1
|
SNARE Protein AoSec22 Orchestrates Mycelial Growth, Vacuole Assembly, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2023; 9:jof9010075. [PMID: 36675896 PMCID: PMC9863257 DOI: 10.3390/jof9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.
Collapse
|
2
|
Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nat Commun 2021; 12:6227. [PMID: 34711829 PMCID: PMC8553859 DOI: 10.1038/s41467-021-26534-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein syntaxin-5 (Stx5) is essential for Golgi transport. In humans, the STX5 mRNA encodes two protein isoforms, Stx5 Long (Stx5L) from the first starting methionine and Stx5 Short (Stx5S) from an alternative starting methionine at position 55. In this study, we identify a human disorder caused by a single missense substitution in the second starting methionine (p.M55V), resulting in complete loss of the short isoform. Patients suffer from an early fatal multisystem disease, including severe liver disease, skeletal abnormalities and abnormal glycosylation. Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking. Measurements of cognate binding SNAREs, based on biotin-synchronizable forms of Stx5 (the RUSH system) and Förster resonance energy transfer (FRET), revealed that the short isoform of Stx5 is essential for intra-Golgi transport. Alternative starting codons of Stx5 are thus linked to human disease, demonstrating that the site of translation initiation is an important new layer of regulating protein trafficking.
Collapse
|
3
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
5
|
Adnan M, Islam W, Zhang J, Zheng W, Lu GD. Diverse Role of SNARE Protein Sec22 in Vesicle Trafficking, Membrane Fusion, and Autophagy. Cells 2019; 8:E337. [PMID: 30974782 PMCID: PMC6523435 DOI: 10.3390/cells8040337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Protein synthesis begins at free ribosomes or ribosomes attached with the endoplasmic reticulum (ER). Newly synthesized proteins are transported to the plasma membrane for secretion through conventional or unconventional pathways. In conventional protein secretion, proteins are transported from the ER lumen to Golgi lumen and through various other compartments to be secreted at the plasma membrane, while unconventional protein secretion bypasses the Golgi apparatus. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are involved in cargo vesicle trafficking and membrane fusion. The ER localized vesicle associated SNARE (v-SNARE) protein Sec22 plays a major role during anterograde and retrograde transport by promoting efficient membrane fusion and assisting in the assembly of higher order complexes by homodimer formation. Sec22 is not only confined to ER-Golgi intermediate compartments (ERGIC) but also facilitates formation of contact sites between ER and plasma membranes. Sec22 mutation is responsible for the development of atherosclerosis and symptoms in the brain in Alzheimer's disease and aging in humans. In the fruit fly Drosophila melanogaster, Sec22 is essential for photoreceptor morphogenesis, the wingless signaling pathway, and normal ER, Golgi, and endosome morphology. In the plant Arabidopsis thaliana, it is involved in development, and in the nematode Caenorhabditis elegans, it is in involved in the RNA interference (RNAi) pathway. In filamentous fungi, it affects cell wall integrity, growth, reproduction, pathogenicity, regulation of reactive oxygen species (ROS), expression of extracellular enzymes, and transcriptional regulation of many development related genes. This review provides a detailed account of Sec22 function, summarizes its domain structure, discusses its genetic redundancy with Ykt6, discusses what is known about its localization to discrete membranes, its contributions in conventional and unconventional autophagy, and a variety of other roles across different cellular systems ranging from higher to lower eukaryotes, and highlights some of the surprises that have originated from research on Sec22.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, Fujian, China.
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Boenisch MJ, Broz KL, Purvine SO, Chrisler WB, Nicora CD, Connolly LR, Freitag M, Baker SE, Kistler HC. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. Sci Rep 2017; 7:44296. [PMID: 28287158 PMCID: PMC5347122 DOI: 10.1038/srep44296] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022] Open
Abstract
Compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells. Knowledge of the development of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and organelle specific analysis. Nevertheless, relatively few studies have addressed the cellular localization of pathways for synthesis of fungal secondary metabolites, despite their importance as bioactive compounds with significance to medicine and agriculture. When triggered to produce sesquiterpene (trichothecene) mycotoxins, the endoplasmic reticulum (ER) of the phytopathogenic fungus Fusarium graminearum is reorganized both in vitro and in planta. Trichothecene biosynthetic enzymes accumulate in organized smooth ER with pronounced expansion at perinuclear- and peripheral positions. Fluorescence tagged trichothecene biosynthetic proteins co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. We hypothesize that changes to the fungal ER represent a conserved process in specialized eukaryotic cells such as in mammalian hepatocytes and B-cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Lanelle Reine Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | - Harold Corby Kistler
- USDA ARS Cereal Disease Laboratory, St. Paul, MN 55108, USA.,Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Gu H, Chen C, Hao X, Wang C, Zhang X, Li Z, Shao H, Zeng H, Yu Z, Xie L, Xia F, Zhang F, Liu X, Zhang Y, Jiang H, Zhu J, Wan J, Wang C, Weng W, Xie J, Tao M, Zhang CC, Liu J, Chen GQ, Zheng J. Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. J Clin Invest 2016; 126:4537-4553. [PMID: 27797340 DOI: 10.1172/jci87105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Certain secretory proteins are known to be critical for maintaining the stemness of stem cells through autocrine signaling. However, the processes underlying the biogenesis, maturation, and secretion of these proteins remain largely unknown. Here we demonstrate that many secretory proteins produced by hematopoietic stem cells (HSCs) undergo exosomal maturation and release that is controlled by vacuolar protein sorting protein 33b (VPS33B). Deletion of VPS33B in either mouse or human HSCs resulted in impaired exosome maturation and secretion as well as loss of stemness. Additionally, VPS33B deficiency led to a dramatic delay in leukemogenesis. Exosomes purified from either conditioned medium or human plasma could partially rescue the defects of HSCs and leukemia-initiating cells (LICs). VPS33B co-existed in exosomes with GDI2, VPS16B, FLOT1, and other known exosome markers. Mechanistically, VPS33B interacted with the GDI2/RAB11A/RAB27A pathway to regulate the trafficking of secretory proteins as exosomes. These findings reveal an essential role for VPS33B in exosome pathways in HSCs and LICs. Moreover, they shed light on the understanding of vesicle trafficking in other stem cells and on the development of improved strategies for cancer treatment.
