic cell division. In meiotic cells, the kinesin HSET compensates for the lack of centrosomes by focusing acentrosomal MTOCs into two spindle poles. By clustering multiple centrosomes into two spindle poles, HSET also mediates bipolar mitosis in cancer cells with supernumerary centrosomes. However, although dispensable in non-transformed human cells, the role of HSET in cancer cells with two centrosomes has remained elusive. In this study, we demonstrate that HSET is required for proper spindle assembly, stable pole-focusing and survival of cancer cells irrespective of normal or supernumerary centrosome number. Strikingly, we detected pronounced acentrosomal MTOC structures in untreated mitotic cancer cells. While in most cancer cells these acentrosomal MTOCs were rapidly incorporated into the assembling bipolar spindle, some cells eventually established bipolar spindles with acentrosomal poles and free centrosomes. These observations demonstrate that acentrosomal MTOCs were functional and that both centrosomal and acentrosomal mechanisms were required for bipolar spindle organization. Our study shows that HSET is critical for clustering acentrosomal and centrosomal MTOCs during spindle formation in human cancer cells with two bona fide centrosomes. Furthermore, we show that in checkpoint-defective cancer cells, acentrosomal spindle formation and HSET-dependence are partially mediated by a constitutive activation of the DNA damage response. In summary, we propose that acentrosomal spindle assembly mechanisms are hyperactive in cancer cells and promote HSET, a key driver of acentrosomal spindle organization, as an attractive target for cancer therapy.
Collapse
|
46
|
Pecqueur L, Duellberg C, Dreier B, Jiang Q, Wang C, Plückthun A, Surrey T, Gigant B, Knossow M. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proc Natl Acad Sci U S A 2012; 109:12011-6. [PMID: 22778434 PMCID: PMC3409770 DOI: 10.1073/pnas.1204129109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microtubules are cytoskeleton filaments consisting of αβ-tubulin heterodimers. They switch between phases of growth and shrinkage. The underlying mechanism of this property, called dynamic instability, is not fully understood. Here, we identified a designed ankyrin repeat protein (DARPin) that interferes with microtubule assembly in a unique manner. The X-ray structure of its complex with GTP-tubulin shows that it binds to the β-tubulin surface exposed at microtubule (+) ends. The details of the structure provide insight into the role of GTP in microtubule polymerization and the conformational state of tubulin at the very microtubule end. They show in particular that GTP facilitates the tubulin structural switch that accompanies microtubule assembly but does not trigger it in unpolymerized tubulin. Total internal reflection fluorescence microscopy revealed that the DARPin specifically blocks growth at the microtubule (+) end by a selective end-capping mechanism, ultimately favoring microtubule disassembly from that end. DARPins promise to become designable tools for the dissection of microtubule dynamic properties selective for either of their two different ends.
Collapse
Affiliation(s)
- Ludovic Pecqueur
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Christian Duellberg
- Microtubule Cytoskeleton Laboratory, London Research Institute, Cancer Research United Kingdom, London WC2A 4LY, United Kingdom
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland; and
| | - Qiyang Jiang
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chunguang Wang
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland; and
| | - Thomas Surrey
- Microtubule Cytoskeleton Laboratory, London Research Institute, Cancer Research United Kingdom, London WC2A 4LY, United Kingdom
| | - Benoît Gigant
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Marcel Knossow
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| |
Collapse
|
47
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
48
|
Wang YT, Mao H, Hou CC, Sun X, Wang DH, Zhou H, Yang WX. Characterization and expression pattern of KIFC1-like kinesin gene in the testis of the Macrobrachium nipponense with discussion of its relationship with structure lamellar complex (LCx) and acroframosome (AFS). Mol Biol Rep 2012; 39:7591-8. [PMID: 22327780 DOI: 10.1007/s11033-012-1593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
Abstract
Spermiogenesis is a developmental process undergoing continuous differentiation to drive a diploid spermatogonium towards a haploid sperm cell. This striking transformation from spermatogonium to spermatozoa is made possible by the stage-specific adaption of cytoskeleton and associated molecular motor proteins. KIFC1 is a C-terminal kinesin motor found to boast essential roles in acrosome biogenesis and nuclear reshaping during spermiogenesis in rat. To explore its functions during the same process in Macrobrachium nipponense, we have cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed mn-KIFC1) from the total RNA of the testis. The 2,296 bp mn-KIFC1 cDNA contained a 87 bp 5' untranslated region, a 211 bp 3' untranslated region and a 1,998 bp open reading frame. Protein alignment demonstrated that mn-KIFC1 had 37.7, 58.7, 38.4, 37.2, 38.9 and 37.8% identity with its homologues in Salmo salar, Eriocheir sinensis, Homo sapiens, Mus musculus, Danio rerio and Xenopus laevis respectively. The phylogenetic tree revealed that mn-KIFC1 is most related to E. Sinensis KIFC1 among the examined species. Tissue expression analysis showed the presence of mn-KIFC1 in the testis, hepatopancreas, gill, muscle and heart. In situ hybridization showed that the mn-KIFC1 mRNA was localized at the periphery of the nuclear membrane and in the proacrosomal vesicle in early and middle spermatids. In late spermatids and spermatozoa, mn-KIFC1 was expressed in the acrosome and in the spike. In situ hybridization also indicated that KIFC1 works together with lamellar complex (LCx) and acroframosome (AFS) to drive acrosome formation and cellular transformation. LCx and AFS have both been previously proved to have essential roles during spermiogenesis in M. nipponense. In conclusion, the expression of mn-kifc1 at specific stages of spermiogenesis suggests a role in cellular transformations in M. nipponense.
Collapse
Affiliation(s)
- Yan-Ting Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058 Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 2011; 22:3070-80. [PMID: 21737685 PMCID: PMC3164455 DOI: 10.1091/mbc.e11-04-0363] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kif18B is a newly discovered plus-tip-tracking protein that is enriched on astral microtubule (MT) ends during early mitosis. Kif18B binds directly to EB1, and this interaction is required for proper localization of Kif18B and to control astral MT length. Regulation of microtubule (MT) dynamics is essential for proper spindle assembly and organization. Kinesin-8 family members are plus-end-directed motors that modulate plus-end MT dynamics by acting as MT depolymerases or as MT plus-end capping proteins. In this paper, we show that the human kinesin-8 Kif18B functions during mitosis to control astral MT organization. Kif18B is a MT plus-tip-tracking protein that localizes to the nucleus in interphase and is enriched at astral MT plus ends during early mitosis. Knockdown of Kif18B caused spindle defects, resulting in an increased number and length of MTs. A yeast two-hybrid screen identified an interaction of the C-terminal domain of Kif18B with the plus-end MT-binding protein EB1. EB1 knockdown disrupted Kif18B targeting to MT plus ends, indicating that EB1/Kif18B interaction is physiologically important. This interaction is direct, as the far C-terminal end of Kif18B is sufficient for binding to EB1 in vitro. Overexpression of this domain is sufficient for plus-end MT targeting in cells; however, targeting is enhanced by the motor domain, which cooperates with the tail to achieve proper Kif18B localization at MT plus ends. Our results suggest that Kif18B is a new MT dynamics regulatory protein that interacts with EB1 to control astral MT length.
Collapse
Affiliation(s)
- Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
50
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|