1
|
He L, Zhang C, He W, Xu M. The emerging role of ectodermal neural cortex 1 in cancer. Sci Rep 2024; 14:513. [PMID: 38177640 PMCID: PMC10766627 DOI: 10.1038/s41598-023-50914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Ectodermal neural cortex 1 (ENC1) is a protein that plays a crucial role in the regulation of various cellular processes such as cell proliferation, differentiation, and apoptosis. Numerous studies have shown that ENC1 is overexpressed in various types of cancers, including breast, lung, pancreatic, and colorectal cancer, and its upregulation is correlated with a poorer prognosis. In addition to its role in cancer growth and spreading, ENC1 has also been linked to neuronal process development and neural crest cell differentiation. In this review, we provide an overview of the current knowledge on the relationship between ENC1 and cancer. We discuss the molecular mechanisms by which ENC1 contributes to tumorigenesis, including its involvement in multiple oncogenic signaling pathways. We also summarize the potential of targeting ENC1 for cancer therapy, as its inhibition has been shown to significantly reduce cancer cell invasion, growth, and metastasis. Finally, we highlight the remaining gaps in our understanding of ENC1's role in cancer and propose potential directions for future research.
Collapse
Affiliation(s)
- Lingling He
- Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, 330006, Jiangxi Province, China.
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenjing He
- Department of Endocrinology, Baoji Gaoxin Hospital, Baoji, 721006, Shanxi Province, China
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Kim A, Mok BR, Hahn S, Yoo J, Kim DH, Kim TA. Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer. BMB Rep 2022. [PMID: 35725010 PMCID: PMC9340087 DOI: 10.5483/bmbrep.2022.55.7.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation invivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Aram Kim
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Bo Ram Mok
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Soojung Hahn
- Department of Microbiology, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Organoidsciences Ltd., Seongnam 13488, Korea
| | - Jongman Yoo
- Department of Microbiology, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Organoidsciences Ltd., Seongnam 13488, Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Tae-Aug Kim
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| |
Collapse
|
3
|
Kim A, Mok BR, Hahn S, Yoo J, Kim DH, Kim TA. Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer. BMB Rep 2022; 55:348-353. [PMID: 35725010 PMCID: PMC9340087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2024] Open
Abstract
Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer. [BMB Reports 2022; 55(7): 348-353].
Collapse
Affiliation(s)
- Aram Kim
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Bo Ram Mok
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Soojung Hahn
- Department of Microbiology, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Organoidsciences Ltd., Seongnam 13488, Korea
| | - Jongman Yoo
- Department of Microbiology, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Organoidsciences Ltd., Seongnam 13488, Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| | - Tae-Aug Kim
- Department of Biochemistry, Institution of Basic Medical Science, School of Medicine, CHA University, Seongnam 13488, Korea
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea
| |
Collapse
|
4
|
Discovery of small-molecule activators of nicotinamide phosphoribosyltransferase (NAMPT) and their preclinical neuroprotective activity. Cell Res 2022; 32:570-584. [PMID: 35459935 DOI: 10.1038/s41422-022-00651-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/19/2022] [Indexed: 01/07/2023] Open
Abstract
The decline of nicotinamide adenine dinucleotide (NAD) occurs in a variety of human pathologies including neurodegeneration. NAD-boosting agents can provide neuroprotective benefits. Here, we report the discovery and development of a class of potent activators (NATs) of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. We obtained the crystal structure of NAMPT in complex with the NAT, which defined the allosteric action of NAT near the enzyme active site. The optimization of NAT further revealed the critical role of K189 residue in boosting NAMPT activity. NATs effectively increased intracellular levels of NAD and induced subsequent metabolic and transcriptional reprogramming. Importantly, NATs exhibited strong neuroprotective efficacy in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN) without any overt toxicity. These findings demonstrate the potential of NATs in the treatment of neurodegenerative diseases or conditions associated with NAD level decline.
Collapse
|
5
|
Laricchiuta D, Sciamanna G, Gimenez J, Termine A, Fabrizio C, Caioli S, Balsamo F, Panuccio A, De Bardi M, Saba L, Passarello N, Cutuli D, Mattioni A, Zona C, Orlando V, Petrosini L. Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. Int J Mol Sci 2021; 22:ijms22020810. [PMID: 33467450 PMCID: PMC7830910 DOI: 10.3390/ijms22020810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Correspondence:
| | - Giuseppe Sciamanna
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Juliette Gimenez
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Andrea Termine
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Carlo Fabrizio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Francesca Balsamo
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Anna Panuccio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Marco De Bardi
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Luana Saba
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Noemi Passarello
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Debora Cutuli
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Anna Mattioni
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Valerio Orlando
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| |
Collapse
|
6
|
Zhou Y, Tang X, Niu L, Liu Y, Wang B, He J. Ectodermal-neural cortex 1 as a novel biomarker predicts poor prognosis and induces metastasis in breast cancer by promoting Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:8826-8835. [PMID: 32618411 PMCID: PMC7412682 DOI: 10.1111/jcmm.15520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 01/14/2023] Open
Abstract
Breast cancer, as the most common malignancy, is the second leading cause of cancer‐related death in women. One of the kelch family member ENC1 is involved in various pathophysiologic processes. But the role of ENC1 in breast cancer has not been investigated. The present study value the feature, clinical significance and the molecular mechanisms of ENC1 in breast cancer. The expression and prognosis value of ENC1 expression among breast cancer and normal breast tissue were investigated in The Cancer Genome Atlas database and human samples. ENC1 was knockdown to explore its function in various breast cancer cell lines. Western blot was performed to explore the potential molecular mechanisms. We observed that ENC1 was overexpressed in breast cancer tissues. ENC1 overexpression was associated with high metastasis and predicted a poor prognosis in patients with breast cancer. ENC1 Knockdown inhibits the growth, clone formation, migration and invasion of breast cancer cells. Mechanism analysis revealed ENC1 was strong associated with the metastasis by modulating β‐catenin pathway. Our study emphasizes that ENC1 is a potential prognostic and metastasis‐related marker of breast cancer, and may function as a possible therapeutic target against breast cancer.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Fan S, Wang Y, Sheng N, Xie Y, Lu J, Zhang Z, Shan Q, Wu D, Sun C, Li M, Hu B, Zheng Y. Low expression of ENC1 predicts a favorable prognosis in patients with ovarian cancer. J Cell Biochem 2018; 120:861-871. [PMID: 30125994 DOI: 10.1002/jcb.27447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Abstract
Ectodermal-neural cortex 1 (ENC1) belongs to a member of the kelch family of genes. It is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. Here, we found that lower expression of ENC1 in the ovarian cancer patients was associated with favorable prognosis. In addition, ENC1 was heterogeneously expressed in various ovarian cancer cells. The messenger RNA and protein expression levels of ENC1 in HO-8910PM and NIH:OVCAR-3 cells were obviously higher than that in the other types of ovarian cancer cells. Knockdown of ENC1 in HO-8910PM or NIH:OVCAR-3 cells could significantly increase the reactive oxygen species levels, resulting in inhibition of in vitro proliferation, migration, and invasion. Our findings suggest that decreasing expression of ENC1 may be a new approach that can be used for ovarian cancer treatment.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
8
|