Collapse
|
8
|
Adolf F, Rhiel M, Reckmann I, Wieland FT. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol Biol Cell 2016; 27:2697-707. [PMID: 27413010 PMCID: PMC5007090 DOI: 10.1091/mbc.e16-04-0229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
SNAREs are incorporated into COPII vesicles by direct interaction with Sec24. In mammals, Sec24 isoforms recruit either Sec22b or the Q-SNARE complex comprising Syntaxin5, GS27, and Bet1. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicates that all ER-Golgi SNAREs are present on the same vesicles. Secretory proteins are exported from the endoplasmic reticulum in COPII vesicles. SNARE proteins—core machinery for membrane fusion—are incorporated into COPII vesicles by direct interaction with Sec24. Here we report a novel mechanism for sorting of the ER–Golgi Q-SNAREs into COPII vesicles. Different mammalian Sec24 isoforms recruit either the R-SNARE Sec22b or the Q-SNAREs Syntaxin5, GS27, and Bet1. Syntaxin5 is the only Q-SNARE that directly interacts with Sec24C, requiring its “open” conformation. Mutation within the IxM cargo-binding site of Sec24C led to a drastic reduction in sorting of all three Q-SNAREs into COPII vesicles, implying their ER export as a preassembled complex. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicate that all ER–Golgi SNAREs are present on the same vesicle. Combined with existing data, our findings yield a general concept of how Sec24 isoforms can recruit fusogenic SNARE subunits to keep them functionally apart and thus prime mammalian COPII vesicles for homotypic fusion.
Collapse
Affiliation(s)
- Frank Adolf
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuel Rhiel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ingeborg Reckmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Zhao X, Yang H, Liu W, Duan X, Shang W, Xia D, Tong C. Sec22 regulates endoplasmic reticulum morphology but not autophagy and is required for eye development in Drosophila. J Biol Chem 2015; 290:7943-51. [PMID: 25670863 DOI: 10.1074/jbc.m115.640920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle that plays a critical role in many cellular processes. Abnormal ER morphology is associated with some human diseases, although little is known regarding how ER morphology is regulated. Using a forward genetic screen to identify genes that regulated ER morphology in Drosophila, we identified a mutant of Sec22, the orthologs of which in yeast, plants, and humans are required for ER to Golgi trafficking. However, the physiological function of Sec22 has not been previously investigated in animal development. A loss of Sec22 resulted in ER proliferation and expansion, enlargement of late endosomes, and abnormal Golgi morphology in mutant larvae fat body cells. However, starvation-induced autophagy was not affected by a loss of Sec22. Mosaic analysis of the eye revealed that Sec22 was required for photoreceptor morphogenesis. In Sec22 mutant photoreceptor cells, the ER was highly expanded and gradually lost normal morphology with aging. The rhabdomeres in mutants were small and sometimes fused with each other. The morphology of Sec22 mutant eyes resembled the eye morphology of flies with overexpressed eyc (eyes closed). eyc encodes for a Drosophila p47 protein that is required for membrane fusion. A loss of Syntaxin5 (Syx5), encoding for a t-SNARE on Golgi, also phenocopied the Sec22 mutant. Sec22 formed complexes with Syx5 and Eyc. Thus, we propose that appropriate trafficking between the ER and Golgi is required for maintaining ER morphology and for Drosophila eye morphogenesis.
Collapse
Affiliation(s)
- Xiaocui Zhao
- From the Life Sciences Institute and Innovation Center for Cell Biology and
| | - Huan Yang
- From the Life Sciences Institute and Innovation Center for Cell Biology and the School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- From the Life Sciences Institute and Innovation Center for Cell Biology and
| | - Xiuying Duan
- From the Life Sciences Institute and Innovation Center for Cell Biology and
| | - Weina Shang
- From the Life Sciences Institute and Innovation Center for Cell Biology and
| | - Dajing Xia
- the School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Chao Tong
- From the Life Sciences Institute and Innovation Center for Cell Biology and
| |
Collapse
|
10
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
11
|
Abstract
Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.
Collapse
Affiliation(s)
- Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
12
|
Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 2010; 107:6876-81. [PMID: 20351264 DOI: 10.1073/pnas.1002536107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cortical endoplasmic reticulum (cER) is a permanent feature of yeast cells but occurs transiently in most animal cell types. Ist2p is a transmembrane protein that permanently localizes to the cER in yeast. When Ist2 is expressed in mammalian cells, it induces abundant cER containing Ist2. Ist2 cytoplasmic C-terminal peptide is necessary and sufficient to induce cER. This peptide sequence resembles classic coat protein complex I (COPI) coatomer protein-binding KKXX signals, and indeed the dimerized peptide binds COPI in vitro. Controlled dimerization of this peptide induces cER in cells. RNA interference experiments confirm that coatomer is required for cER induction in vivo, as are microtubules and the microtubule plus-end binding protein EB1. We suggest that Ist2 dimerization triggers coatomer binding and clustering of this protein into domains that traffic at the microtubule growing plus-end to generate the cER beneath the plasma membrane. Sequences similar to the Ist2 lysine-rich tail are found in mammalian STIM proteins that reversibly induce the formation of cER under calcium control.
Collapse
|
13
|
The Longin Domain Regulates the Steady-State Dynamics of Sec22 in
Plasmodium falciparum. EUKARYOTIC CELL 2009; 8:1330-40. [DOI: 10.1128/ec.00092-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ABSTRACT
The specificity of vesicle-mediated transport is largely regulated by the membrane-specific distribution of SNARE (soluble
N
-ethylmaleimide-sensitive factor attachment protein receptor) proteins. However, the signals and machineries involved in SNARE protein targeting to the respective intracellular locations are not fully understood. We have identified a Sec22 ortholog in
Plasmodium falciparum
(PfSec22) that contains an atypical insertion of the
Plasmodium
export element within the N-terminal longin domain. This Sec22 protein partially associates with membrane structures in the parasitized erythrocytes when expressed under the control of the endogenous promoter element. Our studies indicate that the atypical longin domain contains signals that are required for both endoplasmic reticulum (ER)/Golgi apparatus recycling of PfSec22 and partial export beyond the ER/Golgi apparatus interface. ER exit of PfSec22 is regulated by motifs within the α3 segment of the longin domain, whereas the recycling and export signals require residues within the N-terminal hydrophobic segment. Our data suggest that the longin domain of PfSec22 exhibits major differences from the yeast and mammalian orthologs, perhaps indicative of a novel mechanism for Sec22 trafficking in malaria parasites.
