1
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
2
|
A link between agrin signalling and Ca v3.2 at the neuromuscular junction in spinal muscular atrophy. Sci Rep 2022; 12:18960. [PMID: 36347955 PMCID: PMC9643518 DOI: 10.1038/s41598-022-23703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
SMN protein deficiency causes motoneuron disease spinal muscular atrophy (SMA). SMN-based therapies improve patient motor symptoms to variable degrees. An early hallmark of SMA is the perturbation of the neuromuscular junction (NMJ), a synapse between a motoneuron and muscle cell. NMJ formation depends on acetylcholine receptor (AChR) clustering triggered by agrin and its co-receptors lipoprotein receptor-related protein 4 (LRP4) and transmembrane muscle-specific kinase (MuSK) signalling pathway. We have previously shown that flunarizine improves NMJs in SMA model mice, but the mechanisms remain elusive. We show here that flunarizine promotes AChR clustering in cell-autonomous, dose- and agrin-dependent manners in C2C12 myotubes. This is associated with an increase in protein levels of LRP4, integrin-beta-1 and alpha-dystroglycan, three agrin co-receptors. Furthermore, flunarizine enhances MuSK interaction with integrin-beta-1 and phosphotyrosines. Moreover, the drug acts on the expression and splicing of Agrn and Cacna1h genes in a muscle-specific manner. We reveal that the Cacna1h encoded protein Cav3.2 closely associates in vitro with the agrin co-receptor LRP4. In vivo, it is enriched nearby NMJs during neonatal development and the drug increases this immunolabelling in SMA muscles. Thus, flunarizine modulates key players of the NMJ and identifies Cav3.2 as a new protein involved in the NMJ biology.
Collapse
|
3
|
Jing H, Chen P, Hui T, Yu Z, Zhou J, Fei E, Wang S, Ren D, Lai X, Li B. Synapse-specific Lrp4 mRNA enrichment requires Lrp4/MuSK signaling, muscle activity and Wnt non-canonical pathway. Cell Biosci 2021; 11:105. [PMID: 34090516 PMCID: PMC8180081 DOI: 10.1186/s13578-021-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction (NMJ) is a peripheral synapse critical to muscle contraction. Like acetylcholine receptors (AChRs), many essential proteins of NMJ are extremely concentrated at the postjunctional membrane. However, the mechanisms of synapse-specific concentration are not well understood; furthermore, it is unclear whether signaling molecules critical to NMJ formation and maintenance are also locally transcribed. Results We studied the β-gal activity encoded by a lacZ cassette driven by the promoter of the Lrp4 gene. As reported for Lrp4 mRNA, β-gal was in the central region in embryonic muscles and at the NMJ after its formation. However, β-gal was no longer in the central areas of muscle fibers in Lrp4 or MuSK mutant mice, indicating a requirement of Lrp4/MuSK signaling. This phenotype could be rescued by transgenic expression of LRP4 with a transmembrane domain but not soluble ECD in Lrp4 mutant mice. β-gal and AChR clusters were distributed in a broader region in lacZ/ECD than that of heterozygous lacZ/+ mice, indicating an important role of the transmembrane domain in Lrp4 signaling. Synaptic β-gal activity became diffused after denervation or treatment with µ-conotoxin, despite its mRNA was increased, indicating synaptic Lrp4 mRNA enrichment requires muscle activity. β-gal was also diffused in aged mice but became re-concentrated after muscle stimulation. Finally, Lrp4 mRNA was increased in C2C12 myotubes by Wnt ligands in a manner that could be inhibited by RKI-1447, an inhibitor of ROCK in Wnt non-canonical signaling. Injecting RKI-1447 into muscles of adult mice diminished Lrp4 synaptic expression. Conclusions This study demonstrates that synapse-specific enrichment of Lrp4 mRNA requires a coordinated interaction between Lrp4/MuSK signaling, muscle activity, and Wnt non-canonical signaling. Thus, the study provides a new mechanism for Lrp4 mRNA enrichment. It also provides a potential target for the treatment of NMJ aging and other NMJ-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00619-z.
