1
|
Banerjee T, Frazier C, Koti N, Yates P, Bowie E, Liermann M, Johnson D, Willis SH, Santra S. Development of Receptor-Integrated Magnetically Labeled Liposomes for Investigating SARS-CoV-2 Fusion Interactions. Anal Chem 2025. [PMID: 39925203 DOI: 10.1021/acs.analchem.4c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The impacts of highly pathogenic enveloped viruses, such as SARS-CoV-2, have turned scientific inquiry toward the fusion mechanisms responsible for viral pathogenesis and to seek cost-effective and adaptable strategies to mitigate future outbreaks. Current approaches for studying SARS-CoV-2 fusion include computational studies, pan-coronavirus viral inhibitors, and modified peptides and lipopeptides, along with various nanotechniques. Although these methodologies have illuminated the fusion mechanisms, they possess key limitations that prevent their widespread utility in outbreaks, including high financial or instrumental costs, operational proficiency, cytotoxicity, or viral specificity. This work measures changes in spin-spin T2 magnetic (transverse) relaxation times using a benchtop NMR instrument and introduces a bioanalytical approach to quickly quantify fusion interactions between the SARS-CoV-2 spike protein and liposome-coated iron oxide nanosensors (LIONs). Additionally, this study modifies the LION platform by appending the angiotensin-converting enzyme (ACE2) receptor, thereby creating LIONs-ACE2 that mimics the ACE2 host cell receptor targeted by SARS-CoV-2. Furthermore, SARS-CoV-2 fusion to other receptors reported to be involved is also examined. Environmental factors impacting fusion, such as calcium ion concentration, cholesterol composition, pH, neutralizing antibodies, and lower temperature, are investigated. Finally, molecular dynamics (MD) simulation studies reveal that the receptor binding domain (RBD) of the spike protein interacts more favorably with ACE2 than the lipid bilayer in the opened conformation, yet the closed conformation of RBD interacts with the bilayer with a similar energy as with ACE2. These findings reveal how the LION platform offers a customizable, fast-acting, inexpensive, and accessible mechanism for examining the fusion process of SARS-CoV-2 and other enveloped viruses.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Clayton Frazier
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Neelima Koti
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Paris Yates
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Elizabeth Bowie
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Megan Liermann
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - David Johnson
- Computational Chemical Biology Core, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66018, United States of America
| | - Sharon H Willis
- Integral Molecular Incorporation, One uCity Square 25 N. 38th Street, Suite 800, Philadelphia, Pennsylvania 19104, United States of America
| | - Santimukul Santra
- Department of Chemistry and Biochemistry, Missouri State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| |
Collapse
|
2
|
Miyake Y, Hara Y, Umeda M, Banerjee I. Influenza A Virus: Cellular Entry. Subcell Biochem 2023; 106:387-401. [PMID: 38159235 DOI: 10.1007/978-3-031-40086-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The frequent emergence of pathogenic viruses with pandemic potential has posed a significant threat to human health and economy, despite enormous advances in our understanding of infection mechanisms and devising countermeasures through developing various prophylactic and therapeutic strategies. The recent coronavirus disease (COVID-19) pandemic has re-emphasised the importance of rigorous research on virus infection mechanisms and highlighted the need for our preparedness for potential pandemics. Although viruses cannot self-replicate, they tap into host cell factors and processes for their entry, propagation and dissemination. Upon entering the host cells, viruses ingeniously utilise the innate biological functions of the host cell to replicate themselves and maintain their existence in the hosts. Influenza A virus (IAV), which has a negative-sense, single-stranded RNA as its genome, is no exception. IAVs are enveloped viruses with a lipid bilayer derived from the host cell membrane and have a surface covered with the spike glycoprotein haemagglutinin (HA) and neuraminidase (NA). Viral genome is surrounded by an M1 shell, forming a "capsid" in the virus particle. IAV particles use HA to recognise sialic acids on the cell surface of lung epithelial cells for their attachment. After attachment to the cell surface, IAV particles are endocytosed and sorted into the early endosomes. Subsequently, as the early endosomes mature into late endosomes, the endosomal lumen becomes acidified, and the low pH of the late endosomes induces conformational reaggangements in the HA to initiate fusion between the endosomal and viral membranes. Upon fusion, the viral capsid disintegrates and the viral ribonucleoprotein (vRNP) complexes containing the viral genome are released into the cytosol. The process of viral capsid disintegration is called "uncoating". After successful uncoating, the vRNPs are imported into the nucleus by importin α/β (IMP α/β), where viral replication and transcription take place and the new vRNPs are assembled. Recently, we have biochemically elucidated the molecular mechanisms of the processes of viral capsid uncoating subsequent viral genome dissociation. In this chapter, we present the molecular details of the viral uncoating process.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan.
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Umeda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India.
| |
Collapse
|
3
|
Jain V, Shelby T, Patel T, Mekhedov E, Petersen JD, Zimmerberg J, Ranaweera A, Weliky DP, Dandawate P, Anant S, Sulthana S, Vasquez Y, Banerjee T, Santra S. A Bimodal Nanosensor for Probing Influenza Fusion Protein Activity Using Magnetic Relaxation. ACS Sens 2021; 6:1899-1909. [PMID: 33905237 DOI: 10.1021/acssensors.1c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Viral fusion is a critical step in the entry pathway of enveloped viruses and remains a viable target for antiviral exploration. The current approaches for studying fusion mechanisms include ensemble fusion assays, high-resolution cryo-TEM, and single-molecule fluorescence-based methods. While these methods have provided invaluable insights into the dynamic events underlying fusion processes, they come with their own limitations. These often include extensive data and image analysis in addition to experimental time and technical requirements. This work proposes the use of the spin-spin T2 relaxation technique as a sensitive bioanalytical method for the rapid quantification of interactions between viral fusion proteins and lipids in real time. In this study, new liposome-coated iron oxide nanosensors (LIONs), which mimic as magnetic-labeled host membranes, are reported to detect minute interactions occurring between the membrane and influenza's fusion glycoprotein, hemagglutinin (HA). The influenza fusion protein's interaction with the LION membrane is detected by measuring changes in the sensitive spin-spin T2 magnetic relaxation time using a bench-top NMR instrument. More data is gleaned from including the fluorescent dye DiI into the LION membrane. In addition, the effects of environmental factors on protein-lipid interaction that affect fusion such as pH, time of incubation, trypsin, and cholesterol were also examined. Furthermore, the efficacy and sensitivity of the spin-spin T2 relaxation assay in quantifying similar protein/lipid interactions with more native configurations of HA were demonstrated using virus-like particles (VLPs). Shorter domains derived from HA were used to start a reductionist path to identify the parts of HA responsible for the NMR changes observed. Finally, the known fusion inhibitor Arbidol was employed in our spin-spin T2 relaxation-based fusion assay to demonstrate the application of LIONs in real-time monitoring of this aspect of fusion for evaluation of potential fusion inhibitors.