Collapse
|
14
|
Hatsuzawa K, Hashimoto H, Hashimoto H, Arai S, Tamura T, Higa-Nishiyama A, Wada I. Sec22b is a negative regulator of phagocytosis in macrophages. Mol Biol Cell 2009; 20:4435-43. [PMID: 19710423 DOI: 10.1091/mbc.e09-03-0241] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) is proposed to be a membrane donor for phagosome formation. In support of this, we have previously shown that the expression level of syntaxin 18, an ER-localized SNARE protein, correlates with phagocytosis activity. To obtain further insights into the involvement of the ER in phagocytosis we focused on Sec22b, another ER-localized SNARE protein that is also found on phagosomal membranes. In marked contrast to the effects of syntaxin 18, we report here that phagocytosis was nearly abolished in J774 macrophages stably expressing mVenus-tagged Sec22b, without affecting the cell surface expression of the Fc receptor or other membrane proteins related to phagocytosis. Conversely, the capacity of the parental J774 cells for phagocytosis was increased when endogenous Sec22b expression was suppressed. Domain analyses of Sec22b revealed that the R-SNARE motif, a selective domain for forming a SNARE complex with syntaxin18 and/or D12, was responsible for the inhibition of phagocytosis. These results strongly support the ER-mediated phagocytosis model and indicate that Sec22b is a negative regulator of phagocytosis in macrophages, most likely by regulating the level of free syntaxin 18 and/or D12 at the site of phagocytosis.
Collapse
Affiliation(s)
- Kiyotaka Hatsuzawa
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins involved in membrane fusion usually contain a conserved alpha-helix (SNARE motif) that is flanked by a C-terminal transmembrane domain. They can be classified into Q-SNARE and R-SNARE based on the structural property of their motifs. Assembly of four SNARE motifs (Qa, b, c and R) is supposed to trigger membrane fusion. We have previously shown that ER (endoplasmic reticulum)-localized syntaxin 18 (Qa) forms a complex with BNIP1 (Qb), p31/Use1 (Qc), Sec22b (R) and several peripheral membrane proteins. In the present study, we examined the interaction of syntaxin 18 with other SNAREs using pulldown assays and CD spectroscopy. We found that the association of syntaxin 18 with Sec22b induces an increase in alpha-helicity of their SNARE motifs, which results in the formation of high-affinity binding sites for BNIP1 and p31. This R-SNARE-dependent Q-SNARE assembly is quite different from the assembly mechanisms of SNAREs localized in organelles other than the ER. The implication of the mechanism of ER SNARE assembly is discussed in the context of the physiological roles of the syntaxin 18 complex.
Collapse
|
16
|
Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, Subtil A. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog 2008; 4:e1000022. [PMID: 18369472 PMCID: PMC2265411 DOI: 10.1371/journal.ppat.1000022] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 02/05/2008] [Indexed: 01/19/2023] Open
Abstract
Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium.
Collapse
Affiliation(s)
- Cédric Delevoye
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, CNRS URA 2582, Paris, France
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS URA 2185, Paris, France
| | - Pierre Dehoux
- Institut Pasteur, Plate-forme Intégration et Analyse génomique, Paris, France
| | - Fabienne Paumet
- Department of Physiology and Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Stéphanie Perrinet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, CNRS URA 2582, Paris, France
| | - Alice Dautry-Varsat
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, CNRS URA 2582, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, CNRS URA 2582, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Tran THT, Zeng Q, Hong W. VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes. J Cell Sci 2007; 120:1028-41. [PMID: 17327277 DOI: 10.1242/jcs.03387] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VAMP4 is enriched in the trans-Golgi network (TGN) and functions in traffic from the early and recycling endosomes to the TGN, but its trafficking itinerary is unknown. Cells stably expressing TGN-enriched VAMP4 C-terminally-tagged with EGFP (VAMP4-EGFP) are able to internalize and transport EGFP antibody efficiently to the TGN, suggesting that VAMP4-EGFP cycles between the cell surface and the TGN. The N-terminal extension of VAMP4 endows a chimeric VAMP5 with the ability to cycle from the surface to the TGN. Detailed time-course analysis of EGFP antibody transport to the TGN as well as pharmacological and thermal perturbation experiments suggest that VAMP4-EGFP is endocytosed by clathrin-dependent pathways and is delivered to the sorting and then recycling endosomes. This is followed by a direct transport to the TGN, without going through the late endosome. The di-Leu motif of the TGN-targeting signal is important for internalization, whereas the acidic cluster is crucial for efficient delivery of internalized antibody from the endosome to the TGN. These results suggest that the TGN-targeting signal of VAMP4 mediates the efficient recycling of VAMP4 from the cell surface to the TGN via the sorting and recycling endosomes, thus conferring steady-state enrichment of VAMP4 at the TGN.
