1
|
Ahn J, Jang SH, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 is secreted from stressed tumor cells to activate T cell-mediated tumor surveillance via Lck-ERK signaling. Neoplasia 2025; 59:101094. [PMID: 39615106 DOI: 10.1016/j.neo.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in multiple types of human malignancies. Nevertheless, the molecular basis for the XAF1-mediated tumor suppression remains largely undefined. Here, we report that XAF1 is secreted from cells under various cytotoxic stress conditions and activates T cell-mediated tumor surveillance. In cancer cells exposed to interferon -γ, tumor necrosis factor -α, and etoposide, XAF1 is elevated and actively secreted through the unconventional endo-lysosomal trafficking pathway and the zinc finger 4 domain of XAF1 plays an essential for this secretion. Secreted XAF1 is internalized into nearby T cells through clathrin-mediated endocytosis and stimulates proliferation, migration, and tumor infiltration of T cells. Internalized XAF1 activates RAF-MEK-ERK signaling through the direct interaction with and phosphorylation of lymphocyte-specific protein tyrosine kinase. In response to interferon -γ injection, Xaf1+/+ tumors display significantly higher regression rate and T cell infiltration compared to Xaf1-/- tumors while Xaf1-/- tumors are markedly reduced by injection of recombinant Xaf1. XAF1 expression is associated with overall survival in T cell-enriched cancer patients and also correlates with prognosis in T cell-based immunotherapies. Together, our study identifies XAF1 as a novel secretory immune-modulatory tumor suppressor, illuminating the mechanistic consequence of its inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Jieun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Qi WH, Tang N, Zhao ZJ, Li XQ. Transient receptor potential channels in viral infectious diseases: Biological characteristics and regulatory mechanisms. J Adv Res 2024:S2090-1232(24)00541-1. [PMID: 39551130 DOI: 10.1016/j.jare.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Viral infectious diseases have long posed a challenge to humanity. In recent decades, transient receptor potential (TRP) channels have emerged as newly investigated cation channels. Increasing evidence suggests that TRP channel-mediated Ca2+ homeostasis disruptions, along with associated pathological changes, are critical factors in the onset and progression of viral infectious diseases. However, the precise roles and mechanisms of TRP channels in these diseases remain to be systematically elucidated. AIM OF REVIEW The aim of this review is to systematically summarize recent advances in understanding TRP channels in viral infections, and based on current progress and challenges, propose future directions for research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the classification and biological functions of the TRP family, explores the mechanisms by which TRP channels contribute to viral infections, and highlights specific mechanisms at three levels: virus, host, and outcome. These include the direct role in viral biology and replication, the indirect role in host immunity and inflammation, and the resulting pathological changes. Additionally, we discuss the potential applications of the TRP family in the treatment of viral infectious diseases and propose future research directions.
Collapse
Affiliation(s)
- Wen-Hui Qi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhi-Jing Zhao
- Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
3
|
Saffi GT, To L, Kleine N, Melo CMP, Chen K, Genc G, Lee KCD, Chow JTS, Jang GH, Gallinger S, Botelho RJ, Salmena L. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J Cell Biol 2024; 223:e202401012. [PMID: 39120584 PMCID: PMC11317760 DOI: 10.1083/jcb.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Collapse
Affiliation(s)
- Golam T Saffi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Lydia To
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Nicholas Kleine
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ché M P Melo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - K C Daniel Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research , Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research , Toronto, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network , Toronto, Canada
| |
Collapse
|
4
|
Bonelli S, Lo Pinto M, Ye Y, Müller SA, Lichtenthaler SF, Scilabra SD. Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 Deficient Cells Reveals a Role for USP19 in the Secretion of Lysosomal Proteins. Mol Cell Proteomics 2024; 23:100854. [PMID: 39389361 PMCID: PMC11617723 DOI: 10.1016/j.mcpro.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis," by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.