Collapse
Affiliation(s)
- Vedant Jain
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tyler Shelby
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Truptiben Patel
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Elena Mekhedov
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jennifer D Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ahinsa Ranaweera
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Prasad Dandawate
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shoukath Sulthana
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yolanda Vasquez
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
4
|
Finn S, Byrne A, Gkika KS, Keyes TE. Photophysics and Cell Uptake of Self-Assembled Ru(II)Polypyridyl Vesicles. Front Chem 2020; 8:638. [PMID: 32850654 PMCID: PMC7406788 DOI: 10.3389/fchem.2020.00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/04/2022] Open
Abstract
Effective delivery of luminescent probes for cell imaging requires both cell membrane permeation and directing to discrete target organelles. Combined, these requirements can present a significant challenge for metal complex luminophores, that have excellent properties as imaging probes but typically show poor membrane permeability. Here, we report on highly luminescent Ruthenium polypyridyl complexes based on the parent; [Ru(dpp)2(x-ATAP)](PF6)2 structure, where dpp is 4,7-diphenyl-1,10-phenanthroline and x-ATAP is 5-amino-1,10-phenanthroline with pendant alkyl-acetylthio chains of varying length; where x is 6; 5-Amido-1,10-phenanthroline-(6-acetylthio-hexanyl). 8; 5-Amido-1,10-phenanthroline-(8-acetylthio-octanyl). 11; 5-Amido-1,10-phenanthroline-(11-acetylthio-undecanyl); and 16; 5-Amido-1,10-phenanthroline-(16-acetylthio-hexadecanyl). Soluble in organic media, the alkyl-acetylthiolated complexes form nanoaggregates of low polydispersity in aqueous solution. From dynamic light scattering the nanoaggregate diameter was measured as 189 nm and 135 nm for 5 × 10-6 M aqueous solutions of [Ru(dpp)2(N∧N)](PF6)2 with the hexadecanoyl and hexanyl tails respectivly. The nanoaggregate exhibited dual exponential emission decays with kinetics that matched closely those of the [Ru(dpp)2(16-ATAP)]2+ incorporated into the membrane of a DPPC liposome. Cell permeability and distribution of [Ru(dpp)2(11-ATAP)]2+ or [Ru(dpp)2(16-ATAP)]2+ were evaluated in detail in live HeLa and CHO cell lines and it was found from aqueous media, that the nanoaggregate complexes spontaneously cross the membrane of mammalian cells. This process seems, on the basis of temperature dependent studies to be activated. Fluorescence imaging of live cells reveal that the complexes localize highly specifically within organelles and that organelle localization changes dramatically in switching the pendent alkyl chains from C16 to C11 as well as on cell line identity. Our data suggests that building metal complexes capable of self-assembling into nano-dimensional vesicles in this way may be a useful means of promoting cell membrane permeability and driving selective targeting that is facile and relatively low cost compared to use of biomolecular vectors.
Collapse
Affiliation(s)
| | | | | | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
5
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
6
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
7
|
Daste F, Sauvanet C, Bavdek A, Baye J, Pierre F, Le Borgne R, David C, Rojo M, Fuchs P, Tareste D. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 2018; 19:embr.201643637. [PMID: 29661855 DOI: 10.15252/embr.201643637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.
Collapse
Affiliation(s)
- Frédéric Daste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Cécile Sauvanet
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Andrej Bavdek
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - James Baye
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Fabienne Pierre
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Claudine David
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Manuel Rojo
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Patrick Fuchs
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - David Tareste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France .,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
8
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 09/29/2023] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus before they are translocated to the perinuclear space by budding, acquiring tegument and envelope, or releasing to the cytoplasm in a "naked" state via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" are essential steps for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of an alternative exit route. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols that lead to improved spatial and temporal resolution. Results: Scanning electron microscopy showed the Golgi complex as a compact entity in a juxtanuclear position covered by a membrane on the cis face. Transmission electron microscopy revealed that Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data strongly suggest that virions are intraluminally transported from the perinuclear space via Golgi complex-endoplasmic reticulum transitions into Golgi cisternae for packaging into transport vacuoles. Furthermore, virions derived by budding at nuclear membranes are infective as has been shown for HSV-1 Us3 deletion mutants, which almost entirely accumulate in the perinuclear space. Therefore, de-envelopment followed by re-envelopment is not essential for production of infective progeny virus.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
9
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols. Results: The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
10
|
Aoki T. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins. MEMBRANES 2017; 7:membranes7040056. [PMID: 28961212 PMCID: PMC5746815 DOI: 10.3390/membranes7040056] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/11/2022]
Abstract
Human red blood cells (RBC), which are the cells most commonly used in the study of biological membranes, have some glycoproteins in their cell membrane. These membrane proteins are band 3 and glycophorins A-D, and some substoichiometric glycoproteins (e.g., CD44, CD47, Lu, Kell, Duffy). The oligosaccharide that band 3 contains has one N-linked oligosaccharide, and glycophorins possess mostly O-linked oligosaccharides. The end of the O-linked oligosaccharide is linked to sialic acid. In humans, this sialic acid is N-acetylneuraminic acid (NeuAc). Another sialic acid, N-glycolylneuraminic acid (NeuGc) is present in red blood cells of non-human origin. While the biological function of band 3 is well known as an anion exchanger, it has been suggested that the oligosaccharide of band 3 does not affect the anion transport function. Although band 3 has been studied in detail, the physiological functions of glycophorins remain unclear. This review mainly describes the sialo-oligosaccharide structures of band 3 and glycophorins, followed by a discussion of the physiological functions that have been reported in the literature to date. Moreover, other glycoproteins in red blood cell membranes of non-human origin are described, and the physiological function of glycophorin in carp red blood cell membranes is discussed with respect to its bacteriostatic activity.