Sav A, Rotondo F, Syro LV, Altinoz MA, Kovacs K. Selective molecular biomarkers to predict biologic behavior in pituitary tumors. Expert Rev Endocrinol Metab 2017; 12:177-185. [PMID: 30063456 DOI: 10.1080/17446651.2017.1312341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To date, several cell proliferation markers, apoptosis, vascular markers, oncogenes, tumor suppressor genes, cell cycle mediators, microRNA (miRNAs), and long noncoding RNAs (lncRNAs) have been identified to be involved in the tumorigenesis, migration, proliferation and invasiveness of pituitary adenomas. There are still no reliable morphologic markers predictive of pituitary adenoma recurrence. Recent scientific research introduced new techniques to enable us to attain new information on the genesis and biologic behavior of pituitary adenomas. Areas covered: This review covers selected, compelling and cumulative information in regards to TACSTD family (EpCAM, TROP2), neuropilin (NRP-1), oncogene-induced senescence (OIS), fascins (FSCN1), invasion-associated genes (CLDN7, CNTNAP2, ITGA6, JAM3, PTPRC and CTNNA1) EZH2, and ENC1 genes and endocan. Expert commentary: Ongoing research provides clinicians, surgeons and researchers with new information not only on diverse pathways in tumorigenesis but also on the clinical aggressive behavior of pituitary adenomas. Newly developed molecular techniques, bioinformatics and new pharmaceutical drug options are helpful tools to widen the perspectives in our understanding of the complex nature of pituitary tumorigenesis. The discovery of new molecular biomarkers can only be accomplished by continuing to investigate pituitary embryogenesis, histogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Aydin Sav
- a Division of Neuropathology , Nisantasi Pathology Group , Istanbul , Turkey
| | - Fabio Rotondo
- b Department of Laboratory Medicine, Division of Pathology, St. Michael's Hospital , University of Toronto , Toronto , ON , Canada
| | - Luis V Syro
- c Department of Neurosurgery , Hospital Pablo Tobon Uribe and Clinica Medellin , Medellin , Colombia
| | - Meric A Altinoz
- d Department of Immunology, Experimental Medical Research Institute , Istanbul University , Istanbul , Turkey
| | - Kalman Kovacs
- b Department of Laboratory Medicine, Division of Pathology, St. Michael's Hospital , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
9
|
Worton LE, Shi YC, Smith EJ, Barry SC, Gonda TJ, Whitehead JP, Gardiner EM. Ectodermal-Neural Cortex 1 Isoforms Have Contrasting Effects on MC3T3-E1 Osteoblast Mineralization and Gene Expression. J Cell Biochem 2017; 118:2141-2150. [PMID: 27996212 DOI: 10.1002/jcb.25851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
The importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation. Induced knockdown of both ENC1 isoforms reduced alkaline phosphatase staining and virtually abolished MC3T3-E1 mineralization. At culture confluence, Alpl (alkaline phosphatase liver/bone/kidney) expression was markedly reduced compared with control cells, and there was significant and coordinated alteration of other genes involved in cellular phosphate biochemistry. In contrast, with 67 kDa-selective knockdown mineralized nodule formation was enhanced and there was a two-fold increase in Alpl expression at confluence. There was enhanced expression of Wnt/β-catenin target genes with knockdown of both isoforms at this time-point and a five-fold increase in Frzb (Frizzled related protein) with 67 kDa-selective knockdown at mineralization, indicating possible ENC1 interactions with Wnt signaling in osteoblasts. These results are the first to demonstrate a role for ENC1 in the control of osteoblast differentiation. Additionally, the contrasting mineralization phenotypes and transcriptional patterns seen with coordinate knockdown of both ENC1 isoforms vs selective knockdown of 67 kDa ENC1 suggest opposing roles for the isoforms in regulation of osteoblastic differentiation, through effects on Alpl expression and phosphate cellular biochemistry. This study is the first to report differential roles for the ENC1 isoforms in any cell lineage. J. Cell. Biochem. 118: 2141-2150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leah E Worton
- The University of Queensland, Brisbane, Queensland, Australia.,Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Elisabeth J Smith
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Simon C Barry
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas J Gonda
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Edith M Gardiner
- The University of Queensland, Brisbane, Queensland, Australia.,Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
White CC, Yang HS, Yu L, Chibnik LB, Dawe RJ, Yang J, Klein HU, Felsky D, Ramos-Miguel A, Arfanakis K, Honer WG, Sperling RA, Schneider JA, Bennett DA, De Jager PL. Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. PLoS Med 2017; 14:e1002287. [PMID: 28441426 PMCID: PMC5404753 DOI: 10.1371/journal.pmed.1002287] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The molecular underpinnings of the dissociation of cognitive performance and neuropathological burden are poorly understood, and there are currently no known genetic or epigenetic determinants of the dissociation. METHODS AND FINDINGS "Residual cognition" was quantified by regressing out the effects of cerebral pathologies and demographic characteristics on global cognitive performance proximate to death. To identify genes influencing residual cognition, we leveraged neuropathological, genetic, epigenetic, and transcriptional data available for deceased participants of the Religious Orders Study (n = 492) and the Rush Memory and Aging Project (n = 487). Given that our sample size was underpowered to detect genome-wide significance, we applied a multistep approach to identify genes influencing residual cognition, based on our prior observation that independent genetic and epigenetic risk factors can converge on the same locus. In the first step (n = 979), we performed a genome-wide association study with a predefined suggestive p < 10-5, and nine independent loci met this threshold in eight distinct chromosomal regions. Three of the six genes within 100 kb of the lead SNP are expressed in the dorsolateral prefrontal cortex (DLPFC): UNC5C, ENC1, and TMEM106B. In the second step, in the subset of participants with DLPFC DNA methylation data (n = 648), we found that residual cognition was related to differential DNA methylation of UNC5C and ENC1 (false discovery rate < 0.05). In the third step, in the subset of participants with DLPFC RNA sequencing data (n = 469), brain transcription levels of UNC5C and ENC1 were evaluated for their association with residual cognition: RNA levels of both UNC5C (estimated effect = -0.40, 95% CI -0.69 to -0.10, p = 0.0089) and ENC1 (estimated effect = 0.0064, 95% CI 0.0033 to 0.0096, p = 5.7 × 10-5) were associated with residual cognition. In secondary analyses, we explored the mechanism of these associations and found that ENC1 may be related to the previously documented effect of depression on cognitive decline, while UNC5C may alter the composition of presynaptic terminals. Of note, the TMEM106B allele identified in the first step as being associated with better residual cognition is in strong linkage disequilibrium with rs1990622A (r2 = 0.66), a previously identified protective allele for TDP-43 proteinopathy. Limitations include the small sample size for the genetic analysis, which was underpowered to detect genome-wide significance, the evaluation being limited to a single cortical region for epigenetic and transcriptomic data, and the use of categorical measures for certain non-amyloid-plaque, non-neurofibrillary-tangle neuropathologies. CONCLUSIONS Through a multistep analysis of cognitive, neuropathological, genomic, epigenomic, and transcriptomic data, we identified ENC1 and UNC5C as genes with convergent genetic, epigenetic, and transcriptomic evidence supporting a potential role in the dissociation of cognition and neuropathology in an aging population, and we expanded our understanding of the TMEM106B haplotype that is protective against TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Charles C. White
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Hyun-Sik Yang
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Lori B. Chibnik
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Robert J. Dawe
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hans-Ulrich Klein
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Felsky
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alfredo Ramos-Miguel
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reisa A. Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Center for Translational & Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|
12
|
Neonatal ventral hippocampus lesion changes nuclear restricted protein/brain (NRP/B) expression in hippocampus, cortex and striatum in developmental periods of rats. Neuroscience 2016; 319:59-68. [PMID: 26812035 DOI: 10.1016/j.neuroscience.2016.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 11/20/2022]
Abstract
Schizophrenia is conceptualized as a neurodevelopmental disorder in which developmental alterations in immature brain systems are not clear. Rats with neonatal ventral hippocampal lesions (NVHL) can exhibit schizophrenia-like behaviors, and these rats have been widely used to study the developmental mechanisms of schizophrenia. The nuclear restricted protein/brain (NRP/B) is a nuclear matrix protein that is critical for the normal development of the neuronal system. This study assessed the effect of NVHL induced by the administration of ibotenic acid on the protein expression of NRP/B in the hippocampus, cortex and striatum in pre- and post-pubertal rats. The expressions of NeuN in various developmental periods were assessed accordingly. Sprague-Dawley rat pups were administered ibotenic acid at postnatal day (PD) 7. Western blotting and an immunofluorescence staining analysis showed that the expression of NRP/B was significantly decreased in the hippocampus, cortex and striatum of the NVHL rats at PD14, 28 and 42. The expressions of NeuN were decreased accordingly. In vitro experiment showed the NRP/B knockdown can decrease the Tuj1 expression in cultured cortical neurons. The data suggest that NVHL induces a change in NRP/B expression that affects neurons in the developmental period.