Collapse
Affiliation(s)
- Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simone Dario Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
| |
Collapse
|
5
|
Zou GY, Bi F, Yu YL, Liu MX, Chen S. Tetrahedral DNA-Based Ternary Recognition Ratiometric Fluorescent Probes for Real-Time In Situ Resolving Lysosome Subpopulations in Living Cells via Cl -, Ca 2+, and pH. Anal Chem 2024; 96:16639-16648. [PMID: 39382097 DOI: 10.1021/acs.analchem.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lysosomes are multifunctional organelles vital for cellular homeostasis with distinct subpopulations characterized by varying levels of Cl-, Ca2+, and H+. In situ visualization of these parameters is crucial for lysosomal research, yet developing probes that can simultaneously detect multiple ions remains challenging. Herein, we developed a lysosome-targeting ternary recognition ratiometric fluorescent probe based on tetrahedral DNA nanostructures (TDNs) to analyze lysosome subpopulations by Cl-, Ca2+, and pH. The TDN probe is assembled from four single-stranded DNAs, each end-modified with responsive fluorophores (Pr-Cl for Cl-, Pr-Ca for Ca2+, and Pr-pH for pH) or a reference fluorophore (Cy5). The fluorophores are integrated at the vertices of the rigid TDN to minimize mutual interference, and their fixed stoichiometry establishes a robust ternary recognition ratiometric fluorescence sensor for in situ resolution of lysosome subpopulations in living cells. Accordingly, a rise in lysosome subpopulations 2/6 characterized by low [Cl-], medium/high [Ca2+], and high pH was observed in the Niemann-Pick disease model cells but seldom observed in the control group. Conversely, there was a marked decline in the fraction of subpopulations 1/4/5 characterized by high [Cl-], medium to low [Ca2+], and pH. These changes were substantially reversed upon treatment. The probe holds great promise for studying lysosome subpopulations and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Fan Bi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| |
Collapse
|
6
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
7
|
Zhang MM, Liang MJ, Zhang DM, Cai JN, Yang QJ, Zhao Y, Zhang JP, Li YL. The function and mechanism of LAPTM5 in diseases. Biomed Pharmacother 2024; 178:117237. [PMID: 39096616 DOI: 10.1016/j.biopha.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.
Collapse
Affiliation(s)
- Man-Man Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming-Jun Liang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dong-Mei Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jun-Nan Cai
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun Zhao
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian-Ping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang-Ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Zhang S, Yin H, Zhang Y, Zhu Y, Zhu X, Zhu W, Tang L, Liu Y, Wu K, Zhao B, Tian Y, Lu H. Autophagic-lysosomal damage induced by swainsonine is protected by trehalose through activation of TFEB-regulated pathway in renal tubular epithelial cells. Chem Biol Interact 2024; 394:110990. [PMID: 38579922 DOI: 10.1016/j.cbi.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.
Collapse
Affiliation(s)
- Shuhang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqingqing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xueyao Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenting Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lihui Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiling Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rodríguez-De Jesús AE, Cartagena-Isern LJ, García-Requena LA, Roche-Lima A, Meléndez LM. Quantitative Proteomics Reveal That CB2R Agonist JWH-133 Downregulates NF-κB Activation, Oxidative Stress, and Lysosomal Exocytosis from HIV-Infected Macrophages. Int J Mol Sci 2024; 25:3246. [PMID: 38542221 PMCID: PMC10970132 DOI: 10.3390/ijms25063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Luz J. Cartagena-Isern
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Luis A. García-Requena
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
11
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Karin Öllinger
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
12
|
Huang C, Seino J, Honda A, Fujihira H, Wu D, Okahara K, Kitazume S, Nakaya S, Kitajima K, Sato C, Suzuki T. Rat hepatocytes secrete free oligosaccharides. J Biol Chem 2024; 300:105712. [PMID: 38309509 PMCID: PMC10912633 DOI: 10.1016/j.jbc.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Kyohei Okahara
- Discovery Concept Validation Function, KAN Research Institute, Inc, Kobe, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Shuichi Nakaya
- Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
13
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
14
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
15
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
16
|
Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell 2023; 83:2524-2539.e7. [PMID: 37390818 PMCID: PMC10528928 DOI: 10.1016/j.molcel.2023.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Shen Q, Pan X, Li Y, Li J, Zhang C, Jiang X, Liu F, Pang B. Lysosomes, curcumin, and anti-tumor effects: how are they linked? Front Pharmacol 2023; 14:1220983. [PMID: 37484013 PMCID: PMC10359997 DOI: 10.3389/fphar.2023.1220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Curcumin is a natural active ingredient from traditional Chinese medicine (TCM) that has multi-target characteristics to exert extensive pharmacological activities and thus has been applied in the treatment of various diseases such as cancer, cardiovascular diseases, nervous system, and autoimmune disorders. As an important class of membranous organelles in the intracellular membrane system, lysosomes are involved in biological processes such as programmed cell death, cell metabolism, and immune regulation, thus affecting tumor initiation and progression. It has been shown that curcumin can modulate lysosomal function through the aforementioned pathways, thereby affecting tumor proliferation, invasion, metastasis, drug resistance, and immune function. This review briefly elaborated the regulatory mechanisms of lysosome biogenesis and summarized curcumin-related studies with its anti-tumor effect, providing a reference for the clinical application of curcumin and anti-tumor research targeting lysosomes.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Zhong D, Wang R, Zhang H, Wang M, Zhang X, Chen H. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat Commun 2023; 14:3997. [PMID: 37414766 PMCID: PMC10326073 DOI: 10.1038/s41467-023-39716-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengqin Zhong