Collapse
Affiliation(s)
- Takahiko Aoki
- Laboratory of Quality in Marine Products, Graduate School of Bioresources, Mie University, 1577 Kurima Machiya-cho, Mie, Tsu 514-8507, Japan.
| |
Collapse
|
11
|
Lee DW, Hsu HL, Bacon KB, Daniel S. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics. PLoS One 2016; 11:e0163437. [PMID: 27695072 PMCID: PMC5047597 DOI: 10.1371/journal.pone.0163437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance.
Collapse
Affiliation(s)
- Donald W. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kaitlyn B. Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Calder LJ, Rosenthal PB. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat Struct Mol Biol 2016; 23:853-8. [PMID: 27501535 PMCID: PMC6485592 DOI: 10.1038/nsmb.3271] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
The lipid-enveloped influenza virus enters host cells during infection by binding cell surface receptors and, following receptor-mediated endocytosis, fusing with the membrane of the endosome, delivering the viral genome and transcription machinery into the host cell. These events are mediated by the haemagglutinin (HA) surface glycoprotein. At the low pH of the endosome, an irreversible conformational change in the HA, including the exposure of the hydrophobic fusion peptide, activates membrane fusion. Here we use electron cryomicroscopy and cryotomography to image influenza virus fusion with target membranes at low pH. We visualize structural intermediates of HA and their interactions with membranes during the course of membrane fusion as well as ultra-structural changes in the virus that accompany membrane fusion. Our observations are relevant to a wide range of protein-mediated membrane fusion processes and demonstrate how dynamic membrane events may be studied by cryomicroscopy.
Collapse
|
13
|
Smrt ST, Lorieau JL. Membrane Fusion and Infection of the Influenza Hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 966:37-54. [PMID: 27966108 DOI: 10.1007/5584_2016_174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.
Collapse
Affiliation(s)
- Sean T Smrt
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Justin L Lorieau
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
14
|
Fontana J, Steven AC. Influenza virus-mediated membrane fusion: Structural insights from electron microscopy. Arch Biochem Biophys 2015; 581:86-97. [PMID: 25958107 DOI: 10.1016/j.abb.2015.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Influenza virus, the causative agent of flu, enters the host cell by endocytosis. The low pH encountered inside endosomes triggers conformational changes in the viral glycoprotein hemagglutinin (HA), that mediate fusion of the viral and cellular membranes. This releases the viral genome into the cytoplasm of the infected cell, establishing the onset of the replication cycle. To investigate the structural basis of HA-mediated membrane fusion, a number of techniques have been employed. These include X-ray crystallography, which has provided atomic models of the HA ectodomain in its initial (pre-fusion) state and of part of HA in its final (post-fusion) state. However, this left an information deficit concerning many other aspects of the fusion process. Electron microscopy (EM) approaches are helping to fill this void. For example, influenza virions at neutral pH have been imaged by cryo-EM and cryo-electron tomography (cryo-ET); thin section EM has shown that influenza viruses enter the cell by endocytosis; the large-scale structural changes in HA when virions are exposed to low pH (pre-fusion to post-fusion states) have been visualized by negative staining and cryo-EM; acidification also induces structural changes in the M1 matrix layer and its separation from the viral envelope; intermediate HA conformations between its pre- and post-fusion states have been detected by cryo-ET supplemented with subtomogram averaging; and fusion of influenza virions with liposomes has been visualized by cryo-ET. In this review, we survey EM-based contributions towards the characterization of influenza virus-mediated membrane fusion and anticipate the potential for future developments.
Collapse
Affiliation(s)
- Juan Fontana
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Herrmann A, Sieben C. Single-virus force spectroscopy unravels molecular details of virus infection. Integr Biol (Camb) 2015; 7:620-32. [PMID: 25923471 DOI: 10.1039/c5ib00041f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Virus infection is a multistep process that has significant effects on the structure and function of both the virus and the host cell. The first steps of virus replication include cell binding, entry and release of the viral genome. Single-virus force spectroscopy (SVFS) has become a promising tool to understand the molecular details of those steps. SVFS data complemented by biochemical and biophysical, including theoretical modeling approaches provide valuable insights into molecular events that accompany virus infection. Properties of virus-cell interaction as well as structural alterations of the virus essential for infection can be investigated on a quantitative level. Here we review applications of SVFS to virus binding, structure and mechanics. We demonstrate that SVFS offers unexpected new insights not accessible by other methods.
Collapse
Affiliation(s)
- Andreas Herrmann
- Humboldt-Universität zu Berlin, Institut für Biologie, Molekulare Biophysik, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | |
Collapse
|
16
|
Wild P, Leisinger S, de Oliveira AP, Schraner EM, Kaech A, Ackermann M, Tobler K. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 2015; 7:52-71. [PMID: 25588052 PMCID: PMC4306828 DOI: 10.3390/v7010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37×10(8) and HSV-1 yields 1.57×10(8) PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Sabine Leisinger
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | | | - Elisabeth M Schraner
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Winterthurerstrasse 190,CH-8057 Zürich, Switzerland.
| | - Mathias Ackermann
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | - Kurt Tobler
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| |
Collapse
|
17
|
Structure of a sialo-oligosaccharide from glycophorin in carp red blood cell membranes. MEMBRANES 2014; 4:764-77. [PMID: 25402951 PMCID: PMC4289865 DOI: 10.3390/membranes4040764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
We isolated a high-purity carp glycophorin from carp erythrocyte membranes and prepared the oligosaccharide fraction from glycophorin by β-elimination [1]. The oligosaccharide fraction was separated into two components (P-1 and P-2) using a Glyco-Pak DEAE column. These O-linked oligosaccharides (P-1 and P-2) were composed of glucose, galactose, fucose, N-acetylgalactosamine and N-glycolylneuraminic acid (NeuGc). The P-1 and P-2 contained one and two NeuGc residues, respectively, and the P-1 exhibited bacteriostatic activity [1]. Using NMR and GC-MS, we determined that the structure of the bacteriostatic P-1 was NeuGcα2→6 (Fucα1→4) (Glcα1→3) Galβ1→4GalNAc-ol. This O-linked oligosaccharide was unique for a vertebrate with respect to the hexosamine and hexose linkages and its non-chain structure.