Collapse
Affiliation(s)
- Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | | | | |
Collapse
|
18
|
Okumura AJ, Hatsuzawa K, Tamura T, Nagaya H, Saeki K, Okumura F, Nagao K, Nishikawa M, Yoshimura A, Wada I. Involvement of a Novel Q-SNARE, D12, in Quality Control of the Endomembrane System. J Biol Chem 2006; 281:4495-506. [PMID: 16354670 DOI: 10.1074/jbc.m509715200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular endomembrane system requires the proper kinetic balance of synthesis and degradation of its individual components, which is maintained in part by a specific membrane fusion apparatus. In this study, we describe the molecular properties of D12, which was identified from a mouse expression library. This C-terminal anchored membrane protein has sequence similarity to both a yeast soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE), Use1p/Slt1p, and a recently identified human syntaxin 18-binding protein, p31. D12 formed a tight complex with syntaxin 18 as well as Sec22b and bound to alpha-SNAP, indicating that D12 is a SNARE protein. Although the majority of D12 is located in the endoplasmic reticulum and endoplasmic reticulum-Golgi intermediate compartments at steady state, overexpression or knockdown of D12 had no obvious effects on membrane trafficking in the early secretory pathway. However, suppression of D12 expression caused rapid appearance of lipofuscin granules, accompanied by apoptotic cell death without the apparent activation of the unfolded protein response. The typical cause of lipofuscin formation is the impaired degradation of mitochondria by lysosomal degradative enzymes, and, consistent with this, we found that proper post-Golgi maturation of cathepsin D was impaired in D12-deficient cells. This unexpected observation was supported by evidence that D12 associates with VAMP7, a SNARE in the endosomal-lysosomal pathway. Hence, we suggest that D12 participates in the degradative function of lysosomes.
Collapse
Affiliation(s)
- Akiko Joo Okumura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cosson P, Ravazzola M, Varlamov O, Söllner TH, Di Liberto M, Volchuk A, Rothman JE, Orci L. Dynamic transport of SNARE proteins in the Golgi apparatus. Proc Natl Acad Sci U S A 2005; 102:14647-52. [PMID: 16199514 PMCID: PMC1253604 DOI: 10.1073/pnas.0507394102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localization of a membrane protein in a subcellular compartment can be achieved by its retention in the compartment or by its continuous transport toward this compartment. Previous results have suggested that specific enzymes are localized in the Golgi apparatus at least in part by selective retention and exclusion from transport vesicles. However, the function of some Golgi SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins is not compatible with their exclusion from transport vesicles. To help understand the mechanism accounting for the localization of SNARE proteins in the Golgi apparatus, we analyzed their lateral distribution in the Golgi cisternae and their incorporation into transport vesicles. According to our results, all SNARE proteins are efficiently incorporated into transport vesicles, indicating that the localization of SNARE proteins in the Golgi apparatus is not based on a static retention mechanism. Detailed analysis suggested that incorporation into transport vesicles was more efficient for SNARE proteins restricted to the cis face of the Golgi as compared with SNAREs present at the trans face. Furthermore, overexpression of a cis-Golgi SNARE protein altered concomitantly its incorporation in transport vesicles and its intra-Golgi localization. These observations suggest that, contrary to resident Golgi enzymes, SNARE proteins are localized in the Golgi apparatus as the result of a dynamic transport equilibrium.
Collapse
Affiliation(s)
- Pierre Cosson
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Becker T, Volchuk A, Rothman JE. Differential use of endoplasmic reticulum membrane for phagocytosis in J774 macrophages. Proc Natl Acad Sci U S A 2005; 102:4022-6. [PMID: 15753287 PMCID: PMC554806 DOI: 10.1073/pnas.0409219102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sustained phagocytosis requires the continuous replacement of cell-surface membrane from intracellular sources. Depending on the nature of the engulfed particles, a variety of endocytic compartments have been demonstrated to contribute membranes needed for the formation of phagosomes. It has recently been reported that the endoplasmic reticulum (ER) can also fuse with the plasma membrane during phagocytosis [Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P. H., Steele-Mortimer, O., Paiement, J., Bergeron, J. J. & Desjardins, M. (2002) Cell 110, 119-131]. However, there is currently no known mechanistic basis for this fusion process to occur. Here we report that direct ER-plasma membrane fusion during phagocytosis requires the ER resident soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein ERS24/Sec22b and that J774-macrophages react toward the challenge of large (3.0-microm) but not small (0.8-microm) particles by triggering this fusion mechanism, allowing them to access the most abundant endogenous membrane source in the cell, the ER.
Collapse
Affiliation(s)
- Thalia Becker
- Department of Physiology and Cellular Biophysics, Russ Berrie Medical Science Pavilion, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Söllner TH, Rothman JE, Orci L. Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol Biol Cell 2004; 15:1506-18. [PMID: 14742712 PMCID: PMC379251 DOI: 10.1091/mbc.e03-08-0625] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genetic and biochemical evidence has established that a SNARE complex consisting of syntaxin 5 (Sed5)-mYkt6 (Ykt6)-GOS28 (Gos1)-GS15 (Sft1) is required for transport of proteins across the Golgi stack in animals (yeast). We have utilized quantitative immunogold labeling to establish the cis-trans distribution of the v-SNARE GS15 and the t-SNARE subunits GOS28 and syntaxin 5. Whereas the distribution of the t-SNARE is nearly even across the Golgi stack from the cis to the trans side, the v-SNARE GS15 is present in a gradient of increasing concentration toward the trans face of the stack. This contrasts with a second distinct SNARE complex, also required for intra-Golgi transport, consisting of syntaxin 5 (Sed5)-membrin (Bos1)-ERS24 (Sec22)-rBet1 (Bet1), whose v-(rBet1) and t-SNARE subunits (membrin and ERS24), progressively decrease in concentration toward the trans face. Transport within the stack therefore appears to utilize countercurrent gradients of two Golgi SNAREpins and may involve a mechanism akin to homotypic fusion.
Collapse
Affiliation(s)
- Allen Volchuk
- Department of Morphology, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Burri L, Varlamov O, Doege CA, Hofmann K, Beilharz T, Rothman JE, Söllner TH, Lithgow T. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc Natl Acad Sci U S A 2003; 100:9873-7. [PMID: 12893879 PMCID: PMC187870 DOI: 10.1073/pnas.1734000100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are central components of the machinery mediating membrane fusion in all eukaryotic cells. Sequence analysis of the yeast genome revealed a previously uncharacterized SNARE, SNARE-like tail-anchored protein 1 (Slt1). Slt1 is an essential protein localized in the endoplasmic reticulum (ER). It forms a SNARE complex with Sec22 and the ER syntaxin Ufe1. Down-regulation of Slt1 levels leads to improper secretion of proteins normally resident in the ER. We suggest that Slt1 is a component of the SNAREpin required for retrograde traffic to the ER. Based on the previously reported association with Ufe1 and Sec22, Sec20 likely contributes the fourth SNARE to the SNAREpin.