Collapse
|
13
|
Lee H, Ahn HH, Lee W, Oh Y, Choi H, Shim SM, Shin J, Jung YK. ENC1 Modulates the Aggregation and Neurotoxicity of Mutant Huntingtin Through p62 Under ER Stress. Mol Neurobiol 2015; 53:6620-6634. [DOI: 10.1007/s12035-015-9557-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022]
|
14
|
Fernàndez-Castillo N, Cabana-Domínguez J, Soriano J, Sànchez-Mora C, Roncero C, Grau-López L, Ros-Cucurull E, Daigre C, van Donkelaar MMJ, Franke B, Casas M, Ribasés M, Cormand B. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Transl Psychiatry 2015; 5:e667. [PMID: 26506053 PMCID: PMC4930134 DOI: 10.1038/tp.2015.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022] Open
Abstract
Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case-control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3'-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence.
Collapse
Affiliation(s)
- N Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - J Cabana-Domínguez
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J Soriano
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - C Sànchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
| | - C Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Grau-López
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Ros-Cucurull
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Daigre
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
| | - B Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Choi J, Yang ES, Cha K, Whang J, Choi WJ, Avraham S, Kim TA. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity. J Cancer Prev 2014; 19:187-98. [PMID: 25337588 PMCID: PMC4189505 DOI: 10.15430/jcp.2014.19.3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription factors have not been elucidated. Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis. Changes in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol acetyltransferase (CAT) activity. Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). Conclusions: The present study shows that NRP/B acts as a transcriptional repressor by interacting with the co-repressors, HDAC1, providing new insight into the molecular mechanisms of NRP/B on tumor suppression.
Collapse
Affiliation(s)
- Jina Choi
- CHA Cancer Institute, CHA University, Seoul, Korea
| | - Eun Sung Yang
- Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiweon Cha
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Whang
- Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shalom Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tae-Aug Kim
- CHA Cancer Institute, CHA University, Seoul, Korea ; Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Feng J, Hong L, Wu Y, Li C, Wan H, Li G, Sun Y, Yu S, Chittiboina P, Montgomery B, Zhuang Z, Zhang Y. Identification of a subtype-specific ENC1 gene related to invasiveness in human pituitary null cell adenoma and oncocytomas. J Neurooncol 2014; 119:307-15. [PMID: 24916845 DOI: 10.1007/s11060-014-1479-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Abstract
Non-functioning pituitary adenomas (NFPAs) may be locally invasive. Surgery is a treatment option, but unlike the case for functional pituitary adenomas, there are almost no drug treatments available for NFPAs. Markers of invasiveness are needed to guide therapeutic decision-making and identify potential adjuvant drugs. Owing to the highly heterogeneous nature of NFPAs, little is known regarding the subtype-specific gene expression profiles associated with invasiveness. To identify important biomarkers of invasiveness, we selected 23 null cell adenomas and 20 oncocytomas. These tumors were classified as invasive or non-invasive adenomas based on magnetic resonance imaging, pathology slides and surgical findings. Firstly, we observed that there were significant differences in expression between invasive (n = 3) and non-invasive (n = 4) adenomas by gene expression microarray. A total of 1,188 genes were differentially expressed in the invasive and non-invasive adenomas. Among these 1,188 genes, 578 were upregulated and 610 were downregulated in invasive adenomas. Secondly, the expression of ENC1, which displayed the significant alterations, was further confirmed by qRT-PCR and Western blot analysis in all 43 tumor samples and three normal pituitary glands. Low levels of ENC1 were found in tumor samples, while high levels were detected in normal pituitary glands. Interestingly, the ENC1 expression level was low in invasive null cell adenomas compared with non-invasive adenomas, but this relationship was not observed in invasive oncocytomas. Immunohistochemistry also demonstrated that the staining of ENC1 was different between invasive and non-invasive null cell adenomas. In addition, bioinformatics studies, including gene ontology and protein interaction analyses, were also performed to better understand the critical role of ENC1 in the development and progression of null cell adenomas and oncocytomas. Consequently, ENC1 may be an important biomarker for null cell adenomas and oncocytomas, and it is specific to invasive null cell adenomas.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qian M, Yao S, Jing L, He J, Xiao C, Zhang T, Meng W, Zhu H, Xu H, Mo X. ENC1-like integrates the retinoic acid/FGF signaling pathways to modulate ciliogenesis of Kupffer’s vesicle during zebrafish embryonic development. Dev Biol 2013. [DOI: 10.1016/j.ydbio.2012.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Gruber HE, Hoelscher GL, Bethea S, Hanley EN. Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells. Biotech Histochem 2012; 87:506-11. [PMID: 22853041 DOI: 10.3109/10520295.2012.703692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between disc cells, nerves and pain production in the intervertebral disc is poorly understood. Neurotrophins, signaling molecules involved in the survival, differentiation and migration of neurons, and neurite outgrowth, are expressed in non-neuronal tissues including the disc. We hypothesized that three-dimensional exposure of human disc cells to the proinflammatory cytokine IL-1ß in vitro would elevate neurotrophin gene expression levels and production of nerve growth factor (NGF). Cells isolated from Thompson grade III and IV discs were cultured for 14 days under control conditions or with addition of 10(2) pM IL-1ß; mRNA was isolated and conditioned media assayed for NGF content. IL-1ß exposure in three-dimensional culture significantly increased expression of neurotrophin 3, brain-derived neurotrophic factor, and neuropilin 2 compared to controls. IL-1ß-exposed cells showed significantly increased NGF production compared to controls. Findings support our hypothesis, expand previous data concerning expression of neurotrophins, and provide the first documented expression of neurotrophin 3 and neuropilin 2. Our results have direct translational relevance, because they address the primary clinical issue of low back pain and open the possibility of novel analgesic therapies using specific small-molecular antagonists to neurotrophins.
Collapse
Affiliation(s)
- H E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232, USA.
| | | | | | | |
Collapse
|
19
|
García-Bilbao A, Armañanzas R, Ispizua Z, Calvo B, Alonso-Varona A, Inza I, Larrañaga P, López-Vivanco G, Suárez-Merino B, Betanzos M. Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer 2012; 12:43. [PMID: 22280244 PMCID: PMC3323359 DOI: 10.1186/1471-2407-12-43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/26/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. METHODS A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. RESULTS After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. CONCLUSIONS We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).
Collapse
Affiliation(s)
- Amaia García-Bilbao
- GAIKER Technology Centre, Parque Tecnológico, Edificio 202, 48170 Zamudio, (Bizkaia), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A 2012; 109:E260-7. [PMID: 22232672 DOI: 10.1073/pnas.1116776109] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
More than 120 human papillomaviruses (HPVs) have now been identified and have been associated with a variety of clinical lesions. To understand the molecular differences among these viruses that result in lesions with distinct pathologies, we have begun a MS-based proteomic analysis of HPV-host cellular protein interactions and have created the plasmid and cell line libraries required for these studies. To validate our system, we have characterized the host cellular proteins that bind to the E7 proteins expressed from 17 different HPV types. These studies reveal a number of interactions, some of which are conserved across HPV types and others that are unique to a single HPV species or HPV genus. Binding of E7 to UBR4/p600 is conserved across all virus types, whereas the cellular protein ENC1 binds specifically to the E7s from HPV18 and HPV45, both members of genus alpha, species 7. We identify a specific interaction of HPV16 E7 with ZER1, a substrate specificity factor for a cullin 2 (CUL2)-RING ubiquitin ligase, and show that ZER1 is required for the binding of HPV16 E7 to CUL2. We further show that ZER1 is required for the destabilization of the retinoblastoma tumor suppressor RB1 in HPV16 E7-expressing cells and propose that a CUL2-ZER1 complex functions to target RB1 for degradation in HPV16 E7-expressing cells. These studies refine the current understanding of HPV E7 functions and establish a platform for the rapid identification of virus-host interactions.