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mengmeng Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
19
|
Muscetti O, Blal N, Mollo V, Netti PA, Guarnieri D. Intracellular Localization during Blood-Brain Barrier Crossing Influences Extracellular Release and Uptake of Fluorescent Nanoprobes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1999. [PMID: 37446515 DOI: 10.3390/nano13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood-brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs' different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method. The results indicate that the intracellular behavior of NPs changed as a function of their entrance mechanism. Moreover, by bypassing endo-lysosomal accumulation, free NPs were released from cells more efficiently than endocytosed NPs. Most importantly, once excreted by the endothelial cells, free NPs were released in the cell culture medium as aggregates smaller than endocytosed NPs and, consequently, they entered the human glioblastoma U87 cells more efficiently. These findings prove that intracellular localization influences NPs' long-term fate, improving their cellular release and consequent cellular uptake once in the brain parenchyma. This study represents a step forward in designing nanomaterials that are able to reach the brain effectively.
Collapse
Affiliation(s)
- Ornella Muscetti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Naym Blal
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, (CRIB), University of Naples Federico II, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| |
Collapse
|
20
|
Domingues N, Marques ARA, Calado RDA, Ferreira IS, Ramos C, Ramalho J, Soares MIL, Pereira T, Oliveira L, Vicente JR, Wong LH, Simões ICM, Pinho E Melo TMVD, Peden A, Almeida CG, Futter CE, Puertollano R, Vaz WLC, Vieira OV. Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. Traffic 2023; 24:284-307. [PMID: 37129279 DOI: 10.1111/tra.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rita Diogo Almeida Calado
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Telmo Pereira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José R Vicente
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Inês C M Simões
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Andrew Peden
- Department of Biomedical Science & Center for Membrane Interactions and Dynamics, University of Sheffield, UK
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Shariq M, Malik AA, Sheikh JA, Hasnain SE, Ehtesham NZ. Regulation of autophagy by SARS-CoV-2: The multifunctional contributions of ORF3a. J Med Virol 2023; 95:e28959. [PMID: 37485696 DOI: 10.1002/jmv.28959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-1 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signalling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Asrar A Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Raj N, Greune L, Kahms M, Mildner K, Franzkoch R, Psathaki OE, Zobel T, Zeuschner D, Klingauf J, Gerke V. Early Endosomes Act as Local Exocytosis Hubs to Repair Endothelial Membrane Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300244. [PMID: 36938863 PMCID: PMC10161044 DOI: 10.1002/advs.202300244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Indexed: 05/06/2023]
Abstract
The plasma membrane of a cell is subject to stresses causing ruptures that must be repaired immediately to preserve membrane integrity and ensure cell survival. Yet, the spatio-temporal membrane dynamics at the wound site and the source of the membrane required for wound repair are poorly understood. Here, it is shown that early endosomes, previously only known to function in the uptake of extracellular material and its endocytic transport, are involved in plasma membrane repair in human endothelial cells. Using live-cell imaging and correlative light and electron microscopy, it is demonstrated that membrane injury triggers a previously unknown exocytosis of early endosomes that is induced by Ca2+ entering through the wound. This exocytosis is restricted to the vicinity of the wound site and mediated by the endosomal soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) VAMP2, which is crucial for efficient membrane repair. Thus, the newly identified Ca2+ -evoked and localized exocytosis of early endosomes supplies the membrane material required for rapid resealing of a damaged plasma membrane, thereby providing the first line of defense against damage in mechanically challenged endothelial cells.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Martin Kahms
- Institute of Medical Physics and Biophysics, University of Münster, 48149, Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Rico Franzkoch
- Department of Biology, integrated Bioimaging Facility (iBiOs), Center of Cellular Nanoanalytics (CellNanO), University of Osnabrück, 49076, Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- Department of Biology, integrated Bioimaging Facility (iBiOs), Center of Cellular Nanoanalytics (CellNanO), University of Osnabrück, 49076, Osnabrück, Germany