Collapse
Affiliation(s)
- Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zheng Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jin Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Human Aging Research Institute, Nanchang University, Nanchang, 330031, China
| | - Erkang Fei
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shunqi Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
5
|
Kaufman CD, Liu SC, Cvetkovic C, Lee CA, Naseri Kouzehgarani G, Gillette R, Bashir R, Gillette MU. Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator. APL Bioeng 2020; 4:026104. [PMID: 32548540 PMCID: PMC7190368 DOI: 10.1063/1.5121440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/26/2020] [Indexed: 01/25/2023] Open
Abstract
Three-dimensional (3D) biomimetic systems hold great promise for the study of biological systems in vitro as well as for the development and testing of pharmaceuticals. Here, we test the hypothesis that an intact segment of lumbar rat spinal cord will form functional neuromuscular junctions (NMJs) with engineered, 3D muscle tissue, mimicking the partial development of the peripheral nervous system (PNS). Muscle tissues are grown on a 3D-printed polyethylene glycol (PEG) skeleton where deflection of the backbone due to muscle contraction causes the displacement of the pillar-like "feet." We show that spinal cord explants extend a robust and complex arbor of motor neurons and glia in vitro. We then engineered a "spinobot" by innervating the muscle tissue with an intact segment of lumbar spinal cord that houses the hindlimb locomotor central pattern generator (CPG). Within 7 days of the spinal cord being introduced to the muscle tissue, functional neuromuscular junctions (NMJs) are formed, resulting in the development of an early PNS in vitro. The newly innervated muscles exhibit spontaneous contractions as measured by the displacement of pillars on the PEG skeleton. Upon chemical excitation, the spinal cord-muscle system initiated muscular twitches with a consistent frequency pattern. These sequences of contraction/relaxation suggest the action of a spinal CPG. Chemical inhibition with a blocker of neuronal glutamate receptors effectively blocked contractions. Overall, these data demonstrate that a rat spinal cord is capable of forming functional neuromuscular junctions ex vivo with an engineered muscle tissue at an ontogenetically similar timescale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. U. Gillette
- Author to whom correspondence should be addressed:. Tel.: 217-244-1355
| |
Collapse
|
6
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
7
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
8
|
Cescon M, Gregorio I, Eiber N, Borgia D, Fusto A, Sabatelli P, Scorzeto M, Megighian A, Pegoraro E, Hashemolhosseini S, Bonaldo P. Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol 2018; 136:483-499. [PMID: 29752552 DOI: 10.1007/s00401-018-1860-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.
Collapse
|
9
|
Gaviglio AL, Knelson EH, Blobe GC. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. FASEB J 2017; 31:1903-1915. [PMID: 28174207 DOI: 10.1096/fj.201600828r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.
Collapse
Affiliation(s)
- Angela L Gaviglio
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Erik H Knelson
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; and
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
11
|
Brenner HR, Akaaboune M. Recycling of acetylcholine receptors at ectopic postsynaptic clusters induced by exogenous agrin in living rats. Dev Biol 2014; 394:122-8. [PMID: 25093969 DOI: 10.1016/j.ydbio.2014.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.