Collapse
Affiliation(s)
- Lena Burri
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dietrich LEP, Boeddinghaus C, LaGrassa TJ, Ungermann C. Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:111-9. [PMID: 12914952 DOI: 10.1016/s0167-4889(03)00094-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SNARE proteins function at the center of membrane fusion reactions by forming complexes with each other via their coiled-coil domains. Several SNAREs have N-terminal domains (NTDs) that precede the coiled-coil domain and have critical functions in regulating the fusion cascade. This review will highlight recent findings on NTDs of syntaxins, the longin domain of VAMP proteins and SNAP-23/25 homologues in yeast. Biochemical and genetic experiments as well as the resolution of several NMR and crystal structures of SNARE NTDs shed light on their diverse function.
Collapse
Affiliation(s)
- Lars E P Dietrich
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | | | | | | |
Collapse
|
24
|
Marz KE, Lauer JM, Hanson PI. Defining the SNARE complex binding surface of alpha-SNAP: implications for SNARE complex disassembly. J Biol Chem 2003; 278:27000-8. [PMID: 12730228 DOI: 10.1074/jbc.m302003200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
N-Ethylmaleimide-sensitive factor (NSF) and its adaptor protein alpha-soluble NSF attachment protein (alpha-SNAP) sustain membrane trafficking by disassembling soluble NSF attachment protein receptor (SNARE) complexes that form during membrane fusion. To better understand the role of alpha-SNAP in this process, we used site-directed mutagenesis to identify residues in alpha-SNAP that interact with SNARE complexes. We find that mutations in charged residues distributed over a concave surface formed by the N-terminal nine alpha-helices of alpha-SNAP affect its ability to bind synaptic SNARE complex and promote its disassembly by NSF. Replacing basic residues on this surface with alanines reduced SNARE complex binding and disassembly, whereas replacing acidic residues with alanines enhanced alpha-SNAP efficacy in both assays. These findings show that the ability of NSF to take apart SNARE complexes depends upon electrostatic interactions between alpha-SNAP and the acidic surface of the SNARE complex and provide insight into how NSF and alpha-SNAP work together to drive disassembly.
Collapse
Affiliation(s)
- Karla E Marz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
25
|
Zhang T, Hong W. Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J Biol Chem 2001; 276:27480-7. [PMID: 11323436 DOI: 10.1074/jbc.m102786200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast SNARE Ykt6p has been implicated in several trafficking steps, including vesicular transport from the endoplasmic reticulum (ER) to the Golgi, intra-Golgi transport, and homotypic vacuole fusion. The functional role of its mammalian homologue (Ykt6) has not been established. Using antibodies specific for mammalian Ykt6, it is revealed that it is found mainly in Golgi-enriched membranes. Three SNAREs, syntaxin 5, GS28, and Bet1, are specifically associated with Ykt6 as revealed by co-immunoprecipitation, suggesting that these four SNAREs form a SNARE complex. Double labeling of Ykt6 and the Golgi marker mannosidase II or the ER-Golgi recycling marker KDEL receptor suggests that Ykt6 is primarily associated with the Golgi apparatus. Unlike the KDEL receptor, Ykt6 does not cycle back to the peripheral ER exit sites. Antibodies against Ykt6 inhibit in vitro ER-Golgi transport of vesicular stomatitis virus envelope glycoprotein (VSVG) only when they are added before the EGTA-sensitive stage. ER-Golgi transport of VSVG in vitro is also inhibited by recombinant Ykt6. In the presence of antibodies against Ykt6, VSVG accumulates in peri-Golgi vesicular structures and is prevented from entering the mannosidase II compartment, suggesting that Ykt6 functions at a late stage in ER-Golgi transport. Golgi apparatus marked by mannosidase II is fragmented into vesicular structures in cells microinjected with Ykt6 antibodies. It is concluded that Ykt6 functions in a late step of ER-Golgi transport, and this role may be important for the integrity of the Golgi complex.
Collapse
Affiliation(s)
- T Zhang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | |
Collapse
|
26
|
Gonzalez LC, Weis WI, Scheller RH. A novel snare N-terminal domain revealed by the crystal structure of Sec22b. J Biol Chem 2001; 276:24203-11. [PMID: 11309394 DOI: 10.1074/jbc.m101584200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intra-cellular membrane fusion is facilitated by the association of SNAREs from opposite membranes into stable alpha-helical bundles. Many SNAREs, in addition to their alpha-helical regions, contain N-terminal domains that likely have essential regulatory functions. To better understand this regulation, we have determined the 2.4-A crystal structure of the 130-amino acid N-terminal domain of mouse Sec22b (mSec22b), a SNARE involved in endoplasmic reticulum/Golgi membrane trafficking. The domain consists of a mixed alpha-helical/beta-sheet fold that resembles a circular permutation of the actin/poly-proline binding protein, profilin, and the GAF/PAS family of regulatory modules. The structure is distinct from the previously characterized N-terminal domain of syntaxin 1A, and, unlike syntaxin 1A, the N-terminal domain of mSec22b has no effect on the rate of SNARE assembly in vitro. An analysis of surface conserved residues reveals a potential protein interaction site. Key residues in this site are distinct in two mammalian Sec22 variants that lack SNARE domains. Finally, sequence analysis indicates that a similar domain is likely present in the endosomal/lysosomal SNARE VAMP7.
Collapse
Affiliation(s)
- L C Gonzalez
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute and the Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
27
|
Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J, Palcy S, Chevet E, Lafrenière-Roula M, Solari R, Thomas DY, Rowley A, Bergeron JJ. Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 2001; 276:5152-65. [PMID: 11042173 DOI: 10.1074/jbc.m006143200] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.