| | - Thomas Zobel
- Imaging Network, Cells in Motion Interfaculty Centre, University of Münster, 48149, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
23
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
24
|
Nakamura J, Yamamoto T, Takabatake Y, Namba-Hamano T, Minami S, Takahashi A, Matsuda J, Sakai S, Yonishi H, Maeda S, Matsui S, Matsui I, Hamano T, Takahashi M, Goto M, Izumi Y, Bamba T, Sasai M, Yamamoto M, Matsusaka T, Niimura F, Yanagita M, Nakamura S, Yoshimori T, Ballabio A, Isaka Y. TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. JCI Insight 2023; 8:162498. [PMID: 36649084 PMCID: PMC9977505 DOI: 10.1172/jci.insight.162498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Maiko Goto
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, and.,Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, and.,Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Basic Medical Science, and
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Shuhei Nakamura
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences.,Institute for Advanced Co-Creation Studies, and
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
25
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
26
|
Rovira M, Sereda R, Pladevall‐Morera D, Ramponi V, Marin I, Maus M, Madrigal‐Matute J, Díaz A, García F, Muñoz J, Cuervo AM, Serrano M. The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 2022; 21:e13707. [PMID: 36087066 PMCID: PMC9577959 DOI: 10.1111/acel.13707] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/31/2023] Open
Abstract
Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.
Collapse
Affiliation(s)
- Miguel Rovira
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Rebecca Sereda
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - David Pladevall‐Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Valentina Ramponi
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Ines Marin
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mate Maus
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Julio Madrigal‐Matute
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Instituto Biomédico de Nutrición y SaludEldaSpain
| | - Antonio Díaz
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Fernando García
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Ana María Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Manuel Serrano
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
27
|
Machado ER, van de Vlekkert D, Sheppard HS, Perry S, Downing SM, Laxton J, Ashmun R, Finkelstein DB, Neale GA, Hu H, Harwood FC, Koo SC, Grosveld GC, d'Azzo A. Haploinsufficiency of the lysosomal sialidase NEU1 results in a model of pleomorphic rhabdomyosarcoma in mice. Commun Biol 2022; 5:992. [PMID: 36127469 PMCID: PMC9489700 DOI: 10.1038/s42003-022-03968-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Rhabdomyosarcoma, the most common pediatric sarcoma, has no effective treatment for the pleomorphic subtype. Still, what triggers transformation into this aggressive phenotype remains poorly understood. Here we used Ptch1+/-/ETV7TG/+/- mice with enhanced incidence of rhabdomyosarcoma to generate a model of pleomorphic rhabdomyosarcoma driven by haploinsufficiency of the lysosomal sialidase neuraminidase 1. These tumors share mostly features of embryonal and some of alveolar rhabdomyosarcoma. Mechanistically, we show that the transforming pathway is increased lysosomal exocytosis downstream of reduced neuraminidase 1, exemplified by the redistribution of the lysosomal associated membrane protein 1 at the plasma membrane of tumor and stromal cells. Here we exploit this unique feature for single cell analysis and define heterogeneous populations of exocytic, only partially differentiated cells that force tumors to pleomorphism and promote a fibrotic microenvironment. These data together with the identification of an adipogenic signature shared by human rhabdomyosarcoma, and likely fueling the tumor's metabolism, make this model of pleomorphic rhabdomyosarcoma ideal for diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Eda R Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Heather S Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Scott Perry
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Susanna M Downing
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Laxton
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard Ashmun
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey A Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Frank C Harwood
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
28
|
Lysosome exocytosis is required for mitosis in mammalian cells. Biochem Biophys Res Commun 2022; 626:211-219. [PMID: 35998546 DOI: 10.1016/j.bbrc.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Mitosis, the accurate segregation of duplicated genetic material into what will become two new daughter cells, is accompanied by extensive membrane remodelling and membrane trafficking activities. Early in mitosis, adherent cells partially detach from the substratum, round up and their surface area decreases. This likely results from an endocytic uptake of plasma membrane material. As cells enter cytokinesis they re-adhere, flatten and exhibit an associated increase in surface area. The identity of the membrane donor for this phase of mitosis remains unclear. In this paper we demonstrate how lysosomes dynamically redistribute during mitosis and exocytose. Antagonism of lysosomal exocytosis by pharmacological and genetic approaches causes mitosis failure in a significant proportion of cells. We speculate that either lysosomal membrane or luminal content release, possibly both, are therefore required for normal mitosis progression. These findings are important as they reveal a new process required for successful cell division.