Collapse
Affiliation(s)
- Hans Rudolf Brenner
- Department of Biomedicine, University of Basel, Pharmazentrum, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
The neuromuscular junction: Selective remodeling of synaptic regulators at the nerve/muscle interface. Mech Dev 2013; 130:402-11. [DOI: 10.1016/j.mod.2012.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
|
13
|
The tanapoxvirus 15L protein is a virus-encoded neuregulin that promotes viral replication in human endothelial cells. J Virol 2012; 87:3018-26. [PMID: 23269801 DOI: 10.1128/jvi.02112-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on large double-stranded DNA (dsDNA) viruses such as poxviruses have been helpful in identifying a number of viral and cellular growth factors that contribute to our broad understanding of virus-host interaction. Orthopoxviruses and leporipoxviruses are among the most studied viruses in this aspect. However, tanapoxvirus (TPV), a member of the genus Yatapoxvirus, still remains largely unexplored, as the only known hosts for this virus are humans and monkeys. Here, we describe the initial characterization of an epidermal growth factor (EGF)-like growth factor mimicking human neuregulin from TPV, expressed by the TPV-15L gene. Assays using a baculovirus-expressed and tagged TPV-15L protein demonstrated the ability to phosphorylate neuregulin receptors. Neuregulins represent a large family of EGF-like growth factors that play important roles in embryonic endocardium development, Schwann and oligodendrocyte survival and differentiation, localized acetylcholine receptor expression at the neuromuscular junction, and epithelial morphogenesis. Interestingly, certain neuregulin molecules are able to target specific tissues through interactions with heparin sulfate proteoglycans via an immunoglobulin (Ig)-like domain. Analyses of TPV-15L revealed no Ig-like domain, but it retains the ability to bind heparin and phosphorylate neuregulin receptors, providing compelling evidence that TPV-15L is a functional mimetic of neuregulin. TPV-15L knockout virus experiments demonstrate that the virus replicates in human umbilical vein endothelial cells less efficiently than wild-type TPV-Kenya, indicating that this is a nonessential protein for virus viability but can serve a stimulatory role for replication in some cultured cells. However, the precise role of this protein in host-virus interaction still remains to be deduced.
Collapse
|
14
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
15
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
16
|
Bangratz M, Sarrazin N, Devaux J, Zambroni D, Echaniz-Laguna A, René F, Boërio D, Davoine CS, Fontaine B, Feltri ML, Benoit E, Nicole S. A mouse model of Schwartz-Jampel syndrome reveals myelinating Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2040-55. [PMID: 22449950 DOI: 10.1016/j.ajpath.2012.01.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
Abstract
Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.
Collapse
Affiliation(s)
- Marie Bangratz
- INSERM, U975, Research Center of the Brain and Spinal Cord Institute, U975, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmidt N, Akaaboune M, Gajendran N, Martinez-Pena y Valenzuela I, Wakefield S, Thurnheer R, Brenner HR. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin. ACTA ACUST UNITED AC 2011; 195:1171-84. [PMID: 22184199 PMCID: PMC3246897 DOI: 10.1083/jcb.201107083] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulin/ErbB signaling maintains high efficacy of synaptic transmission by stabilizing the postsynaptic apparatus via phosphorylation of α-dystrobrevin1. Neuregulin (NRG)/ErbB signaling is involved in numerous developmental processes in the nervous system, including synapse formation and function in the central nervous system. Although intensively investigated, its role at the neuromuscular synapse has remained elusive. Here, we demonstrate that loss of neuromuscular NRG/ErbB signaling destabilized anchoring of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane and that this effect was caused by dephosphorylation of α-dystrobrevin1, a component of the postsynaptic scaffold. Specifically, in mice in which NRG signaling to muscle was genetically or pharmacologically abolished, postsynaptic AChRs moved rapidly from the synaptic to the perisynaptic membrane, and the subsynaptic scaffold that anchors the AChRs was impaired. These defects combined compromised synaptic transmission. We further show that blockade of NRG/ErbB signaling abolished tyrosine phosphorylation of α-dystrobrevin1, which reduced the stability of receptors in agrin-induced AChR clusters in cultured myotubes. Our data indicate that NRG/ErbB signaling maintains high efficacy of synaptic transmission by stabilizing the postsynaptic apparatus via phosphorylation of α-dystrobrevin1.