Collapse
|
21
|
WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochem J 2011; 435:113-25. [PMID: 21269271 PMCID: PMC3062854 DOI: 10.1042/bj20101734] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics.
Collapse
|
22
|
Lattanzi W, Geloso MC, Saulnier N, Giannetti S, Puglisi MA, Corvino V, Gasbarrini A, Michetti F. Neurotrophic features of human adipose tissue-derived stromal cells: in vitro and in vivo studies. J Biomed Biotechnol 2011; 2011:468705. [PMID: 22219658 PMCID: PMC3248027 DOI: 10.1155/2011/468705] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/16/2011] [Indexed: 12/25/2022] Open
Abstract
Due to its abundance, easy retrieval, and plasticity characteristics, adipose-tissue-derived stromal cells (ATSCs) present unquestionable advantages over other adult-tissue-derived stem cells. Based on the in silico analysis of our previous data reporting the ATSC-specific expression profiles, the present study attempted to clarify and validate at the functional level the expression of the neurospecific genes expressed by ATSC both in vitro and in vivo. This allowed evidencing that ATSCs express neuro-specific trophins, metabolic genes, and neuroprotective molecules. They were in fact able to induce neurite outgrowth in vitro, along with tissue-specific commitment along the neural lineage and the expression of the TRKA neurotrophin receptor in vivo. Our observation adds useful information to recent evidence proposing these cells as a suitable tool for cell-based applications in neuroregenerative medicine.
Collapse
Affiliation(s)
- Wanda Lattanzi
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- *Maria Concetta Geloso:
| | - Nathalie Saulnier
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Giannetti
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Ausiliatrice Puglisi
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Corvino
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genomics 2010; 11:360. [PMID: 20529287 PMCID: PMC2896956 DOI: 10.1186/1471-2164-11-360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022] Open
Abstract
Background Increases during aging in extracellular levels of glutamate (Glu), the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg) mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1) mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites) and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated) form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.
Collapse
|
24
|
Seng S, Avraham HK, Birrane G, Jiang S, Avraham S. Nuclear matrix protein (NRP/B) modulates the nuclear factor (Erythroid-derived 2)-related 2 (NRF2)-dependent oxidative stress response. J Biol Chem 2010; 285:26190-8. [PMID: 20511222 DOI: 10.1074/jbc.m109.095786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reactive molecules have diverse effects on cells and contribute to several pathological conditions. Cells have evolved complex protective systems to neutralize these molecules and restore redox homeostasis. Previously, we showed that association of nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (NRF2) with the nuclear matrix protein NRP/B was essential for the transcriptional activity of NRF2 target genes in tumor cells. The present study demonstrates the molecular mechanism by which NRP/B, via NRF2, modulates the transcriptional activity of antioxidant response element (ARE)-driven genes. NRP/B is localized in the nucleus of primary brain tissue and human neuroblastoma (SH-SY5Y) cells. Treatment with hydrogen peroxide (H(2)O(2)) enhances the nuclear colocalization of NRF2 and NRP/B and induces heme oxygenase 1 (HO1). Treatment of NRP/B or NRF2 knockdowns with H(2)O(2) induced apoptosis. Co-expression of NRF2 with members of the Kelch protein family, NRP/B, MAYVEN, or MAYVEN-related protein 2 (MRP2), revealed that the NRF2-NRP/B complex is important for the transcriptional activity of ARE-driven genes HO1 and NAD(P)H:quinine oxidoreductase 1 (NQO1). NRP/B interaction with Nrf2 was mapped to NRF2 ECH homology 4 (Neh4)/Neh5 regions of NRF2. NRP/B mutations that resulted in low binding affinity to NRF2 were unable to activate NRF2-modulated transcriptional activity of the ARE-driven genes, HO1 and NQO1. Thus, the interaction of NRP/B with the Neh4/Neh5 domains of NRF2 is indispensable for activation of NRF2-mediated ARE-driven antioxidant and detoxifying genes that confer cellular defense against oxidative stress-induced damage.
Collapse
Affiliation(s)
- Seyha Seng
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
25
|
Degaki TL, Demasi MAA, Sogayar MC. Overexpression of Nrp/b (nuclear restrict protein in brain) suppresses the malignant phenotype in the C6/ST1 glioma cell line. J Steroid Biochem Mol Biol 2009; 117:107-16. [PMID: 19682578 DOI: 10.1016/j.jsbmb.2009.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 12/13/2022]
Abstract
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 amino acids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressor gene, with possible relevance for glioblastoma therapy.
Collapse
Affiliation(s)
- Theri Leica Degaki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
26
|
Kim SG, Jang SJ, Soh J, Lee K, Park JK, Chang WK, Park EW, Chun SY. Expression of ectodermal neural cortex 1 and its association with actin during the ovulatory process in the rat. Endocrinology 2009; 150:3800-6. [PMID: 19372205 DOI: 10.1210/en.2008-1587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ectodermal neural cortex (ENC) 1, a member of the kelch family of genes, is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. The present study was designed to examine the gonadotropin regulation and action of ENC1 during the ovulatory process in immature rats. The levels of ENC1 mRNA and protein were stimulated by LH/human chorionic gonadotropin (hCG) within 3 h both in vivo and in vitro. In situ hybridization analysis revealed that ENC1 mRNA was localized not only in theca/interstitial cells but also in granulosa cells of preovulatory follicles but not of growing follicles in pregnant mare's serum gonadotropin/hCG-treated ovaries. LH-induced ENC1 expression was suppressed by a high dose of protein kinase C inhibitor RO 31-8220 (10 microM) but not by low doses of RO 31-8220 (0.1-1.0 microM), suggesting the involvement of atypical protein kinase C. ENC1 was detected in both nucleus and cytoplasm that was increased by LH/hCG treatment. Both biochemical and morphological analysis revealed that LH/hCG treatment increased actin polymerization within 3 h in granulosa cells. Interestingly, ENC1 physically associated with actin and treatment with cytochalasin D, an actin-depolymerizing agent, abolished this association. Confocal microscopy further demonstrated the colocalization of ENC1 with filamentous actin (F-actin). The present study demonstrates that LH/hCG stimulates ENC1 expression and increases F-actin formation in granulosa cells. The present study further shows the physical association of ENC1 and F-actin, implicating the role of ENC1 in cytoskeletal reorganization during the differentiation of granulosa cells.
Collapse
Affiliation(s)
- Sun-Gyun Kim
- Hormone Research Center and School of Biological Sciences and Technology, Chonnam National University, Kwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Giles LM, Li L, Chin LS. Printor, a novel torsinA-interacting protein implicated in dystonia pathogenesis. J Biol Chem 2009; 284:21765-75. [PMID: 19535332 DOI: 10.1074/jbc.m109.004838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA DeltaE) in the C-terminal region of the AAA(+) (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA DeltaE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA DeltaE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.
Collapse
Affiliation(s)
- Lisa M Giles
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
28
|
An improved method to obtain a soluble nuclear fraction from embryonic brain tissue. Neurochem Res 2009; 34:2022-9. [PMID: 19462231 DOI: 10.1007/s11064-009-9993-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
This paper describes modifications of the standard methods for obtaining a soluble nuclear fraction from embryonic brain tissue. The main improvements are: (1) the inclusion of a low speed centrifugation step to prevent the appearance of high density contaminants, (2) a sucrose density gradient to remove perinuclear mitochondria and ER membranes and (3) a protein extraction approach which significantly enhances protein yield. To demonstrate the effectiveness of the method, pellets were analyzed by light and electron microscopy and purity of the soluble extracts was immunologically tested. Finally, to illustrate the applicability of this approach, the induction of the transcription factor HIF-1 (hypoxia-inducible factor-1) was assessed by Western blot using soluble nuclear fractions and by immuno-electron microscopy using purified nuclear fractions, both obtained from the optic lobes of chick embryos. In conclusion, the procedure presently described appears to be reliable and convenient for obtaining a pure soluble nuclear fraction from a discrete amount of embryonic brain tissue.