Collapse
|
29
|
Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, Marko N, Carlin CR, Gladson CL. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat Commun 2022; 13:4268. [PMID: 35879332 PMCID: PMC9314429 DOI: 10.1038/s41467-022-31981-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3β1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3β1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3β1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3β1 may be a therapeutic target on the glioblastoma vasculature.
Collapse
Affiliation(s)
- Eunnyung Bae
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | | | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andrew Edward Sloan
- Department of Neurosurgery, Seidman Cancer Center, Cleveland, OH, USA
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Nicholas Marko
- Department of Neurosurgery, LewisGale Medical Center, Salem, VA, USA
| | - Cathleen R Carlin
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Candece L Gladson
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA.
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
- The Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
30
|
Khan A, Sergi CM. NEU1—A Unique Therapeutic Target for Alzheimer’s Disease. Front Pharmacol 2022; 13:902259. [PMID: 35847014 PMCID: PMC9277458 DOI: 10.3389/fphar.2022.902259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuraminidase 1 (NEU1) is considered to be the most abundant and ubiquitous mammalian enzyme, with a broad tissue distribution. It plays a crucial role in a variety of cellular mechanisms. The deficiency of NEU1 has been implicated in various pathological manifestations of sialidosis and neurodegeneration. Thus, it is a novel therapeutic target for neurodegenerative changes in the Alzheimer’s brain. However, to manipulate NEU1 as a therapeutic target, it is imperative to understand that, although NEU1 is commonly known for its lysosomal catabolic function, it is also involved in other pathways. NEU1 is involved in immune response modulation, elastic fiber assembly modulation, insulin signaling, and cell proliferation. In recent years, our knowledge of NEU1 has continued to grow, yet, at the present moment, current data is still limited. In addition, the unique biochemical properties of NEU1 make it challenging to target it as an effective therapeutic option for sialidosis, which is a rare disease but has an enormous patient burden. However, the fact that NEU1 has been linked to the pathology of Alzheimer’s disease, which is rapidly growing worldwide, makes it more relevant to be studied and explored. In the present study, the authors have discussed various cellular mechanisms involving NEU1 and how they are relevant to sialidosis and Alzheimer’s disease.
Collapse
Affiliation(s)
- Aiza Khan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Consolato M. Sergi,
| |
Collapse
|
31
|
Lee J, Xu Y, Ye Y. Safeguarding Lysosomal Homeostasis by DNAJC5/CSPα-Mediated Unconventional Protein Secretion and Endosomal Microautophagy. Front Cell Dev Biol 2022; 10:906453. [PMID: 35620055 PMCID: PMC9127312 DOI: 10.3389/fcell.2022.906453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a collection of genetically inherited neurological disorders characterized by vision loss, seizure, brain death, and premature lethality. At the cellular level, a key pathologic hallmark of NCL is the build-up of autofluorescent storage materials (AFSM) in lysosomes of both neurons and non-neuronal cells. Molecular dissection of the genetic lesions underlying NCLs has shed significant insights into how disruption of lysosomal homeostasis may lead to lipofuscin accumulation and NCLs. Intriguingly, recent studies on DNAJC5/CSPα, a membrane associated HSC70 co-chaperone, have unexpectedly linked lipofuscin accumulation to two intimately coupled protein quality control processes at endolysosomes. This review discusses how deregulation of unconventional protein secretion and endosomal microautophagy (eMI) contributes to lipofuscin accumulation and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
33
|
Wang BB, Xu H, Isenmann S, Huang C, Elorza-Vidal X, Rychkov GY, Estévez R, Schittenhelm RB, Lukacs GL, Apaja PM. Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca 2+-induced proteostasis disease stress. Cell Mol Life Sci 2022; 79:167. [PMID: 35233680 PMCID: PMC8888484 DOI: 10.1007/s00018-022-04191-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.