Collapse
|
18
|
Lee DW, Thapar V, Clancy P, Daniel S. Stochastic fusion simulations and experiments suggest passive and active roles of hemagglutinin during membrane fusion. Biophys J 2014; 106:843-54. [PMID: 24559987 DOI: 10.1016/j.bpj.2013.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/23/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022] Open
Abstract
Influenza enters the host cell cytoplasm by fusing the viral and host membrane together. Fusion is mediated by hemagglutinin (HA) trimers that undergo conformational change when acidified in the endosome. It is currently debated how many HA trimers, w, and how many conformationally changed HA trimers, q, are minimally required for fusion. Conclusions vary because there are three common approaches for determining w and q from fusion data. One approach correlates the fusion rate with the fraction of fusogenic HA trimers and leads to the conclusion that one HA trimer is required for fusion. A second approach correlates the fusion rate with the total concentration of fusogenic HA trimers and indicates that more than one HA trimer is required. A third approach applies statistical models to fusion rate data obtained at a single HA density to establish w or q and suggests that more than one HA trimer is required. In this work, all three approaches are investigated through stochastic fusion simulations and experiments to elucidate the roles of HA and its ability to bend the target membrane during fusion. We find that the apparent discrepancies among the results from the various approaches may be resolved if nonfusogenic HA participates in fusion through interactions with a fusogenic HA. Our results, based on H3 and H1 serotypes, suggest that three adjacent HA trimers and one conformationally changed HA trimer are minimally required to induce membrane fusion (w = 3 and q = 1).
Collapse
Affiliation(s)
- Donald W Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Vikram Thapar
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Paulette Clancy
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
19
|
Godefroy C, Dahmane S, Dosset P, Adam O, Nicolai MC, Ronzon F, Milhiet PE. Mimicking influenza virus fusion using supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11394-11400. [PMID: 25186242 DOI: 10.1021/la502591a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Influenza virus infection is a serious public health problem in the world, and understanding the molecular mechanisms involved in viral replication is crucial. In this paper, we used a minimalist approach based on a lipid bilayer supported on mica, which we imaged by atomic force microscopy (AFM) in a physiological buffer, to analyze the different steps of influenza fusion, from the interaction of intact viruses with the supported bilayer to their complete fusion. Our results show that sialic acid recognition and priming upon acidification are sufficient for a complete fusion with the host cell membrane. After fusion, a flat and continuous membrane was observed. Because of the fragility of the viral membrane that was removed by the tip, most probably due to the disorganization of the matrix layer at acidic pH, fine structural details of ribonucleoproteins (RNP) were obtained. In addition, AFM topography of intact virus in interaction with the supported lipid bilayer confirms that hemeagglutinin and neuraminidase can form isolated clusters within the viral membrane.
Collapse
Affiliation(s)
- Cédric Godefroy
- Institut National de la Santé et de la Recherche Médicale, Unité 1054, 34090 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Isolation and characterization of glycophorin from carp red blood cell membranes. MEMBRANES 2014; 4:491-508. [PMID: 25110961 PMCID: PMC4194046 DOI: 10.3390/membranes4030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
Abstract
We isolated a high-purity carp glycophorin from carp erythrocyte membranes following extraction using the lithium diiodosalicylate (LIS)-phenol method and streptomycin treatment. The main carp glycophorin was observed to locate at the position of the carp and human band-3 proteins on an SDS-polyacrylamide gel. Only the N-glycolylneuraminic acid (NeuGc) form of sialic acid was detected in the carp glycophorin. The oligosaccharide fraction was separated into two components (P-1 and P-2) using a Glyco-Pak DEAE column. We observed bacteriostatic activity against five strains of bacteria, including two known fish pathogens. Fractions from the carp erythrocyte membrane, the glycophorin oligosaccharide and the P-1 also exhibited bacteriostatic activity; whereas the glycolipid fraction and the glycophorin fraction without sialic acid did not show the activity. The carp glycophorin molecules attach to the flagellum of V. anguillarum or the cell surface of M. luteus and inhibited bacterial growth.
Collapse
|
21
|
Modified capillary electrophoresis based measurement of the binding between DNA aptamers and an unknown concentration target. Anal Bioanal Chem 2013; 405:5549-55. [PMID: 23657446 DOI: 10.1007/s00216-013-6968-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
Abstract
The recognition of targets such as biomacromolecules, viruses and cells by their aptamers is crucial in aptamer-based biosensor platforms and research into protein function. However, it is difficult to evaluate the binding constant of aptamers and their targets that are hard to purify and quantify, especially when the targets are undefined. Therefore, we aimed to develop a modified capillary electrophoresis based method to determine the dissociation constant of aptamers whose targets are hard to quantify. A protein target, human thrombin, and one of its aptamers were used to validate our modified method. We demonstrated that the result calculated by our method, only depending on the aptamer's concentrations, was consistent with the classical method, which depended on the concentrations of both the aptamers and the targets. Furthermore, a series of DNA aptamers binding with avian influenza virus H9N2 were confirmed by a four-round selection of capillary electrophoresis-systematic evolution of ligands by exponential enrichment, and we identified the binding constant of these aptamers by directly using the whole virus as the target with the modified method. In conclusion, our modified method was validated to study the interaction between the aptamer and its target, and it may also advance the evaluation of other receptor-ligand interactions.