Collapse
Affiliation(s)
- A W Bell
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
29
|
Hatsuzawa K, Hirose H, Tani K, Yamamoto A, Scheller RH, Tagaya M. Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. J Biol Chem 2000; 275:13713-20. [PMID: 10788491 DOI: 10.1074/jbc.275.18.13713] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the syntaxin family are target-soluble N-ethylmaleimide-sensitive factor-attachment protein receptors involved in vesicle docking and/or fusion within the exocytic and endocytotic pathways. By using the yeast two-hybrid system, we have identified a novel member of the syntaxin family, syntaxin 18, that binds to alpha-soluble N-ethylmaleimide-sensitive factor-attachment protein. Subcellular fractionation and immunocytochemical analysis revealed that syntaxin 18 is principally located in the endoplasmic reticulum. We examined the effect of overexpression of FLAG-tagged syntaxin 18 and a mutant lacking the N-terminal 81 amino acid residues on protein transport and organelles in the early secretory pathway. Both expressed proteins localized to the endoplasmic reticulum, and the expressed FLAG-syntaxin 18 caused remarkable aggregation of endoplasmic reticulum membranes. Although expression of the FLAG-syntaxin 18 lacking the N-terminal region produced less effect on the morphology of the endoplasmic reticulum, dispersion of the endoplasmic reticulum-Golgi intermediate compartment and cis-Golgi was elicited. Moreover, overexpression of the FLAG-syntaxin 18 mutant inhibited protein export from the endoplasmic reticulum. These results taken together suggest that syntaxin 18 functions in transport between the endoplasmic reticulum and Golgi.
Collapse
Affiliation(s)
- K Hatsuzawa
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Steegmaier M, Klumperman J, Foletti DL, Yoo JS, Scheller RH. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 1999; 10:1957-72. [PMID: 10359608 PMCID: PMC25394 DOI: 10.1091/mbc.10.6.1957] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.
Collapse
Affiliation(s)
- M Steegmaier
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5345, USA
| | | | | | | | | |
Collapse
|
31
|
Zhang T, Wong SH, Tang BL, Xu Y, Hong W. Morphological and functional association of Sec22b/ERS-24 with the pre-Golgi intermediate compartment. Mol Biol Cell 1999; 10:435-53. [PMID: 9950687 PMCID: PMC25179 DOI: 10.1091/mbc.10.2.435] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER-Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER-Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15 degreesC is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER-Golgi transport.
Collapse
Affiliation(s)
- T Zhang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|
32
|
Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98. [PMID: 9922368 DOI: 10.1152/physrev.1999.79.1.73] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
Collapse
Affiliation(s)
- C Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
33
|
Erdjument-Bromage H, Lui M, Lacomis L, Grewal A, Annan RS, McNulty DE, Carr SA, Tempst P. Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J Chromatogr A 1998; 826:167-81. [PMID: 9871337 DOI: 10.1016/s0021-9673(98)00705-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry occupies a central position in most current protein identification schemes. So-called 'mass fingerprinting' techniques rely on composite mass patterns of proteolytic fragments, or dissociation products thereof, to query databases. Keys to successful analysis of ever smaller amounts are sensitivity and complete spectral information, both of which depend for a large part on proper sample preparation. Clean-up and concentration of peptide mixtures over eppendorf gel loading tips filled with chromatographic media (i.e. 'micro-tips') are believed to be quite useful in this regard. We have studied quantitative and qualitative aspects of polypeptide extraction using these small manual devices. Optimization of sample volume and additives, micro-tip bed volume, and eluent composition and volume, all contribute to effective recovery (approximately 65-70%, on average). Improper digest conditions can, in fact, lead to far bigger losses, suggesting the need for at least trace amounts of Zwittergent 3-16. Of particular interest is our finding that partial fractionation, obtained by two-step micro-tip elution, generally results in more and better signals during subsequent mass analysis. Thus, by using optimized micro-tips, in combination with adequate sample handling and instrumentation, direct mass spectrometric identification can be routinely and successfully done in any resource facility type setting.
Collapse
Affiliation(s)
- H Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hohl TM, Parlati F, Wimmer C, Rothman JE, Söllner TH, Engelhardt H. Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol Cell 1998; 2:539-48. [PMID: 9844627 PMCID: PMC5496501 DOI: 10.1016/s1097-2765(00)80153-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The structure of 20 S particles, consisting of NSF, SNAPs, and SNARE complexes, was analyzed by electron microscopy and fluorescence resonance energy transfer. Structural changes associated with the binding of alpha-SNAP and NSF to SNARE complexes define the contribution of each component to the 20 S particle structure. The synaptic SNARE complex forms a 2.5 x 15 nm rod. alpha-SNAP binds laterally to the rod, increasing its width but not its length. NSF binds to one end of the SNAP/SNARE complex; the resulting 20 S particles measure 22 nm in length and vary in width from 6 nm at their narrowest point to 13.5 nm at their widest. The transmembrane domains of VAMP and syntaxin emerge together at the NSF-distal end of 20 S particles, adjacent to the amino terminus of alpha-SNAP.
Collapse
Affiliation(s)
- Tobias M. Hohl
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Francesco Parlati
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Christian Wimmer
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - James E. Rothman
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Thomas H. Söllner
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- To whom correspondence should be addressed ()
| | - Harald Engelhardt
- Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| |
Collapse
|
35
|
Abstract
As the first step of protein transport along the biosynthetic (secretory/exocytotic) pathway, transport from the endoplasmic reticulum (ER) to the Golgi apparatus has received much attention over the past several decades. The general structural organization underlying this transport process is becoming more defined. The major protein components participating in the budding, pre-docking, and docking/fusion events have been identified and their mechanistic aspects investigated. Conceptually, it is now clear that protein export from the ER is a selective process. Although much remains to be defined or refined, the general picture of this transport step has now emerged.
Collapse
Affiliation(s)
- W Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore.
| |
Collapse
|
36
|
Zeng Q, Subramaniam VN, Wong SH, Tang BL, Parton RG, Rea S, James DE, Hong W. A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 1998; 9:2423-37. [PMID: 9725904 PMCID: PMC25509 DOI: 10.1091/mbc.9.9.2423] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102-amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the mRNA for VAMP5 is preferentially expressed in the skeletal muscle and heart, whereas significantly lower levels are detected in several other tissues but not in the brain. During in vitro differentiation (myogenesis) of C2C12 myoblasts into myotubes, the mRNA level for VAMP5 is increased approximately 8- to 10-fold. Immunoblot analysis using antibodies specific for VAMP5 shows that the protein levels are also elevated approximately 6-fold during in vitro myogenesis of C2C12 cells. Indirect immunofluorescence microscopy and immunoelectron microscopy reveal that VAMP5 is associated with the plasma membrane as well as intracellular perinuclear and peripheral vesicular structures of myotubes. Epitope-tagged versions of VAMP5 are similarly targeted to the plasma membrane.