Collapse
Affiliation(s)
- Ben B Wang
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Haijin Xu
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada
| | - Sandra Isenmann
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Xabier Elorza-Vidal
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Grigori Y Rychkov
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Gergely L Lukacs
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
| | - Pirjo M Apaja
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia. .,EMBL Australia, Adelaide, South Australia, 5000, Australia. .,Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia. .,College of Public Health and Medicine, Molecular Biosciences Theme, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
34
|
Sage J, Renault J, Domain R, Bojarski K, Chazeirat T, Saidi A, Leblanc E, Nizard C, Samsonov S, Kurfurst R, Lalmanach G, Lecaille F. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biol 2022; 107:97-112. [DOI: 10.1016/j.matbio.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
|
35
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
36
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
38
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
39
|
Yoshihara M, Mizutani S, Kato Y, Matsumoto K, Mizutani E, Mizutani H, Fujimoto H, Osuka S, Kajiyama H. Recent Insights into Human Endometrial Peptidases in Blastocyst Implantation via Shedding of Microvesicles. Int J Mol Sci 2021; 22:13479. [PMID: 34948276 PMCID: PMC8708926 DOI: 10.3390/ijms222413479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Blastocyst implantation involves multiple interactions with numerous molecules expressed in endometrial epithelial cells (EECs) during the implantation window; however, there is limited information regarding the molecular mechanism underlying the crosstalk. In blastocysts, fibronectin plays a major role in the adhesion of various types of cells by binding to extracellular matrix proteins via the Arg-Gly-Asp (RGD) motif. In EECs, RGD-recognizing integrins are important bridging receptors for fibronectin, whereas the non-RGD binding of fibronectin includes interactions with dipeptidyl peptidase IV (DPPIV)/cluster of differentiation (CD) 26. Fibronectin may also bind to aminopeptidase N (APN)/CD13, and in the endometrium, these peptidases are present in plasma membranes and lysosomal membranes. Blastocyst implantation is accompanied by lysosome exocytosis, which transports various peptidases and nutrients into the endometrial cavity to facilitate blastocyst implantation. Both DPPIV and APN are released into the uterine cavity via shedding of microvesicles (MVs) from EECs. Recently, extracellular vesicles derived from endometrial cells have been proposed to act on trophectoderm cells to promote implantation. MVs are also secreted from embryonal stem cells and may play an active role in implantation. Thus, crosstalk between the blastocyst and endometrium via extracellular vesicles is a new insight into the fundamental molecular basis of blastocyst implantation.
Collapse
Affiliation(s)
- Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (H.M.); (H.F.); (S.O.); (H.K.)
| | - Shigehiko Mizutani
- Daiyabilding Lady’s Clinic, 1-1-17 Meieki, Nishi-ku, Nagoya 451-0045, Japan;
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Eita Mizutani
- Daiyabilding Lady’s Clinic, 1-1-17 Meieki, Nishi-ku, Nagoya 451-0045, Japan;
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (H.M.); (H.F.); (S.O.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (H.M.); (H.F.); (S.O.); (H.K.)
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (H.M.); (H.F.); (S.O.); (H.K.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (H.M.); (H.F.); (S.O.); (H.K.)