Collapse
|
22
|
Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins (Basel) 2013; 5:637-64. [PMID: 23594437 PMCID: PMC3705284 DOI: 10.3390/toxins5040637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023] Open
Abstract
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Collapse
|
23
|
Qian S, Huang HW. A novel phase of compressed bilayers that models the prestalk transition state of membrane fusion. Biophys J 2012; 102:48-55. [PMID: 22225797 DOI: 10.1016/j.bpj.2011.11.4009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 01/02/2023] Open
Abstract
The force model of protein-mediated membrane fusion hypothesizes that fusion is driven by mechanical forces exerted on the membranes, but many details are unknown. Here, we investigated by x-ray diffraction the consequence of applying compressive force on a stack of membranes against the hydration barrier. We found that as the osmotic pressure increased, the lamellar phase transformed first to a new phase of tetragonal lattice (T-phase) over a narrow range of relative humidity, and then to a phase of rhombohedral lattice. The unit cell structure changed from parallel bilayers to a bent configuration with a point contact between adjacent bilayers and then to the stalk hemifusion configuration. The T-phase is discussed as a possible transition state in the membrane merging pathway of fusion. We estimate the work required to form the T-phase and the subsequent hemifusion-stalk-resembling R-phase. The work for the formation of a stalk is compatible with the energy estimated to be released by several SNARE complexes.
Collapse
Affiliation(s)
- Shuo Qian
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | |
Collapse
|
24
|
Ueno Y, Kawasaki K, Saito O, Arai M, Suwa M. Folding elastic transmembrane helices to fit in a low-resolution image by electron microscopy. J Bioinform Comput Biol 2011; 9 Suppl 1:37-50. [PMID: 22144252 DOI: 10.1142/s0219720011005720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/15/2011] [Indexed: 11/18/2022]
Abstract
Structure prediction of membrane proteins could be constrained and thereby improved by introducing data of the observed molecular shape. We studied a coarse-grained molecular model that relied on residue-based dummy atoms to fold the transmembrane helices of a protein in the observed molecular shape. Based on the inter-residue potential, the α-helices were folded to contact each other in a simulated annealing protocol to search optimized conformation. Fitting the model into a three-dimensional volume was tested for proteins with known structures and resulted in a fairly reasonable arrangement of helices. In addition, the constraint to the packing transmembrane helix with the two-dimensional region was tested and found to work as a very similar folding guide. The obtained models nicely represented α-helices with the desired slight bend. Our structure prediction method for membrane proteins well demonstrated reasonable folding results using a low-resolution structural constraint introduced from recent cell-surface imaging techniques.
Collapse
Affiliation(s)
- Yutaka Ueno
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, 1-1 Umezono Central-2, Tsukuba, Ibaraki, 305-8568, Japan.
| | | | | | | | | |
Collapse
|
25
|
Aoki T, Inoue T. Glycophorin in red blood cell membranes of healthy and diseased carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2011; 34:573-576. [PMID: 21585396 DOI: 10.1111/j.1365-2761.2011.01262.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- T Aoki
- Laboratory of Quality in Marine Products, Graduate School of Bioresources, Mie University, Japan.
| | | |
Collapse
|
26
|
Heuser JE. The origins and evolution of freeze-etch electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2011; 60 Suppl 1:S3-29. [PMID: 21844598 PMCID: PMC3202940 DOI: 10.1093/jmicro/dfr044] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future.
Collapse
Affiliation(s)
- John E Heuser
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Kamiya K, Kobayashi J, Yoshimura T, Tsumoto K. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1625-31. [DOI: 10.1016/j.bbamem.2010.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 01/02/2023]
|
28
|
Sawayama J, Yoshikawa I, Araki K. Hydrogen-bond-directed giant vesicles of guanosine derivatives in water: formation, structure, and stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8030-8035. [PMID: 20192160 DOI: 10.1021/la904916d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydrogen-bond-directed giant supramolecular vesicles (diameter 1.20 +/- 0.30 microm (SD)) of an alkylsilylated deoxyguanosine derivative, 2a, were prepared faciley by mixing a small volume of a 2a/THF solution with water. The formation of 2-D inter-guanine hydrogen-bond networks of 2a within the vesicles was indicated by IR spectra. The vesicle solution was stable enough for more than 30 days, in a wide range of temperatures, and between pH 4 and 10 without showing lysis, fusion, precipitation, or leakage of the encapsulated fluorescent probe. In a typical micrometer-sized vesicle, a sufficiently large internal water phase for encapsulating water-soluble substances was surrounded by a multilamellar membrane 15-20 nm in thickness, which was composed of 6-9 layers of 2-D hydrogen-bond-directed sheet assemblies. AC-mode AFM observation of the vesicle on a silicon substrate further demonstrated the high stability and deformable properties of the vesicle membrane under vacuum or mechanical stress. The formation and properties of the vesicle membrane in water were analyzed from the viewpoint of the 2-D hydrogen-bond-directed sheet assemblies, and the scope of the design principle to use nonpolar soft segments as the shielding units of the hydrogen-bond networks in water is discussed.
Collapse
Affiliation(s)
- Jun Sawayama
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153 8505, Japan
| | | | | |
Collapse
|
29
|
Abstract
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus-liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of 'leaky' fusion to the observed prefusion structures is discussed.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
30
|
Giocondi MC, Ronzon F, Nicolai MC, Dosset P, Milhiet PE, Chevalier M, Le Grimellec C. Organization of influenza A virus envelope at neutral and low pH. J Gen Virol 2009; 91:329-38. [DOI: 10.1099/vir.0.015156-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (Review). Mol Membr Biol 2009; 21:361-71. [PMID: 15764366 DOI: 10.1080/09687860400017784] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.