Collapse
Affiliation(s)
- Nadine Schmidt
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Luckman SP, Gilhus NE, Romi F. Matrix metalloproteinase-3 in myasthenia gravis compared to other neurological disorders and healthy controls. Autoimmune Dis 2011; 2011:151258. [PMID: 21826262 PMCID: PMC3150147 DOI: 10.4061/2011/151258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/16/2011] [Indexed: 11/21/2022] Open
Abstract
MMP-3 is capable of degrading a variety of proteins, including agrin, which plays a critical role in neuromuscular signaling by controlling acetylcholine receptor clustering. High MMP-3 levels in a proportion of myasthenia gravis (MG) patients have been reported. A pathogenic role of MMP-3 in other neurological disorders has been suggested but not proven. We have therefore examined the levels of MMP-3 in 124 MG patients and compared them to 59 multiple sclerosis (MS) patients, 74 epilepsy patients, 33 acute stroke patients, and 90 healthy controls. 15.3% of the patients in the MG group were MMP-3-positive (defined as higher than cutoff value 48 ng/mL) with very high mean MMP-3 concentration (79.9 ng/mL), whereas the proportion of MMP-3 positive patients in the MS (3.4%), epilepsy (6.7%), stroke (0%), and the control group (4.4%) was significantly lower. Mean MMP-3 concentration in the total MG group (25.5 ng/mL) was significantly higher than in the MS (16.6 ng/mL) and stroke (11.7 ng/mL) groups, but did not differ significantly from the epilepsy (19.4 ng/mL) and the control group (23.4 ng/mL). MMP-3 may have a specific pathogenic effect in MG in addition to being associated with autoimmune diseases in general.
Collapse
Affiliation(s)
- Steven P Luckman
- Section for Neurology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | | | | |
Collapse
|
19
|
Nielsen J, Kulahin N, Walmod PS. Extracellular protein interactions mediated by the neural cell adhesion molecule, NCAM: heterophilic interactions between NCAM and cell adhesion molecules, extracellular matrix proteins, and viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:23-53. [PMID: 20017013 DOI: 10.1007/978-1-4419-1170-4_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Janne Nielsen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
20
|
Nicolino S, Panetto A, Raimondo S, Gambarotta G, Guzzini M, Fornaro M, Battiston B, Tos P, Geuna S, Perroteau I. Denervation and reinnervation of adult skeletal muscle modulate mRNA expression of neuregulin-1 and ErbB receptors. Microsurgery 2009; 29:464-72. [DOI: 10.1002/micr.20636] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Pankonin MS, Sohi J, Kamholz J, Loeb JA. Differential distribution of neuregulin in human brain and spinal fluid. Brain Res 2008; 1258:1-11. [PMID: 19150438 DOI: 10.1016/j.brainres.2008.12.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 12/01/2008] [Accepted: 12/12/2008] [Indexed: 01/08/2023]
Abstract
The neuregulins are a family of polypeptide factors implicated in a wide range of neurological and psychiatric disorders including multiple sclerosis, schizophrenia, and Alzheimer's disease. Many alternatively-spliced forms of the NRG1 gene are released as soluble factors that can diffuse to near and distant sites within the nervous system where they can accumulate through binding to highly specific heparan-sulfate proteoglycans in the extracellular matrix. Here we have determined the sites of synthesis and accumulation of heparin-binding neuregulin forms in human neocortex, white matter, cerebral spinal fluid, and serum by immunostaining and measurement of neuregulin activity. While neuregulin precursors are expressed predominately within cortical neurons, soluble neuregulin accumulates preferentially on the surface of white matter astrocytes. Consistently, neuregulin activity can be released from the extracellular matrix of human brain by protease treatment. Neuregulin activity is also detectable in human cerebral spinal fluid where its expression appears to be altered in neuronal disorders. While cerebral spinal fluid neuregulin levels were unaltered in patients with multiple sclerosis, they were slightly reduced in amyotrophic lateral sclerosis and Parkinson's disease (p<0.15), but significantly increased in Alzheimer's disease (p<0.01). While not detected in human serum, a novel neuregulin antagonist activity was identified in human serum that could have prevented its detection. These results suggest that human neuregulin is selectively targeted from cortical neurons to white matter extracellular matrix where it exists in steady-state equilibrium with cerebral spinal fluid where it has the potential to serve as a biological marker in human neuronal disorders.