| |
Collapse
|
40
|
Chen D, Zheng Q, Sun L, Ji M, Li Y, Deng H, Zhang H. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev Cell 2021; 56:3250-3263.e5. [PMID: 34706264 PMCID: PMC8502680 DOI: 10.1016/j.devcel.2021.10.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Viral entry and egress are important determinants of virus infectivity and pathogenicity. β-coronaviruses, including the COVID-19 virus SARS-CoV-2 and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. Here, we show that SARS-CoV-2 ORF3a, but not SARS-CoV ORF3a, promotes lysosomal exocytosis. SARS-CoV-2 ORF3a facilitates lysosomal targeting of the BORC-ARL8b complex, which mediates trafficking of lysosomes to the vicinity of the plasma membrane, and exocytosis-related SNARE proteins. The Ca2+ channel TRPML3 is required for SARS-CoV-2 ORF3a-mediated lysosomal exocytosis. Expression of SARS-CoV-2 ORF3a greatly elevates extracellular viral release in cells infected with the coronavirus MHV-A59, which itself lacks ORF3a. In SARS-CoV-2 ORF3a, Ser171 and Trp193 are critical for promoting lysosomal exocytosis and blocking autophagy. When these residues are introduced into SARS-CoV ORF3a, it acquires the ability to promote lysosomal exocytosis and inhibit autophagy. Our results reveal a mechanism by which SARS-CoV-2 interacts with host factors to promote its extracellular egress.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Qiaoxia Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Long Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingming Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
41
|
Loss of Christianson Syndrome Na +/H + Exchanger 6 (NHE6) Causes Abnormal Endosome Maturation and Trafficking Underlying Lysosome Dysfunction in Neurons. J Neurosci 2021; 41:9235-9256. [PMID: 34526390 PMCID: PMC8570832 DOI: 10.1523/jneurosci.1244-20.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Loss-of-function mutations in endosomal Na+/H+ exchanger 6 (NHE6) cause the X-linked neurologic disorder Christianson syndrome. Patients exhibit symptoms associated with both neurodevelopmental and neurodegenerative abnormalities. While loss of NHE6 has been shown to overacidify the endosome lumen, and is associated with endolysosome neuropathology, NHE6-mediated mechanisms in endosome trafficking and lysosome function have been understudied. Here, we show that NHE6-null mouse neurons demonstrate worsening lysosome function with time in culture, likely as a result of defective endosome trafficking. NHE6-null neurons exhibit overall reduced lysosomal proteolysis despite overacidification of the endosome and lysosome lumen. Akin to Nhx1 mutants in Saccharomyces cerevisiae, we observe decreased endosome-lysosome fusion in NHE6-null neurons. Also, we find premature activation of pH-dependent cathepsin D (CatD) in endosomes. While active CatD is increased in endosomes, CatD activation and CatD protein levels are reduced in the lysosome. Protein levels of another mannose 6-phosphate receptor (M6PR)-dependent enzyme, β-N-acetylglucosaminidase, were also decreased in lysosomes of NHE6-null neurons. M6PRs accumulate in late endosomes, suggesting defective M6PR recycling and retromer function in NHE6-null neurons. Finally, coincident with decreased endosome-lysosome fusion, using total internal reflection fluorescence, we also find a prominent increase in fusion between endosomal multivesicular bodies and the plasma membrane, indicating enhanced exosome secretion from NHE6-null neurons. In summary, in addition to overacidification of endosomes and lysosomes, loss of NHE6 leads to defects in endosome maturation and trafficking, including enhanced exosome release, contributing to lysosome deficiency and potentially leading to neurodegenerative disease. SIGNIFICANCE STATEMENT Loss-of-function mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurologic disorder. Loss of NHE6 has been shown to overacidify endosomes; however, endosome trafficking mechanisms have been understudied, and the mechanisms leading to neurodegeneration are largely unknown. In NHE6-null mouse neurons in vitro, we find worsening lysosome function with days in culture. Notably, pH-dependent lysosome enzymes, such as cathepsin D, have reduced activity in lysosomes yet increased, precocious activity in endosomes in NHE6-null neurons. Further, endosomes show reduced fusion to lysosomes, and increased fusion to the plasma membrane with increased exosome release. This study identifies new mechanisms involving defective endosome maturation and trafficking that impair lysosome function in Christianson syndrome, likely contributing to neurodegeneration.