Collapse
|
29
|
Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level. PLoS One 2009; 4:e5492. [PMID: 19424503 PMCID: PMC2675063 DOI: 10.1371/journal.pone.0005492] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/16/2009] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.
Collapse
|
30
|
NAC1, a POZ/BTB protein that functions as a corepressor. Neurochem Int 2008; 54:245-52. [PMID: 19121354 DOI: 10.1016/j.neuint.2008.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 11/20/2022]
Abstract
We now demonstrate that NAC1 acts as a corepressor for other POZ/BTB proteins. NAC1 is a POZ/BTB motif containing transcriptional repressor protein. In a mammalian two hybrid assay in neuronal (N2A) cells and non-neuronal (HEK 293T) cells, VP16 activation domain tagged NAC1 resulted in significant reversal of transcriptional inhibition with the Gal4-ZID, Gal4-BCL6, Gal4-ZF5, and kelch proteins Gal4-MAYVEN and Gal4-NRP/B fusion proteins. We also observed similar results with another corepressor, BCoR Gal4 fusion protein. NAC1 potentiated ZF5 mediated repression in Gal4-DBD fusion transient assays. GST pulldown assays further confirmed protein-protein interactions between these proteins and NAC1. Both the NAC1 isoforms demonstrated selective interaction through the POZ/BTB domain but not with the non-POZ/BTB region. Endogenous NAC1 and BCL6 physically associated in CNS regions. Strikingly, NAC1 did not interact with the pro-myelocytic leukemia zinc finger protein (PLZF), another POZ/BTB protein that is not found in the adult brain. Therefore, we conclude that NAC1 functions as a corepressor for POZ/BTB proteins expressed in the mature CNS.
Collapse
|
31
|
Berman SD, Yuan TL, Miller ES, Lee EY, Caron A, Lees JA. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development. Mol Cancer Res 2008; 6:1440-51. [PMID: 18819932 DOI: 10.1158/1541-7786.mcr-08-0176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.
Collapse
Affiliation(s)
- Seth D Berman
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
32
|
Seng S, Avraham HK, Birrane G, Jiang S, Li H, Katz G, Bass CE, Zagozdzon R, Avraham S. NRP/B mutations impair Nrf2-dependent NQO1 induction in human primary brain tumors. Oncogene 2008; 28:378-89. [PMID: 18981988 DOI: 10.1038/onc.2008.396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain tumors are associated with genetic alterations of oncogenes and tumor suppressor genes. Accumulation of reactive oxygen species (ROS) in cells leads to oxidative stress-induced damage, resulting in tumorigenesis. Here, we showed that the nuclear matrix protein nuclear restricted protein in brain (NRP/B) was colocalized and interacted with NF-E2-related factor 2 (Nrf2). During oxidative stress response, NRP/B expression and its interaction with Nrf2 were upregulated in SH-SY5Y cells. Association of NRP/B with Nrf2 was crucial for NAD(P)H:quinone oxidoreductase 1 (NQO1) expression. NRP/B was localized predominantly in the nucleus of normal brain cells, whereas in primary brain tumors NRP/B was almost exclusively contained in the cytoplasm. In addition, unlike wild-type NRP/B, the expression of NRP/B mutants isolated from primary brain tumors was found in the cytoplasm, and these mutants failed to induce Nrf2-dependent NQO1 transcription. Thus, NRP/B mutations and their altered localization resulted in changes in NRP/B function and deregulation of Nrf2-dependent NQO1 activation in brain tumors. This study provides insights into the mechanism by which the NRP/B modulates Nrf2-dependent NQO1 induction in cellular protection against ROS in brain tumors.
Collapse
Affiliation(s)
- S Seng
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Albrethsen J, Knol JC, Jimenez CR. Unravelling the nuclear matrix proteome. J Proteomics 2008; 72:71-81. [PMID: 18957335 DOI: 10.1016/j.jprot.2008.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 12/28/2022]
Abstract
The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins from cells and tissue that are extracted following a specific biochemical protocol; in brief, the soluble proteins and lipids, cytoskeleton, and chromatin elements are removed in a sequential fashion, leaving behind the proteins that compose the NM. So far, the NM has not been sufficiently verified as a biological entity and only preliminary at the molecular level. Here, we argue for a combined effort of proteomics, immunodetection and microscopy to unravel the composition and structure of the NM.
Collapse
Affiliation(s)
- Jakob Albrethsen
- OncoProteomics Laboratory, CCA 1-60, Department Medical Oncology, VUmc-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
West MD, Sargent RG, Long J, Brown C, Chu JS, Kessler S, Derugin N, Sampathkumar J, Burrows C, Vaziri H, Williams R, Chapman KB, Larocca D, Loring JF, Murai J. The ACTCellerate initiative: large-scale combinatorial cloning of novel human embryonic stem cell derivatives. Regen Med 2008; 3:287-308. [DOI: 10.2217/17460751.3.3.287] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human embryonic stem cells offer a scalable and renewable source of all somatic cell types. Human embryonic progenitor (hEP) cells are partially differentiated endodermal, mesodermal and ectodermal cell types that have not undergone terminal differentiation and express an embryonic pattern of gene expression. Here, we describe a large-scale and reproducible method of isolating a diverse library of clonally purified hEP cell lines, many of which are capable of extended propagation in vitro. Initial microarray and non-negative matrix factorization gene-expression profiling suggests that the library consists of at least 140 distinct clones and contains many previously uncharacterized cell types derived from all germ layers that display diverse embryo- and site-specific homeobox gene expression. Despite the expression of many oncofetal genes, none of the hEP cell lines tested led to tumor formation when transplanted into immunocompromised mice. All hEP lines studied appear to have a finite replicative lifespan but have longer telomeres than most fetal- or adult-derived cells, thereby facilitating their use in the manufacture of purified lineages for research and human therapy.
Collapse
Affiliation(s)
- Michael D West
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - R Geoffrey Sargent
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Jeff Long
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Colleen Brown
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Jing Song Chu
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Steven Kessler
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Nikita Derugin
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Janani Sampathkumar
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Courtney Burrows
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Homayoun Vaziri
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Roy Williams
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Karen B Chapman
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - David Larocca
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - Jeanne F Loring
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| | - James Murai
- BioTime, Inc, Alameda, CA 94502, USA
- University of California, Berkeley, CA 94720, USA
- Advanced Cell Technology, Alameda, CA 94502, USA
- Unversity of California, San Francisco, CA 94143, USA
- Ontario Cancer Institute, Toronto, M5G 2M9, Canada
| |
Collapse
|
35
|
Seng S, Avraham HK, Jiang S, Yang S, Sekine M, Kimelman N, Li H, Avraham S. The Nuclear Matrix Protein, NRP/B, Enhances Nrf2-Mediated Oxidative Stress Responses in Breast Cancer Cells. Cancer Res 2007; 67:8596-604. [PMID: 17875699 DOI: 10.1158/0008-5472.can-06-3785] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor NF-E2-related factor 2 (Nrf2) translocates into the nucleus and activates phase II genes encoding detoxification enzymes and antioxidant proteins, resulting in the protection of cells from oxidative insults. However, the involvement of Nrf2-mediated oxidative stress responses in breast cancer cells is largely unknown. Notably, during our study of the Nrf2 pathway in breast cancer cells, we observed that the nuclear matrix protein NRP/B was expressed and colocalized with Nrf2 in these cells, suggesting that NRP/B is involved in Nrf2-mediated oxidative stress responses. The expression level of NRP/B was variable in different breast cancer cells and breast cancer tissues, and was found to be localized in the nucleus. NRP/B expression was increased after exposure to the oxidative stress agent, hydrogen peroxide (H(2)O(2)), particularly in the highly aggressive MDA-MB-231 breast cancer cells. Association of NRP/B with Nrf2 in vitro and in vivo was observed in MDA-MB-231 breast cancer cells, and this association was up-regulated upon exposure to H(2)O(2), but not to sodium nitroprusside, SIN-1, and DETA-NO. NRP/B also enhanced Nrf2-mediated NAD(P)H:quinine oxidoreductase 1 promoter activity. Thus, this study reveals that NRP/B enhances oxidative stress responses in breast cancer cells via the Nrf2 pathway, identifying a novel role of nuclear matrix protein(s) in oxidative stress responses.