Collapse
Affiliation(s)
- Mark S Pankonin
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201 , USA
| | | | | | | |
Collapse
|
22
|
Nielsen J, Kulahin N, Walmod PS. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Romi FR, Gilhus NE, Luckman SP. Serum matrix metalloproteinase-3 levels are elevated in myasthenia gravis. J Neuroimmunol 2008; 195:96-9. [PMID: 18262287 DOI: 10.1016/j.jneuroim.2007.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Fredrik R Romi
- Department of Neurology, Haukeland University Hospital, N5021 Bergen, Norway
| | | | | |
Collapse
|
24
|
AChR channel conversion and AChR-adjusted neuronal survival during embryonic development. Mol Cell Neurosci 2008; 37:634-45. [DOI: 10.1016/j.mcn.2007.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/16/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022] Open
|
25
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Mummery RS, Mulloy B, Rider CC. The binding of human betacellulin to heparin, heparan sulfate and related polysaccharides. Glycobiology 2007; 17:1094-103. [PMID: 17673511 DOI: 10.1093/glycob/cwm082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.
Collapse
Affiliation(s)
- Rosemary S Mummery
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, UK
| | | | | |
Collapse
|
27
|
Abstract
At the developing vertebrate neuromuscular junction, neuregulins are growth/differentiation factors essential for terminal Schwann cell survival. Neuregulins have also been thought as the critical signals responsible for the increased transcription of acetylcholine receptor subunit genes at the neuromuscular synapse. This latter role is now highly controversial. This article reviews the evidence that has shaped the views of the neuregulins and how these views have been challenged. The most recent experiments indicate that neuregulin signaling to postsynaptic muscle fibers may modulate, rather than determine, acetylcholine receptor expression at the neuromuscular junction. Based on findings from my lab and those of others, I propose that this modulation might involve novel posttranscriptional molecular mechanisms. Finally, I also suggest that neuregulin signaling may have an important role to play in mediating the response of adult terminal Schwann cells to denervation.
Collapse
Affiliation(s)
- Mendell Rimer
- Section of Neurobiology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-0248, USA.
| |
Collapse
|
28
|
Abstract
The localisation of transcripts to specific regions of the cell probably occurs in all cell types and has many distinct functions that go from the control of body axis formation to learning and memory. mRNAs can be localised by a variety of mechanisms including local protection from degradation, diffusion to a localised anchor, and active transport by motor proteins along the cytoskeleton. In this review, I consider the evidence for each of these mechanisms using a limited, but illustrative, number of examples of localised mRNAs.
Collapse
Affiliation(s)
- Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street CB2 3EJ, United Kingdom.
| |
Collapse
|
29
|
Ravel-Chapuis A, Vandromme M, Thomas JL, Schaeffer L. Postsynaptic chromatin is under neural control at the neuromuscular junction. EMBO J 2007; 26:1117-28. [PMID: 17304221 PMCID: PMC1852850 DOI: 10.1038/sj.emboj.7601572] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/04/2007] [Indexed: 12/25/2022] Open
Abstract
In adult skeletal muscle, the nicotinic acetylcholine receptor (AChR) specifically accumulates at the neuromuscular junction, to allow neurotransmission. This clustering is paralleled by a compartmentalization of AChR genes expression to subsynaptic nuclei, which acquire a unique gene expression program and a specific morphology in response to neural cues. Our results demonstrate that neural agrin-dependent reprogramming of myonuclei involves chromatin remodelling, histone hyperacetylation and histone hyperphosphorylation. Activation of AChR genes in subsynaptic nuclei is mediated by the transcription factor GABP. Here we demonstrate that upon activation, GABP recruits the histone acetyl transferase (HAT) p300 on the AChR epsilon subunit promoter, whereas it rather recruits the histone deacetylase HDAC1 when the promoter is not activated. Moreover, the HAT activity of p300 is required in vivo for AChR expression. GABP therefore couples chromatin hyperacetylation and AChR activation by neural factors in subsynaptic nuclei.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Marie Vandromme
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Jean-Luc Thomas
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; 46 allée d'Italie, 69364 Lyon Cedex 07, France. Tel.: +33 4 72 72 85 73; Fax: +33 4 72 72 80 80; E-mail:
| |
Collapse
|
30
|
Esper RM, Pankonin MS, Loeb JA. Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease. ACTA ACUST UNITED AC 2006; 51:161-75. [PMID: 16412517 DOI: 10.1016/j.brainresrev.2005.11.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 12/29/2022]
Abstract
The neuregulins are a family of growth and differentiation factors with a wide range of functions in the nervous system. The power and diversity of the neuregulin signaling system comes in part from a large number of alternatively-spliced forms of the NRG1 gene that can produce both soluble and membrane-bound forms. The soluble forms of neuregulin are unique from other factors in that they have a structurally distinct heparin-binding domain that targets and potentiates its actions. In addition, a finely tuned, bidirectional mechanism regulates when and where neuregulin is released from neurons in response to neurotrophic factors produced by both neuronal targets and supporting glial cells. Together, this produces a balanced intercellular signaling system that can be localized to distinct regions for both normal development and maintenance of the mature nervous system. Recent evidence suggests that neuregulin signaling plays important roles in many neurological disorders including multiple sclerosis, traumatic brain and spinal cord injury, peripheral neuropathy, and schizophrenia. Here, we review the basic biology of neuregulins and relate this to research suggesting their involvement with and potential therapeutic uses for neurological disorders.