Collapse
Affiliation(s)
- Q Zeng
- Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nichols BJ, Pelham HR. SNAREs and membrane fusion in the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:9-31. [PMID: 9714710 DOI: 10.1016/s0167-4889(98)00044-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soluble factors, NSF and SNAPs, are required at many membrane fusion events within the cell. They interact with a class of type II integral membrane proteins termed SNAP receptors, or SNAREs. Interaction between cognate SNAREs on opposing membranes is a prerequisite for NSF dependent membrane fusion. NSF is an ATPase which will disrupt complexes composed of different SNAREs. However, there is increasingly abundant evidence that the SNARE complex recognised by NSF does not bridge the two fusing membranes, but rather is composed of SNAREs in the same membrane. The essential role of NSF may be to prime SNAREs for a direct role during fusion. The best characterised SNAREs in the Golgi are Sed5p in yeast and its mammalian homologue syntaxin 5, both of which are predominantly localised to the cis Golgi. The SNARE-SNARE interactions in which these two proteins are involved are strikingly similar. Sed5p and syntaxin 5 may mediate three distinct pathways for membrane flow into the cis Golgi, one from the ER, one from later Golgi cisternae, and possibly a third from endosomes. Syntaxin 5 is itself likely to cycle through the ER, and thus may be involved in homotypic fusion of ER derived transport vesicles. In all well characterised SNARE dependent membrane fusion events one of the interacting SNAREs is a syntaxin homologue. There are only eight members of the syntaxin family in yeast. Besides Sed5p two others, Tlg1p and Tlg2p, are found in the Golgi complex. They are present in a late Golgi compartment, but neither is required for transit of secreted proteins through the Golgi. We suggest that these observations are most compatible with a model for transit through the Golgi in which anterograde cargo is carried in cisternae, the enzymatic composition of which changes with time as Golgi resident enzymes are delivered in retrograde transport vesicles.
Collapse
Affiliation(s)
- B J Nichols
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
38
|
Hay JC, Klumperman J, Oorschot V, Steegmaier M, Kuo CS, Scheller RH. Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J Cell Biol 1998; 141:1489-502. [PMID: 9647643 PMCID: PMC2133002 DOI: 10.1083/jcb.141.7.1489] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-to-Golgi transport, and perhaps intraGolgi transport involves a set of interacting soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins including syntaxin 5, GOS-28, membrin, rsec22b, and rbet1. By immunoelectron microscopy we find that rsec22b and rbet1 are enriched in COPII-coated vesicles that bud from the ER and presumably fuse with nearby vesicular tubular clusters (VTCs). However, all of the SNAREs were found on both COPII- and COPI-coated membranes, indicating that similar SNARE machinery directs both vesicle pathways. rsec22b and rbet1 do not appear beyond the first Golgi cisterna, whereas syntaxin 5 and membrin penetrate deeply into the Golgi stacks. Temperature shifts reveal that membrin, rsec22b, rbet1, and syntaxin 5 are present together on membranes that rapidly recycle between peripheral and Golgi-centric locations. GOS-28, on the other hand, maintains a fixed localization in the Golgi. By immunoprecipitation analysis, syntaxin 5 exists in at least two major subcomplexes: one containing syntaxin 5 (34-kD isoform) and GOS-28, and another containing syntaxin 5 (41- and 34-kD isoforms), membrin, rsec22b, and rbet1. Both subcomplexes appear to involve direct interactions of each SNARE with syntaxin 5. Our results indicate a central role for complexes among rbet1, rsec22b, membrin, and syntaxin 5 (34 and 41 kD) at two membrane fusion interfaces: the fusion of ER-derived vesicles with VTCs, and the assembly of VTCs to form cis-Golgi elements. The 34-kD syntaxin 5 isoform, membrin, and GOS-28 may function in intraGolgi transport.
Collapse
Affiliation(s)
- J C Hay
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ballensiefen W, Ossipov D, Schmitt HD. Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p. J Cell Sci 1998; 111 ( Pt 11):1507-20. [PMID: 9580559 DOI: 10.1242/jcs.111.11.1507] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicle-specific SNAP receptors (v-SNAREs) are believed to cycle between consecutive membrane compartments. The v-SNARE Sec22(Sly2)p mediates the targeting of vesicles between endoplasmic reticulum (ER) and early Golgi of Saccharomyces cerevisiae. To analyze factors involved in targeting of Sec22(Sly2)p, an alpha-factor-tagged Sec22 protein (Sec22-alpha) was employed. Only on reaching the late Golgi, can alpha-factor be cleaved from this hybrid protein by Kex2p, a protease localized in this compartment. In wild-type cells Kex2p-cleavage is observed only when Sec22-alpha is greatly overproduced. Immunofluorescence microscopy and subcellular fractionation studies showed that Sec22-alpha is returned to the ER from the late Golgi (Kex2p) compartment. When Sec22-alpha is expressed in wild-type cells at levels comparable to the quantities of endogenous Sec22p, very little of this protein is cleaved by Kex2p. Efficient cleavage, however, occurs in mutants defective in the retrograde transport of different ER-resident proteins indicating that Sec22-alpha rapidly reaches the late Golgi of these cells. These mutants (sec20-1, sec21-1, sec27-1 and ufe1-1) reveal Golgi structures when stained for Sec22-alpha and do not show the ER-immunofluorescence observed in wild-type cells. These results show consistently that Sec22p recycles from the Golgi back to the ER and that this recycling involves retrograde COPI vesicles.