Collapse
Affiliation(s)
- Seyha Seng
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The electroencephalogram (EEG) recorded from the human scalp is widely used to study cognitive and brain functions in schizophrenia. Current research efforts are primarily devoted to the assessment of event-related potentials (ERPs) and event-related oscillations (EROs), extracted from the ongoing EEG, in patients with schizophrenia and in clinically unaffected individuals who, due to their family history and current mental status, are at high risk for developing schizophrenia. In this article, we discuss the potential usefulness of ERPs and EROs as genetic vulnerability markers, as pathophysiological markers, and as markers of possible ongoing progressive cognitive and cortical deterioration in schizophrenia. Our main purpose is to illustrate that these neurophysiological measures can offer valuable quantitative biological markers of basic pathophysiological mechanisms and cognitive dysfunctions in schizophrenia, yet they may not be specific to current psychiatry's diagnosis and classification. These biological markers can provide unique information on the nature and extent of cognitive and brain dysfunction in schizophrenia. Moreover, they can be utilized to gain deeper theoretical insights into illness etiology and pathophysiology and may lead to improvements in early detection and more effective and targeted treatment of schizophrenia. We conclude by addressing several key methodological, conceptual, and interpretative issues involved in this research field and by suggesting future research directions.
Collapse
Affiliation(s)
- Odin van der Stelt
- Department of Neurology II, Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | |
Collapse
|
37
|
Jiang S, Seng S, Avraham HK, Fu Y, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 2007; 282:12319-29. [PMID: 17324934 DOI: 10.1074/jbc.m701019200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated by progenitor cells that are committed to differentiating into myelin-forming cells of the central nervous system. Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by OLGs. Here, we have characterized a new member of the Kelch-related protein family termed MRP2 (for Mayven-related protein 2) that is specifically expressed in brain. MRP2/KLHL1 is expressed in oligodendrocyte precursors and mature OLGs, and its expression is up-regulated during OLG differentiation. MRP2/KLHL1 expression was abundant during the specific stages of oligodendrocyte development, as identified by A2B5-, O4-, and O1-specific oligodendrocyte markers. MRP2/KLHL1 was localized in the cytoplasm and along the cell processes. Moreover, a direct endogenous association of MRP2/KLHL1 with actin was observed, which was significantly increased in differentiated OLGs compared with undifferentiated OLGs. Overexpression of MRP2/KLHL1 resulted in a significant increase in the process extension of rat OLGs, whereas MRP2/KLHL1 antisense reduced the process length of primary rat OLGs. Furthermore, murine OLGs isolated from MRP2/KLHL1 transgenic mice showed a significant increase in the process extension of OLGs compared with control wild-type murine OLGs. These studies provide insights into the role of MRP2/KLHL1, through its interaction with actin, in the process elongation of OLGs.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Demasi MAA, Montor WR, Ferreira GB, Pimenta DC, Labriola L, Sogayar MC. Differential proteomic analysis of the anti-proliferative effect of glucocorticoid hormones in ST1 rat glioma cells. J Steroid Biochem Mol Biol 2007; 103:137-48. [PMID: 17127050 DOI: 10.1016/j.jsbmb.2006.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 08/17/2006] [Indexed: 02/02/2023]
Abstract
Glucocorticoid hormones (GCs) exert a potent anti-proliferative activity on several cell types. The classic molecular mechanism of GCs involves modulation of the activity of the glucocorticoids receptor, a transcriptional regulator. However, the anti-proliferative effect of GCs may also involve modulation of processes such as translation, subcellular localization and post-translational modifications, which are not reflected at the mRNA level. To investigate these potential effects of GCs, we employed the proteomic approach (two-dimensional electrophoresis and mass spectrometry) and the ST1 cells, obtained from the C6 rat glioma cell line, as a model. GC treatment leads ST1 cells to a complete transformed-to-normal phenotypic reversion and loss of their tumorigenic potential. By comparing sets of 2D nuclear protein profiles of ST1 cells treated (or not) with hydrocortisone (Hy), 13 polypeptides displaying >or=two-fold difference in abundance upon Hy treatment were found. Five of these polypeptides were identified by peptide mass fingerprinting, including Annexin 2 (ANX2), hnRNP A3 and Ubiquitin. Evidence obtained by Western blot analysis indicates that ANX2 is present in the nucleus and has its subcellular localization modulated by GC-treatment of ST1 cells. Our findings indicate complementary mechanisms contributing to the regulation of gene expression associated with ST1 cells' response to GCs.
Collapse
Affiliation(s)
- Marcos A A Demasi
- Instituto de Química, Universidade de São Paulo, 05508-900 SP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 2007; 8:26. [PMID: 17244347 PMCID: PMC1796866 DOI: 10.1186/1471-2164-8-26] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.
Collapse
|
40
|
Seng S, Avraham HK, Jiang S, Venkatesh S, Avraham S. KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 2006; 26:8371-84. [PMID: 16982692 PMCID: PMC1636797 DOI: 10.1128/mcb.02167-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/09/2005] [Accepted: 09/03/2006] [Indexed: 11/20/2022] Open
Abstract
The actin-based cytoskeleton is essential for the generation and maintenance of cell polarity, cellular motility, and the formation of neural cell processes. MRP2 is an actin-binding protein of the kelch-related protein family. While MRP2 has been shown to be expressed specifically in brain, its function is still unknown. Here, we report that in neuronal growth factor (NGF)-induced PC12 cells, MRP2 was expressed along the neurite processes and colocalized with Talin at the growth cones. MRP2 mRNA and protein levels were up-regulated in PC12 cells following NGF stimulation. Moreover, treatment of PC12 cells with interfering RNAs for MRP2 and glycogen synthase kinase 3beta (GSK3beta) resulted in the inhibition of neurite outgrowth. A significant decrease in MRP2 expression levels was observed following GSK3beta inhibition, which was correlated with the inhibited neurite outgrowth, while GSK3beta overexpression was found to increase MRP2 expression levels. MRP2 interacted with GSK3beta through its NH2 terminus containing the BTB domain, and these molecules colocalized along neurite processes and growth cones in differentiated PC12 cells and rat primary hippocampal neurons. Additionally, increased associations of MRP2 with GSK3beta and MRP2 with actin were observed in the NGF-treated PC12 cells. Thus, this study provides, for the first time, insights into the involvement of MRP2 in neurite outgrowth, which occurs in a GSK3beta-dependent manner.