Collapse
|
32
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049809006843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Gopinath SCB, Awazu K, Tominaga J, Kumar PKR. Monitoring biomolecular interactions on a digital versatile disk: a BioDVD platform technology. ACS NANO 2008; 2:1885-95. [PMID: 19206429 DOI: 10.1021/nn800285p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A spinning-disk biosensor utilizing optical interference of reflected light from a multilayered structure, consisting of dielectric, metal, and optical phase-change thin films, is shown to have the potential to monitor various interactions on its surface. We refer to this platform as a BioDVD, since it utilizes the optical system of a digital versatile disk (DVD) to measure changes in reflected light intensity. Here, we demonstrated that nucleic acid hybridization and RNA-protein interactions can be analyzed efficiently, in a label-free environment, by measuring the reflected light intensity using a DVD-like mechanism. Moreover, our studies revealed that the detection sensitivity for the interactions on the BioDVD can be altered by shifting the state of the phase-change materials, where the amorphous state can be used for analysis and another state (crystalline) can be used both for recording information and selectively masking areas of the disk.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Center for Applied Near Field Optics Research, Central 4, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
Electron microscopy is a powerful tool to visualize viruses in diagnostic as well as in research settings for investigating viral structure and virus-cell interactions. Here, a simple but efficient method is described for demonstrating viruses by negative staining, and its limit is discussed. A prerequisite to obtain reliable information on virus-cell interactions is excellent preservation of cellular and viral ultrastructure. The crux is that during fixation and embedding, by applying conventional protocols about 50% of the lipids are lost, which results in loss of integrity of cell membranes. To achieve good preservation of cellular architectures, good contrast, and both high spatial and temporal resolution, methods for freezing, freeze-substitution, and freeze-etching are described and their applicability discussed mostly taking complicated built herpes viruses as examples.
Collapse
Affiliation(s)
- Peter Wild
- Electron Microscopy, Institutes of Veterinary Anatomy and of Virology, University of Zürich, CH-8057 Zürich, Switzerland
| |
Collapse
|
35
|
Plonsky I, Kingsley DH, Rashtian A, Blank PS, Zimmerberg J. Initial size and dynamics of viral fusion pores are a function of the fusion protein mediating membrane fusion. Biol Cell 2008; 100:377-86. [PMID: 18208404 PMCID: PMC3650648 DOI: 10.1042/bc20070040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Protein-mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. RESULTS The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high-time-resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA-mediated pores flickered; and (iii) the time required for pore formation; HA-mediated pores took much longer to form after acidification. CONCLUSION HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.
Collapse
Affiliation(s)
- Ilya Plonsky
- Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
| | | | | | | | | |
Collapse
|
36
|
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9:543-56. [DOI: 10.1038/nrm2417] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Morone N, Nakada C, Umemura Y, Usukura J, Kusumi A. Three-dimensional molecular architecture of the plasma-membrane-associated cytoskeleton as reconstructed by freeze-etch electron tomography. Methods Cell Biol 2008; 88:207-36. [PMID: 18617036 DOI: 10.1016/s0091-679x(08)00412-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nobuhiro Morone
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | | | | | | | | |
Collapse
|
38
|
Sapir A, Avinoam O, Podbilewicz B, Chernomordik LV. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev Cell 2008; 14:11-21. [PMID: 18194649 PMCID: PMC3549671 DOI: 10.1016/j.devcel.2007.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane fusion is a fundamental requirement in numerous developmental, physiological, and pathological processes in eukaryotes. So far, only a limited number of viral and cellular fusogens, proteins that fuse membranes, have been isolated and characterized. Despite the diversity in structures and functions of known fusogens, some common principles of action apply to all fusion reactions. These can serve as guidelines in the search for new fusogens, and may allow the formulation of a cross-species, unified theory to explain divergent and convergent evolutionary principles of membrane fusion.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Ori Avinoam
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Abstract
Membrane fusion of enveloped viruses with cellular membranes is mediated by viral glycoproteins (GP). Interaction of GP with cellular receptors alone or coupled to exposure to the acidic environment of endosomes induces extensive conformational changes in the fusion protein which pull two membranes into close enough proximity to trigger bilayer fusion. The refolding process provides the energy for fusion and repositions both membrane anchors, the transmembrane and the fusion peptide regions, at the same end of an elongated hairpin structure in all fusion protein structures known to date. The fusion process follows several lipidic intermediate states, which are generated by the refolding process. Although the major principles of viral fusion are understood, the structures of fusion protein intermediates and their mode of lipid bilayer interaction, the structures and functions of the membrane anchors and the number of fusion proteins required for fusion, necessitate further investigations.
Collapse
Affiliation(s)
- Winfried Weissenhorn
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Corresponding author.
| | - Andreas Hinz
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Yves Gaudin
- CNRS, UMR2472, INRA, UMR1157, IFR115, Laboratoire de Virologie Moléculaire et Structurale, 91198, Gif sur Yvette, France
| |
Collapse
|
40
|
Abstract
A brief summary of current cryo-electron microscopy methods for processing and imaging biological tissues is provided. The main emphasis is given to two preparation procedures: frozen-hydrated samples because of the remarkable success of cryo-electron crystallography in obtaining near atomic resolution of integral membrane proteins, and high-pressure freezing because of the wide applicability for vitrification of large samples of normal and diseased tissues for ultrastructural and immunolabeling analysis. Methods for examining certain samples with a TEM cryo-stage are summarized. This includes an introduction to the relatively new area of cryo-electron tomography, which offers the possibility to observe the three-dimensional structure of subcellular components using only their natural variations in composition to generate contrast.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
41
|
Gopinath SCB, Sakamaki Y, Kawasaki K, Kumar PKR. An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem 2006; 139:837-46. [PMID: 16751591 DOI: 10.1093/jb/mvj095] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aptamers are known for their higher discriminating ability between closely related molecules and their requirement for only a small region for binding, as compared to an antibody. In the present studies, we have isolated a specific RNA aptamer against the influenza virus B/Johannesburg/05/1999 by an in vitro selection procedure. The aptamer bound efficiently to the HA of influenza B and required 5 mM MgCl(2) ion for its recognition. The aptamer not only distinguished HA derived from the influenza A virus, but also inhibited HA-mediated membrane fusion.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1 Higashi, Tsukuba, Ibaraki 305-8566
| | | | | | | |
Collapse
|
42
|
Imai M, Mizuno T, Kawasaki K. Membrane fusion by single influenza hemagglutinin trimers. Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles. J Biol Chem 2006; 281:12729-35. [PMID: 16505474 DOI: 10.1074/jbc.m600902200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza hemagglutinin, the receptor-binding and membrane fusion protein of the virus, is a prototypic model for studies of biological membrane fusion in general. To elucidate the minimum number of hemagglutinin trimers needed for fusion, the kinetics of fusion induced by reconstituted vesicles of hemagglutinin was studied by using single-vesicle image analysis. The surface density of hemagglutinin fusion-activity sites on the vesicles was varied, while keeping the surface density of receptor-binding activity sites constant, by co-reconstitution of the fusogenic form of hemagglutinin, HA(1,2), and the non-fusogenic form, HA(0), at various HA(1,2):(HA(1,2) + HA(0)) ratios. The rate of fusion between the hemagglutinin vesicles containing a fluorescent lipid probe, octadecylrhodamine B, and red blood cell ghost membranes was estimated from the time distribution of fusion events of single vesicles observed by fluorescence microscopy. The best fit of a log-log plot of fusion rate versus the surface density of HA(1,2) exhibited a slope of 0.85, strongly supporting the hypothesis that single hemagglutinin trimers are sufficient for fusion. When only HA(1,2) (without HA(0)) was reconstituted on vesicles, the dependence of fusion rate on the surface density of HA(1,2) was distinct from that for the HA(1,2)-HA(0) co-reconstitution. The latter result suggested interference with fusion activity by hemagglutinin-receptor binding, without having to assume a fusion mechanism involving multiple hemagglutinin trimers.