Collapse
|
42
|
Maeda FY, van Haaren JJ, Langley DB, Christ D, Andrews NW, Song W. Surface-associated antigen induces permeabilization of primary mouse B-cells and lysosome exocytosis facilitating antigen uptake and presentation to T-cells. eLife 2021; 10:66984. [PMID: 34704555 PMCID: PMC8589448 DOI: 10.7554/elife.66984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
B-cell receptor (BCR)-mediated antigen internalization and presentation are essential for humoral memory immune responses. Antigen encountered by B-cells is often tightly associated with the surface of pathogens and/or antigen-presenting cells. Internalization of such antigens requires myosin-mediated traction forces and extracellular release of lysosomal enzymes, but the mechanism triggering lysosomal exocytosis is unknown. Here, we show that BCR-mediated recognition of antigen tethered to beads, to planar lipid-bilayers or expressed on cell surfaces causes localized plasma membrane (PM) permeabilization, a process that requires BCR signaling and non-muscle myosin II activity. B-cell permeabilization triggers PM repair responses involving lysosomal exocytosis, and B-cells permeabilized by surface-associated antigen internalize more antigen than cells that remain intact. Higher affinity antigens cause more B-cell permeabilization and lysosomal exocytosis and are more efficiently presented to T-cells. Thus, PM permeabilization by surface-associated antigen triggers a lysosome-mediated B-cell resealing response, providing the extracellular hydrolases that facilitate antigen internalization and presentation.
Collapse
Affiliation(s)
- Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jurriaan Jh van Haaren
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - David B Langley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Daniel Christ
- Immunology, Garvan Institute of Medical Research, Darlinghurst/Sydney, Australia
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
43
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
44
|
P2X4 Receptors Mediate Ca 2+ Release from Lysosomes in Response to Stimulation of P2X7 and H 1 Histamine Receptors. Int J Mol Sci 2021; 22:ijms221910492. [PMID: 34638832 PMCID: PMC8508626 DOI: 10.3390/ijms221910492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.
Collapse
|
45
|
Escrevente C, Bento-Lopes L, Ramalho JS, Barral DC. Rab11 is required for lysosome exocytosis through the interaction with Rab3a, Sec15 and GRAB. J Cell Sci 2021; 134:jcs246694. [PMID: 34100549 PMCID: PMC8214760 DOI: 10.1242/jcs.246694] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of Ca2+-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) as well as Rab3a, which we have previously described to be a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.
Collapse
Affiliation(s)
| | | | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
46
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
47
|
Ermini L, Farrell A, Alahari S, Ausman J, Park C, Sallais J, Melland-Smith M, Porter T, Edson M, Nevo O, Litvack M, Post M, Caniggia I. Ceramide-Induced Lysosomal Biogenesis and Exocytosis in Early-Onset Preeclampsia Promotes Exosomal Release of SMPD1 Causing Endothelial Dysfunction. Front Cell Dev Biol 2021; 9:652651. [PMID: 34017832 PMCID: PMC8130675 DOI: 10.3389/fcell.2021.652651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.
Collapse
Affiliation(s)
- Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Julien Sallais
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Melland-Smith
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Michael Edson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ori Nevo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Litvack
- Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Abstract
Lysosomal calcium is emerging as a modulator of autophagy and lysosomal compartment, an obligatory partner to complete the autophagic pathway. A variety of specific signals such as nutrient deprivation or oxidative stress can trigger lysosomal calcium-mediated nuclear translocation of the transcription factor EB (TFEB), a master regulator of global lysosomal function. Also, lysosomal calcium can promote the formation of autophagosome vesicles (AVs) by a mechanism that requires the production of the phosphoinositide PI3P by the VPS34 autophagic complex and the activation of the energy-sensing kinase AMPK. Additionally, lysosomal calcium plays a role in membrane fusion and fission events involved in cellular processes such as endocytic maturation, autophagosome-lysosome fusion, lysosomal exocytosis, and lysosomal reformation upon autophagy completion. Lysosomal calcium-dependent functions are defective in cellular and animal models of the non-selective cation channel TRPML1, whose mutations in humans cause the neurodegenerative lysosomal storage disease mucolipidosis type IV (MLIV). Lysosomal calcium is not only acting as a positive regulator of autophagy, but it is also responsible for turning-off this process through the reactivation of the mTOR kinase during prolonged starvation. More recently, it has been described the role of lysosomal calcium on an elegant sequence of intracellular signaling events such as membrane repair, lysophagy, and lysosomal biogenesis upon the induction of different grades of lysosomal membrane damage. Here, we will discuss these novel findings that re-define the importance of the lysosome and lysosomal calcium signaling at regulating cellular metabolism.
Collapse
|
49
|
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol 2021; 9:642494. [PMID: 33718382 PMCID: PMC7952443 DOI: 10.3389/fcell.2021.642494] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.
Collapse
Affiliation(s)
- Eda R. Machado
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
50
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|