Collapse
Affiliation(s)
- Seyha Seng
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Bredholt G, Storstein A, Haugen M, Krossnes BK, Husebye E, Knappskog P, Vedeler CA. Detection of Autoantibodies to the BTB-kelch Protein KLHL7 in Cancer Sera. Scand J Immunol 2006; 64:325-35. [PMID: 16918702 DOI: 10.1111/j.1365-3083.2006.01821.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the study was to search for novel targets of autoantibodies in patients with paraneoplastic neurological syndromes (PNS). PNS are mediated by immune reactions against autoantigen(s) shared by the cancer cells and the nervous system. By serological screening of a rat cerebellum cDNA expression library using anti-Hu-positive sera from three patients with paraneoplastic encephalomyelitis (PEM), we identified an open reading frame encoding an isoform of the BTB-kelch protein KLHL7. Immunohistochemical studies demonstrated that the KLHL7 protein is expressed in the nuclei of neurones, but not in other tissues including various cancers. However, the KLHL7 protein was detected in the nuclei of cancer cell lines. Antibodies to KLHL7 were detected by an immunoprecipitation assay in sera from 12 of 254 (4.7%) patients with various cancers and 2 of 170 blood donors (1.2%). None of 50 sera from patients with multiple sclerosis were positive for KLHL7 antibodies. Sixteen patients with classical PNS and anti-Hu or anti-Yo antibodies were also negative for KLHL7 antibodies. Seven cancer patients with KLHL7 antibodies had various signs of neurological disease that could be related to cancer, whereas the remaining five seropositive cancer patients had no clinical signs of possible PNS. The present results indicate that KLHL7 antibodies are associated with various cancers, and in some patients also with neurological disease. Whether KLHL7 antibodies can be used as paraneoplastic markers for PNS remains to be determined.
Collapse
Affiliation(s)
- G Bredholt
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
42
|
Lu L, Neff F, Fischer DA, Henze C, Hirsch EC, Oertel WH, Schlegel J, Hartmann A. Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: a post-mortem study in human control subjects. Neurobiol Dis 2006; 23:409-21. [PMID: 16753304 DOI: 10.1016/j.nbd.2006.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/27/2006] [Accepted: 04/02/2006] [Indexed: 10/24/2022] Open
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic (DA) neurons in the human midbrain, which varies greatly among mesencephalic subregions. The genetic expression profiles of mesencephalic DA neurons particularly prone to degenerate during PD (nigrosome 1 within the substantia nigra pars compacta-SNpc) and those particularly resistant in the disease course (central grey substance-CGS) were compared in five control subjects by immuno-laser capture microdissection followed by RNA arbitrarily primed PCR. 8 ESTs of interest were selected for analysis by real time quantitative reverse transcription PCR. DA neurons in the CGS preferentially expressed implicated in cell survival (7 out of 8 genes selected), whereas SNpc DA neurons preferentially expressed one gene making them potentially susceptible to undergo cell death in PD. We propose that factors making CGS DA neurons more resistant may be helpful in protecting SNpc DA neurons against a pathological insult.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Neurology, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wouters MM, Neefs JM, Kerchove d'Exaerde AD, Vanderwinden JM, Smans KA. Downregulation of two novel genes in Sl/Sld and W(LacZ)/Wv mouse jejunum. Biochem Biophys Res Commun 2006; 346:491-500. [PMID: 16765319 DOI: 10.1016/j.bbrc.2006.05.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
Interstitial cells of Cajal (ICC) are the so-called pacemaker cells of the gut. W(LacZ)/Wv and Sl/Sld mice lack ICC surrounding the myenteric plexus (MP) in the jejunum. We compared the gene expression profile of wild type (WT) and W(LacZ)/Wv and Sl/Sld mice using suppression subtractive hybridization (SSH), generating a cDNA library of 1303 clones from which 48 unique sequences were differentially expressed with Southern blot. Among them, we identified heme oxygenase2, TROY, and phospholamban in ICC using immunohistochemistry. Using RT-qPCR, c-Kit and two new transcripts Dithp and prenylcysteine oxidase1 were significantly lower expressed in Sl/Sld and W(LacZ)/Wv versus WT. Prenylcysteine oxidase1 appeared cytotoxic for COS-7 cells and was highly expressed in liver while Dithp was mainly expressed in small intestine. The combination of SSH, Southern blot, RT-qPCR, and immunohistochemistry turned out to be a useful approach to identify rarely expressed genes and genes with small differences in expression.
Collapse
Affiliation(s)
- Mira M Wouters
- Department of Internal Medicine, Johnson and Johnson, Pharmaceutical Research and Development, A Subdivision of Janssen Pharmaceutics, Beerse, Belgium
| | | | | | | | | |
Collapse
|
44
|
Kim TA, Jiang S, Seng S, Cha K, Avraham HK, Avraham S. The BTB domain of the nuclear matrix protein NRP/B is required for neurite outgrowth. J Cell Sci 2005; 118:5537-48. [PMID: 16306221 DOI: 10.1242/jcs.02643] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neuronal nuclear matrix protein, NRP/B, contains a BTB domain and kelch repeats and is expressed in primary neurons but not in primary glial cells. To examine the function of NRP/B in neurons, we analyzed the structure/function of the NRP/B-BTB domain and its role in neurite outgrowth. Based on three-dimensional modeling of NRP/B, we generated an NRP/B-BTB mutant containing three mutations in the conserved amino acids D47A, H60A and R61D that was termed BTB mutant A. BTB mutant A significantly reduced the dimerization of NRP/B compared to wild-type NRP/B. The NRP/B-BTB domain was required for nuclear localization and mediated the association of NRP/B with p110RB through the TR subdomain within the B pocket of p110RB. Overexpression of wild-type NRP/B and NRP/B-BTB domain significantly induced neurite outgrowth in PC12 cells and enhanced the G0-G1 cell population by ∼23% compared to the control cells, whereas NRP/B-BTB mutant A reduced neurite outgrowth by 70-80%, and inhibited NRP/B-p110RB association. Single cell microinjection of NRP/B-specific antibodies also blocked the neurite outgrowth of PC12 cells upon NGF stimulation. Interference of NRP/B expression by small interfering RNA (NRP/B-siRNA) inhibited neurite outgrowth and suppressed the NGF-induced outgrowth of neurites in PC12 cells. Additionally, p110RB phosphorylation at serine residue 795 was significantly reduced in PC12 cells treated with NRP/B siRNA compared to those treated with control GFP-siRNA, indicating that p110RB is a downstream target of NRP/B. Thus, the BTB domain of NRP/B regulates neurite outgrowth through its interaction with the TR subdomain within the B pocket of p110RB, and the conserved amino acids D47A, H60A and R61D within this domain of NRP/B are crucial residues for neurite extension in neuronal cells. These findings support a role for the BTB-domain of NRP/B as an important regulator of neuronal differentiation.
Collapse
Affiliation(s)
- Tae-Aug Kim
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Williams SK, Spence HJ, Rodgers RR, Ozanne BW, Fitzgerald U, Barnett SC. Role of Mayven, a kelch-related protein in oligodendrocyte process formation. J Neurosci Res 2005; 81:622-31. [PMID: 16035103 DOI: 10.1002/jnr.20588] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oligodendrocyte function is central to the maintenance of the normal nervous system in health and disease. In particular, process formation and the generation of large sheets of myelin are important components of their biological properties. We have investigated the role of Mayven, a recently identified member of the kelch family of proteins, in process extension in oligodendrocyte-lineage cells. The kelch superfamily consists of a large number of structurally diverse proteins characterized by the presence of a kelch-repeat domain. Other members of this family associate with the actin cytoskeleton and regulate process length. Mayven is expressed predominantly in the CNS, has six kelch repeats, and is an actin-binding protein, associating with actin through its kelch-repeat domain. We have cloned rat Mayven and examined its role in the oligodendrocyte lineage by using RT-PCR, RNA interference, and a truncated, dominant-negative myc-tagged Mayven. Oligodendrocyte precursors treated with siRNA directed to Mayven have reduced process length, but there was no change in migration or expression of differentiation markers. Immunocytochemistry demonstrated that Mayven associated with F-actin at cell tips. Finally, overexpression of truncated Mayven lacking the SH3 ligand binding domain in oligodendrocyte-lineage cells resulted in shorter process formation, which was augmented when the cells were plated on laminin and fibronectin. These data suggest a role for Mayven in oligodendrocyte precursor cell process formation.