Collapse
Affiliation(s)
- Masaki Imai
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
43
|
Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P. Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 2005; 79:13047-59. [PMID: 16189007 PMCID: PMC1235821 DOI: 10.1128/jvi.79.20.13047-13059.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.
Collapse
Affiliation(s)
- Helene Leuzinger
- Electron Microscopy, Institutes of Veterinary Anatomy and of Virology, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H. Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. J Physiol 2005; 568:917-29. [PMID: 16150796 PMCID: PMC1464175 DOI: 10.1113/jphysiol.2005.094011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/01/2005] [Indexed: 11/08/2022] Open
Abstract
We investigated exocytosis of PC12 cells using two-photon excitation imaging and extracellular polar tracers (TEP imaging) in the lateral membranes not facing the glass-cover slip. Upon photolysis of a caged Ca2+ compound, TEP imaging with FM1-43 (a polar membrane tracer) detected massive exocytosis of vesicles with a time constant of about 1 s. TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis revealed that the diameter of vesicles was small (55 nm). Extensive exocytosis of small vesicles (SVs) was shown to be mediated by the transient opening of a fusion pore with a diameter less than about 1.6 nm, and to be followed by direct ('kiss-and-run') endocytosis and translocation of the endocytic vesicles (EVs) deep into the cytoplasm. These processes were unaffected by GTP-gamma-S. In contrast, constitutive endocytic vesicles exhibited a diameter of 90 nm, took up molecules with a diameter of > 12 nm, and their formation was blocked by GTP-gamma-S. Electron-microscopic investigation with photoconversion of diaminobenzidine using FM1-43 confirmed an abundance of EVs with a diameter of 54 nm in stimulated cells. They rapidly translocated into the cytosol, and fused with endosomal organelles. The number of SV exocytosis events vastly exceeded the number of SVs morphologically docked at the plasma membrane. Simultaneous capacitance and FM1-43 measurements indicated that TEP imaging detected most SV exocytosis, and the fusion pore was closed within 2 s. Thus, we have, for the first time, directly visualized massive exocytosis of small vesicles in a non-synaptic preparation, and have revealed their fusion-pore mediated exocytosis and endocytosis.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Hess ST, Kumar M, Verma A, Farrington J, Kenworthy A, Zimmerberg J. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. ACTA ACUST UNITED AC 2005; 169:965-76. [PMID: 15967815 PMCID: PMC2171648 DOI: 10.1083/jcb.200412058] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although lipid-dependent protein clustering in biomembranes mediates numerous functions, there is little consensus among membrane models on cluster organization or size. Here, we use influenza viral envelope protein hemagglutinin (HA(0)) to test the hypothesis that clustering results from proteins partitioning into preexisting, fluid-ordered "raft" domains, wherein they have a random distribution. Japan HA(0) expressed in fibroblasts was visualized by electron microscopy using immunogold labeling and probed by fluorescence resonance energy transfer (FRET). Labeled HA coincided with electron-dense, often noncircular membrane patches. Poisson and K-test (Ripley, B.D. 1977. J. R. Stat. Soc. Ser. B. 39:172-212) analyses reveal clustering on accessible length scales (20-900 nm). Membrane treatments with methyl-beta-cyclodextrin and glycosphingolipid synthesis inhibitors did not abolish clusters but did alter their pattern, especially at the shortest lengths, as was corroborated by changes in FRET efficiency. The magnitude and density dependence of the measured FRET efficiency also indicated a nonrandom distribution on molecular length scales (approximately 6-7 nm). This work rules out the tested hypothesis for HA over the accessible length scales, yet shows clearly how the spatial distribution of HA depends on lipid composition.
Collapse
Affiliation(s)
- Samuel T Hess
- Laboratory for Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC. The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry. Biochemistry 2005; 44:947-58. [PMID: 15654751 DOI: 10.1021/bi048515g] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronavirus (CoV) entry is mediated by the viral spike (S) glycoprotein, a class I viral fusion protein. During viral and target cell membrane fusion, the heptad repeat (HR) regions of the S2 subunit assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes; however, the exact mechanism is unclear. Here, we characterize an aromatic amino acid rich region within the ectodomain of the S2 subunit that both partitions into lipid membranes and has the capacity to perturb lipid vesicle integrity. Circular dichroism analysis indicated that peptides analogous to the aromatic domains of the severe acute respiratory syndrome (SARS)-CoV, mouse hepatitis virus (MHV) and the human CoV OC43 S2 subunits, did not have a propensity for a defined secondary structure. These peptides strongly partitioned into lipid membranes and induced lipid vesicle permeabilization at peptide/lipid ratios of 1:100 in two independent leakage assays. Thus, partitioning of the peptides into the lipid interface is sufficient to disorganize membrane integrity. Our study of the S2 aromatic domain of three CoVs provides supportive evidence for a functional role of this region. We propose that, when aligned with the fusion peptide and transmembrane domains during membrane apposition, the aromatic domain of the CoV S protein functions to perturb the target cell membrane and provides a continuous track of hydrophobic surface, resulting in lipid-membrane fusion and subsequent viral nucleocapsid entry.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
47
|
Campbell JN, Epand RM, Russo PS. Structural changes and aggregation of human influenza virus. Biomacromolecules 2005; 5:1728-35. [PMID: 15360281 DOI: 10.1021/bm049878z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pH-induced change in the structure and aggregation state of the PR-8 and X-31 strains of intact human influenza virus has been studied in vitro. Reducing the pH from 7.4 to 5.0 produces a large increase in the intensity of light scattered to low angles. A modest increase in the polydispersity parameter from cumulants fits to the dynamic light scattering correlograms accompanies the increase, as does a change in how that parameter varies with scattering angle. These trends imply that the virus particles are not uniform, even at pH 7.4, and tend to aggregate as pH is reduced. The scattering profiles (angular dependence of intensity) never match those of isolated, spherical particles of uniform size, but the deviations from that simple model remain modest at pH 7.4. At pH 5.0, scattering profiles calculated for aggregates of uniformly sized spheres come much closer to matching the experimental data than those computed for isolated particles. Although these observations indicate that acid-induced aggregation develops over a period of minutes to hours after acidification, a nearly instantaneous increase in hydrodynamic size is the first response of intact virus particles to lower pH.