Collapse
Affiliation(s)
- Raymond M Esper
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
31
|
Patton B, Burgess RW. Synaptogenesis. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Jaworski A, Burden SJ. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1. J Neurosci 2006; 26:655-61. [PMID: 16407563 PMCID: PMC6674415 DOI: 10.1523/jneurosci.4506-05.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The localization of acetylcholine receptors (AChRs) to the vertebrate neuromuscular junction is mediated, in part, through selective transcription of AChR subunit genes in myofiber subsynaptic nuclei. Agrin and the muscle-specific receptor tyrosine kinase, MuSK, have critical roles in synapse-specific transcription, because AChR genes are expressed uniformly in mice lacking either agrin or MuSK. Several lines of evidence suggest that agrin and MuSK stimulate synapse-specific transcription indirectly by regulating the distribution of other cell surface ligands, which stimulate a pathway for synapse-specific gene expression. This putative secondary signal for directing AChR gene expression to synapses is not known, but Neuregulin-1 (Nrg-1), primarily based on its presence at synapses and its ability to induce AChR gene expression in vitro, has been considered a good candidate. To study the role of Nrg-1 at neuromuscular synapses, we inactivated nrg-1 in motor neurons, skeletal muscle, or both cell types, using mice that express Cre recombinase selectively in developing motor neurons or in developing skeletal myofibers. We find that AChRs are clustered at synapses and that synapse-specific transcription is normal in mice lacking Nrg-1 in motor neurons, myofibers, or both cell types. These data indicate that Nrg-1 is dispensable for clustering AChRs and activating AChR genes in subsynaptic nuclei during development and suggest that these aspects of postsynaptic differentiation are dependent on Agrin/MuSK signaling without a requirement for a secondary signal.
Collapse
MESH Headings
- Agrin/physiology
- Animals
- Cell Differentiation
- Diaphragm/embryology
- Diaphragm/innervation
- ErbB Receptors/metabolism
- Genes, Reporter
- Integrases/genetics
- Integrases/metabolism
- Intercostal Muscles/embryology
- Intercostal Muscles/innervation
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Motor Neurons/ultrastructure
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuregulin-1
- Neuromuscular Junction/embryology
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-4
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Viral Proteins/genetics
- Viral Proteins/metabolism
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Alexander Jaworski
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
33
|
Ricart K, J Pearson R, Viera L, Cassina P, Kamaid A, Carroll SL, Estévez AG. Interactions between beta-neuregulin and neurotrophins in motor neuron apoptosis. J Neurochem 2006; 97:222-33. [PMID: 16524373 DOI: 10.1111/j.1471-4159.2006.03739.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuregulins play a major role in the formation and stabilization of neuromuscular junctions, and are produced by both motor neurons and muscle. Although the effects and mechanism of neuregulins on skeletal muscle (e.g. regulation of acetylcholine receptor expression) have been studied extensively, the effects of neuregulins on motor neurons remain unknown. We report that neuregulin-1beta (NRGbeta1) inhibited apoptosis of rat motor neurons for up to 7 days in culture by a phosphatidylinositol 3 kinase-dependent pathway and synergistically enhanced motor neuron survival promoted by glial-derived neurotrophic factor (GDNF). However, binding of neurotrophins, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), to the p75 neurotrophin receptor (p75NTR) abolished the neuregulin anti-apoptotic effect on motor neurons. Inhibitors of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase prevented motor neuron death caused by co-incubation of NRGbeta1 and BDNF or NGF, as well as by trophic factor deprivation. Motor neuron apoptosis resulting from both trophic factor deprivation and exposure to NRGbeta1 plus neurotrophins required the induction of neuronal nitric oxide synthase and peroxynitrite formation. Because motor neurons express both p75NTR and neuregulin erbB receptors during the period of embryonic programmed cell death, motor neuron survival may be the result of complex interactions between trophic and death factors, which may be the same molecules acting in different combinations.