Collapse
Affiliation(s)
- W Ballensiefen
- Department of Molecular Genetics, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
40
|
Némoz-Gaillard E, Bosshard A, Regazzi R, Bernard C, Cuber JC, Takahashi M, Catsicas S, Chayvialle JA, Abello J. Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release. FEBS Lett 1998; 425:66-70. [PMID: 9541008 DOI: 10.1016/s0014-5793(98)00209-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neurons, synaptic vesicle exocytosis involves the formation of a core complex particle including syntaxin-1, synaptosomal-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)-2/synaptobrevin. The expression of these proteins was investigated in a panel of cell lines, including lines of endocrine and intestinal origin, by Western blotting and/or immunocytochemistry. The three core complex proteins were detected in the enteroendocrine, cholecystokinin (CCK)-secreting, cell lines STC-1 and GLUTag, and in the endocrine non-intestinal cell lines CA-77 and HIT-T15. In contrast, SNAP-25 and syntaxin-1 were undetected in the intestinal non-endocrine cell lines IEC-6, HT-29 and Caco-2, whereas a slight expression of VAMP-2 was documented in IEC-6 and HT-29 cells. Co-immunoprecipitation experiments indicated that syntaxin-1, SNAP-25 and VAMP-2 were present in a complex similar to that identified in brain. In the STC-1 cell line, treatment of streptolysin-O-permeabilized cells with tetanus toxin (Tetx) selectively cleaved VAMP-2 and VAMP-3/cellubrevin, and simultaneously abolished Ca2+-induced CCK secretion (IC50 approximately 12 nM). These results show that endocrine cell lines of intestinal origin express syntaxin-1, SNAP-25 and VAMP-2, and suggest a key role for a Tetx-sensitive protein (for example VAMP-2 and/or VAMP-3) in the CCK secretion by STC-1 cells.
Collapse
|
41
|
Tang BL, Low DY, Hong W. Hsec22c: a homolog of yeast Sec22p and mammalian rsec22a and msec22b/ERS-24. Biochem Biophys Res Commun 1998; 243:885-91. [PMID: 9501016 DOI: 10.1006/bbrc.1998.8194] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a new member of a family of mammalian proteins homologous to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the endoplasmic reticulum (ER) and the Golgi apparatus. The open reading frame encodes a polypeptide of 250 amino acids which is homologous to, but obviously different from, the recently reported mammalian Sec22p homologs rat sec22a, mouse sec22b, and hamster ERS-24. Northern blot analysis revealed two transcripts of about 1 and 5 kb respectively which are ubiquitously expressed. myc-epitope tagged sec22c is localized to the ER. Overexpression of the myc-tagged protein resulted in an anomalous staining pattern of SNARE molecules participating in ER-Golgi transport such as syntaxin 5 and mammalian bet1, but not the endosomal SNARE syntaxin 7. The presence of multiple forms of sec22 protein in the mammalian early secretory pathway is in-line with task specification in a highly elaborate transport machinery.
Collapse
Affiliation(s)
- B L Tang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
42
|
Fischer von Mollard G, Stevens TH. A human homolog can functionally replace the yeast vesicle-associated SNARE Vti1p in two vesicle transport pathways. J Biol Chem 1998; 273:2624-30. [PMID: 9446565 DOI: 10.1074/jbc.273.5.2624] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane traffic in eukaryotic cells requires the interaction of a vesicle-associated soluble NSF attachment protein receptor (v-SNARE) on transport vesicles with a SNARE on the target membrane (t-SNARE). Recently, we identified the yeast protein Vti1p as a v-SNARE that is involved in two transport reactions. Vti1p interacts with the prevacuolar t-SNARE Pep12p in Golgi to prevacuolar transport and with the cis-Golgi t-SNARE Sed5p in traffic to the cis-Golgi. Here we describe a human Vti1p homolog, hVti1. Whereas vti1Delta cells are inviable, expression of hVti1 allows vti1Delta cells to grow at nearly the wild-type growth rate. When expressed in yeast hVti1 can replace Vti1p in both Golgi to prevacuolar transport and in traffic to the cis-Golgi. Sequence comparisons with a Schizosaccharomyces pombe and two different mouse Vti1 homologs led to the identification of a very conserved predicted alpha-helix. Amino acid exchanges in vti1 mutant alleles defective either in one or both trafficking steps cluster in this domain, suggesting that this structure is probably the binding site for effector proteins.
Collapse
Affiliation(s)
- G Fischer von Mollard
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
43
|
Ungermann C, Nichols BJ, Pelham HR, Wickner W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 1998; 140:61-9. [PMID: 9425154 PMCID: PMC2132603 DOI: 10.1083/jcb.140.1.61] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide-sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [alpha-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v-t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v-t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, in turn, Sec17p-dependent SNARE complex disassembly is required for independent function of the two SNAREs. Sec17p physically and functionally interacts largely with the t-SNARE. (a) Antibodies to the t-SNARE, but not the v-SNARE, block Sec17p release. (b) Sec17p is associated with the t-SNARE in the absence of v-SNARE, but is not bound to the v-SNARE without t-SNARE. (c) Vacuoles with t-SNARE but no v-SNARE still require Sec17p/Sec18p priming, whereas their fusion partners with v-SNARE but no t-SNARE do not. Sec18p thus acts, upon ATP hydrolysis, to disassemble the v-t-SNARE complex, prime the t-SNARE, and release the Sec17p to allow SNARE participation in docking and fusion. These studies suggest that the analogous ATP-dependent disassembly of the 20-S complex of NSF, alpha-SNAP, and v- and t-SNAREs, which has been studied in detergent extracts, corresponds to the priming of SNAREs for docking rather than to the fusion of docked membranes.
Collapse
Affiliation(s)
- C Ungermann
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The intermediate compartment residing between the endoplasmic reticulum (ER) and the Golgi is now recognized to be a dynamic structure that captures cargo released from the ER in COPII vesicular carriers and promotes recycling by COPI vesicular carriers. These and other findings now provide compelling evidence for the importance of this intermediate in balancing anterograde and retrograde flow through the early secretory pathway and in the formation and maintenance of the Golgi stack.
Collapse
Affiliation(s)
- S I Bannykh
- Scripps Research Institute, Dept of Cell, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 1997; 8:2659-76. [PMID: 9398683 PMCID: PMC25735 DOI: 10.1091/mbc.8.12.2659] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.
Collapse
Affiliation(s)
- V V Lupashin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|