Collapse
Affiliation(s)
- Jason N Campbell
- Department of Chemistry, Louisiana State University, Baton Rouge 70803-1804, USA
| | | | | |
Collapse
|
48
|
Wild P, Engels M, Senn C, Tobler K, Ziegler U, Schraner EM, Loepfe E, Ackermann M, Mueller M, Walther P. Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells. J Virol 2005; 79:1071-83. [PMID: 15613336 PMCID: PMC538577 DOI: 10.1128/jvi.79.2.1071-1083.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus capsids originating in the nucleus overcome the nucleocytoplasmic barrier by budding at the inner nuclear membrane. The fate of the resulting virions is still under debate. The fact that capsids approach Golgi membranes from the cytoplasmic side led to the theory of fusion between the viral envelope and the outer nuclear membrane, resulting in the release of capsids into the cytoplasm. We recently discovered a continuum from the perinuclear space to the Golgi complex implying (i) intracisternal viral transportation from the perinuclear space directly into Golgi cisternae and (ii) the existence of an alternative pathway of capsids from the nucleus to the cytoplasm. Here, we analyzed the nuclear surface by high-resolution microscopy. Confocal microscopy of MDBK cells infected with recombinant bovine herpesvirus 1 expressing green fluorescent protein fused to VP26 (a minor capsid protein) revealed distortions of the nuclear surface in the course of viral multiplication. High-resolution scanning and transmission electron microscopy proved the distortions to be related to enlargement of nuclear pores through which nuclear content including capsids protrudes into the cytoplasm, suggesting that capsids use impaired nuclear pores as gateways to gain access to the cytoplasmic matrix. Close examination of Golgi membranes, rough endoplasmic reticulum, and outer nuclear membrane yielded capsid-membrane interaction of high identity to the budding process at the inner nuclear membrane. These observations signify the ability of capsids to induce budding at any cell membrane, provided the fusion machinery is present and/or budding is not suppressed by viral proteins.
Collapse
Affiliation(s)
- Peter Wild
- Electron Microscopy Institute of Veterinary Anatomy, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Every enveloped virus fuses its membrane with a host cell membrane, thereby releasing its genome into the cytoplasm and initiating the viral replication cycle. In each case, one or a small set of viral surface transmembrane glycoproteins mediates fusion. Viral fusion proteins vary in their mode of activation and in structural class. These features combine to yield many different fusion mechanisms. Despite their differences, common principles for how fusion proteins function are emerging: In response to an activating trigger, the metastable fusion protein converts to an extended, in some cases rodlike structure, which inserts into the target membrane via its fusion peptide. A subsequent conformational change causes the fusion protein to fold back upon itself, thereby bringing its fusion peptide and its transmembrane domain-and their attached target and viral membranes-into intimate contact. Fusion ensues as the initial lipid stalk progresses through local hemifusion, and then opening and enlargement of a fusion pore. Here we review recent advances in our understanding of how fusion proteins are activated, how fusion proteins change conformation during fusion, and what is happening to the lipids during fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treating viral infections.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
50
|
Malinin VS, Lentz BR. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. Biophys J 2004; 86:2951-64. [PMID: 15111411 PMCID: PMC1304163 DOI: 10.1016/s0006-3495(04)74346-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reported previously the effects of both osmotic and curvature stress on fusion between poly(ethylene glycol)-aggregated vesicles. In this article, we analyze the energetics of fusion of vesicles of different curvature, paying particular attention to the effects of osmotic stress on small, highly curved vesicles of 26 nm diameter, composed of lipids with negative intrinsic curvature. Our calculations show that high positive curvature of the outer monolayer "charges" these vesicles with excess bending energy, which then releases during stalk expansion (increase of the stalk radius, r(s)) and thus "drives" fusion. Calculations based on the known mechanical properties of lipid assemblies suggest that the free energy of "void" formation as well as membrane-bending free energy dominate the evolution of a stalk to an extended transmembrane contact. The free-energy profile of stalk expansion (free energy versus r(s)) clearly shows the presence of two metastable intermediates (intermediate 1 at r(s) approximately 0 - 1.0 nm and intermediate 2 at r(s) approximately 2.5 - 3.0 nm). Applying osmotic gradients of +/-5 atm, when assuming a fixed trans-bilayer lipid mass distribution, did not significantly change the free-energy profile. However, inclusion in the model of an additional degree of freedom, the ability of lipids to move into and out of the "void", made the free-energy profile strongly dependent on the osmotic gradient. Vesicle expansion increased the energy barrier between intermediates by approximately 4 kT and the absolute value of the barrier by approximately 7 kT, whereas compression decreased it by nearly the same extent. Since these calculations, which are based on the stalk hypothesis, correctly predict the effects of both membrane curvature and osmotic stress, they support the stalk hypothesis for the mechanism of membrane fusion and suggest that both forms of stress alter the final stages, rather than the initial step, of the fusion process, as previously suggested.
Collapse
|