Collapse
Affiliation(s)
- Karina Ricart
- Department of Physiology and Biophysics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kummer TT, Misgeld T, Sanes JR. Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 2006; 16:74-82. [PMID: 16386415 DOI: 10.1016/j.conb.2005.12.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 12/15/2005] [Indexed: 11/28/2022]
Abstract
Studies of the vertebrate skeletal neuromuscular junction led to an influential model of how neurotransmitter receptors accumulate in the postsynaptic membrane. In this model, motor axons organize postsynaptic development by secreting neuregulin to induce acetylcholine receptor gene transcription in specialized subsynaptic nuclei, agrin to cluster diffuse receptors in the postsynaptic membrane, and acetylcholine to evoke electrical activity that promotes synaptic maturation. However, new studies in this area have first, demonstrated that axons sometimes innervate pre-existing receptor clusters; second, recast the roles of agrin and neuregulin; third, revealed early effects of neurotransmission; fourth, questioned the role of subsynaptic myonuclei; fifth, shown that elaborately-branched postsynaptic structures can form aneurally; and sixth, raised the possibility that neurotransmitter affects receptor type as well as distribution. These recent studies challenge the widely-held paradigms, although not the results that led to them, and suggest a new model for neuromuscular synaptogenesis.
Collapse
Affiliation(s)
- Terrance T Kummer
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
35
|
Iwamoto R, Mekada E. ErbB and HB-EGF Signaling in Heart Development and Function. Cell Struct Funct 2006; 31:1-14. [PMID: 16508205 DOI: 10.1247/csf.31.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The epidermal growth factor (EGF)-ErbB signaling network is composed of multiple ligands of the EGF family and four tyrosine kinase receptors of the ErbB family. In higher vertebrates, these four receptors bind a multitude of ligands. Ligand binding induces the formation of various homo- and heterodimers of ErbB, potentially providing for a high degree of signal diversity. ErbB receptors and their ligands are expressed in a variety of tissues throughout development. Recent advances in gene targeting strategies in mice have revealed that the EGF-ErbB signaling network has fundamental roles in development, proliferation, differentiation, and homeostasis in mammals. The heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR/ErbB1) and ErbB4. Recent studies using several mutant mice lacking HB-EGF expression have revealed that HB-EGF has a critical role in normal heart function and in normal cardiac valve formation in conjunction with ErbB receptors. HB-EGF signaling through ErbB2 is essential for the maintenance of homeostasis in the adult heart, whereas HB-EGF signaling through EGFR is required during cardiac valve development. In this review, we introduce and discuss the role of ErbB receptors in heart function and development, focusing on the physiological function of HB-EGF in these processes.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
36
|
Ponomareva ON, Ma H, Dakour R, Raabe TD, Lai C, Rimer M. Stimulation of acetylcholine receptor transcription by neuregulin-2 requires an N-box response element and is regulated by alternative splicing. Neuroscience 2005; 134:495-503. [PMID: 15961242 DOI: 10.1016/j.neuroscience.2005.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
The neuregulin (Nrg) family of growth/differentiation factors is encoded by at least four genes in the mammalian genome: nrg-1, nrg-2, nrg-3 and nrg-4. Nrg-1 and Nrg-2 share the highest homology within the family, and the primary RNA transcripts from their encoding genes are subjected to extensive alternative splicing. Although little is known about the biological function of Nrg-2-4, their structural similarity with Nrg-1 suggests that they could account for some of the activities presently attributed to Nrg-1. Thus, at the neuromuscular junction Nrg-1 has been a favored candidate for the signal that activates selective acetylcholine receptor (AChR) transcription in synaptic myonuclei. However, we have recently shown that like Nrg-1, Nrg-2 can also activate AChR transcription in cultured myotubes and accumulates at the synaptic site. Synapse-specific and Nrg-1-induced AChR transcription require an enhancer sequence, the N-box, which is also mutated in some patients with congenital myasthenia gravis. Here, we show that Nrg-2-induced AChR transcription requires an N-box motif and is regulated by alternative splicing. We also show that unique Nrg-2 isoforms are differentially distributed between spinal cord and skeletal muscle, the tissues that harbor the cellular components of the neuromuscular synapse.