Collapse
Affiliation(s)
- Sarah K Williams
- Division of Clinical Neuroscience, University of Glasgow, Beatson Institute, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A. Gene expression profiling of Lewy body-bearing neurons in Parkinson's disease. Exp Neurol 2005; 195:27-39. [PMID: 15944136 DOI: 10.1016/j.expneurol.2005.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/02/2005] [Accepted: 04/20/2005] [Indexed: 12/21/2022]
Abstract
Lewy bodies (LB) are a pathological hallmark of Parkinson's disease (PD). Whether LBs are neuroprotective, cytotoxic, or an age-related epiphenomenon is still debated. In the present study, the genetic fingerprints of mesencephalic dopaminergic (DA) neurons containing LBs versus mesencephalic DA neurons not containing LBs were compared in five PD patients. Total RNA from single neurons of both neuronal subpopulations was obtained by immuno-laser capture microdissection. Subsequently, RNA arbitrarily primed PCR was employed to generate expression profiles from the extracted RNA. Differentially displayed polymorphic fragments were dissected from silver-stained polyacrylamide gels. Most of these expressed sequence tags (ESTs) were homologous to known human sequences (56/64, 87.5%). Based on the potential significance of individual ESTs in neurodegenerative disorders, 5 ESTs of interest were selected for further quantitative expression analysis by real-time quantitative reverse transcription PCR (rtq RT-PCR). DA neurons without LBs preferentially expressed molecules beneficial for cell survival, whereas genes preferentially expressed in DA neurons containing LBs may support a cytotoxic role of LBs. Thus, we favor the view that LB-positive DA neurons are sicker than their LB-negative counterparts, and that inhibition of LB formation may indeed represent a therapeutic strategy in PD.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Neurology, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bu X, Avraham HK, Li X, Lim B, Jiang S, Fu Y, Pestell RG, Avraham S. Mayven induces c-Jun expression and cyclin D1 activation in breast cancer cells. Oncogene 2005; 24:2398-409. [PMID: 15735724 DOI: 10.1038/sj.onc.1208466] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mayven is a member of the kelch-related superfamily of proteins, characterized by a series of 'kelch' repeats at their carboxyl terminus and a BTB/POZ domain at their NH2-terminus. Little is known about the role of Mayven in cancer. Here, we report that Mayven expression was abundant and diffuse in primary human epithelial breast tumor cells as compared to normal breast epithelial cells, where Mayven was detected in the normal breast layer of the mammary ducts. Overexpression of Mayven resulted in an induction of c-Jun protein levels, as well as increased AP-1 (activating protein 1) transcriptional activity in MCF-7 and T47D breast cancer cells through its BTB/POZ domain. Furthermore, Mayven activated c-Jun N-terminal kinase in breast cancer cells. Mayven, through its BTB/POZ domain, induced cyclin D1 expression and cyclin D1 promoter activity and promoted cell cycle progression from the G1 to S phase. MCF-7 cells transduced with the recombinant retroviral sense Mayven (pMIG-W-Mayven) showed significant induction of c-Jun and cyclin D1 mRNA expression and activities as compared to the retroviral vector alone, while MCF-7 cells transduced by the recombinant retroviral antisense Mayven (pMIG-W-Mayven-AS) demonstrated a significant decrease in c-Jun and cyclin D1 expression and activities. Given the crucial functions of cyclin D1 and AP-1 signaling in oncogenesis, our results strongly suggest that overexpression of Mayven may promote tumor growth through c-Jun and cyclin D1.
Collapse
Affiliation(s)
- Xia Bu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inoue A, Kang M, Fujimura L, Takamori Y, Sasagawa K, Itoh H, Tokuhisa T, Hatano M. Overexpression of Nd1-s, a variant form of new kelch family protein, perturbs the cell cycle progression of fibroblasts. DNA Cell Biol 2005; 24:30-4. [PMID: 15684717 DOI: 10.1089/dna.2005.24.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The murine Nd1 gene encodes two forms of protein, Nd1-L and Nd1-S, both of which share the BTB/POZ domain, but Nd1-S lacks the kelch repeats. Although Nd1-L ubiquitously expresses, localizes in the cytoplasm and functions as a stabilizer of actin filaments, expression and function of Nd1-S were unknown. Here we show that Nd1-S were expressed in all tissues examined and localized in the nucleus as a speckled-like pattern. Furthermore, overexpression of Nd1-S perturbed cell growth of NIH3T3 cells at the G1/S phase of the cell cycle. These results suggest that Nd1-S may play a role in cell cycle progression in the nucleus.
Collapse
Affiliation(s)
- Atsushi Inoue
- Department of Developmental Genetics (H2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chadalavada RSV, Houldsworth J, Olshen AB, Bosl GJ, Studer L, Chaganti RSK. Transcriptional program of bone morphogenetic protein-2-induced epithelial and smooth muscle differentiation of pluripotent human embryonal carcinoma cells. Funct Integr Genomics 2005; 5:59-69. [PMID: 15690164 DOI: 10.1007/s10142-005-0132-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 08/23/2004] [Accepted: 12/03/2004] [Indexed: 12/23/2022]
Abstract
Pluripotent human embryonal carcinoma NTera2/cloneD1 (NT2/D1) cells respond to multiple vertebrate patterning factors and offer a unique model system to investigate the signaling events associated with lineage determination and cell differentiation. Here, we define the temporal changes in global gene expression patterns in NT2/D1 cells upon treatment with bone morphogenetic protein-2 (BMP-2). Exposure to BMP-2 rapidly induced the expression of several transcription factors involved in establishing non-neural ectodermal fate followed by the appearance of epithelial-specific markers. Subsequent loss of stem cell markers was coupled to gene expression changes associated with decreased proliferative activity. Temporal clustering of gene expression patterns revealed a concurrent down-regulation of multiple transcripts involved in neurogenesis, neurite outgrowth, and axonal guidance, suggesting that the BMP-mediated differentiation process involves pro-epithelial as well as anti-neurogenic mechanisms. In addition, increased expression of smooth muscle markers both by gene expression and immunohistochemistry was detected. Several neural crest markers were induced preceding such a differentiation, compatible with a neural crest origin of NT2/D1-derived smooth muscle cells. Comparison of changes in transcript expression between BMP-2-induced epithelial versus all-trans-retinoic acid (ATRA)-induced neural differentiation revealed potential candidates for regulation of BMP-2 signaling and suppression of neural fate by BMP-2. This study suggests that BMP-2-induced differentiation of NT2/D1 cells provides a powerful assay to study early human epithelial and smooth muscle development.
Collapse
|
50
|
Mai A, Jung SK, Yonehara S. hDKIR, a human homologue of the Drosophila kelch protein, involved in a ring-like structure. Exp Cell Res 2004; 300:72-83. [PMID: 15383316 DOI: 10.1016/j.yexcr.2004.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 06/14/2004] [Indexed: 10/26/2022]
Abstract
We have previously purified and cloned an apoptosis-inducing protein (AIP) derived from fish infected with the anisakis simplex. Recently, we identified a series of AIP-responsive genes in the HL-60 cell line using a subtractive hybridization method. Here we report the molecular cloning and characterization of one of these genes, which encodes a novel human kelch protein containing 568 amino acid residues, termed hDKIR. The Drosophila Kelch protein localizes to a ring canal structure, which is required for oocyte development. When hDKIR was expressed in cultured-mammalian cells, hDKIR localized to a ring-like structure. Furthermore, when coexpressed with Mayven or Keap1, hDKIR bound to Mayven and recruited Mayven into ring-like structures perfectly. This indicates that kelch homologues can interact with each other in a specific manner and such interaction can affect the subcellular localization of kelch proteins. Finally, domain analysis revealed that both the N-terminal POZ (poxviruses and zinc fingers) and intervening region (IVR) domains of hDKIR are essential for ring-like structure activity, suggesting that the development of the ring-like structure is independent of the ability to bind actin.
Collapse
Affiliation(s)
- Angela Mai
- M, F, L Science Center, Tensei-suisan Co., Saga 847-0193, Japan
| | | | | |
Collapse
|