Collapse
Affiliation(s)
- O N Ponomareva
- Section of Neurobiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
37
|
Pankonin MS, Gallagher JT, Loeb JA. Specific structural features of heparan sulfate proteoglycans potentiate neuregulin-1 signaling. J Biol Chem 2004; 280:383-8. [PMID: 15528194 DOI: 10.1074/jbc.m402645200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuregulins are a family of growth and differentiation factors that act through activation of cell-surface erbB receptor tyrosine kinases and have essential functions both during development and on the growth of cancer cells. One alternatively spliced neuregulin-1 form has a distinct heparin-binding immunoglobulin-like domain that enables it to adhere to heparan sulfate proteoglycans at key locations during development and substantially potentiates its activity. We examined the structural specificity needed for neuregulin-1-heparin interactions using a gel mobility shift assay together with an assay that measures the ability of specific oligosaccharides to block erbB receptor phosphorylation in L6 muscle cells. Whereas the N-sulfate group of heparin was most important, the 2-O-sulfate and 6-O-sulfate groups also contributed to neuregulin-1 binding in these two assays. Optimal binding to neuregulin-1 required eight or more heparin disaccharides; however, as few as two disaccharides were still able to bind neuregulin-1 to a lesser extent. The physiological importance of this specificity was shown both by chemical and siRNA treatment of cultured muscle cells. Pretreatment of muscle cells with chlorate that blocks all sulfation or with an siRNA that selectively blocks N-sulfation significantly reduced erbB receptor activation by neuregulin-1 but had no effect on the activity of neuregulin-1 that lacks the heparin-binding domain. These results suggest that the regulation of glycosaminoglycan sulfation is an important biological mechanism that can modulate both the localization and potentiation of neuregulin-1 signaling.
Collapse
Affiliation(s)
- Mark S Pankonin
- Department of Neurology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
38
|
Li Q, Esper RM, Loeb JA. Synergistic effects of neuregulin and agrin on muscle acetylcholine receptor expression. Mol Cell Neurosci 2004; 26:558-69. [PMID: 15276157 DOI: 10.1016/j.mcn.2004.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/19/2004] [Accepted: 04/27/2004] [Indexed: 11/24/2022] Open
Abstract
The proper function of neuromuscular junctions requires an extremely high density of acetylcholine receptors (AChRs) that may be achieved from neuron-derived factors including agrin and neuregulin. Here, we show that neuregulin-1 and agrin co-localize at neuromuscular junctions in vivo and form complexes when co-transfected into COS-7 cells. When these COS-7 cells are cultured with myotubes, synergistic effects are observed for AChR clustering, membrane insertion of new AChRs, and induction of AChR mRNA. Even a muscle form of agrin that lacks intrinsic clustering activities by itself, significantly enhances neuregulin-induced clustering and insertion of AChRs. While the heparin-binding (A) domain of agrin is required for agrin localization in the extracellular matrix adjacent to AChR clusters, the heparan sulfate-containing domain of agrin is needed for the synergistic effects and co-localization with neuregulin-1. These results suggest that matrix interactions between exogenously supplied agrin and neuregulin-1 on the muscle surface provide a localized source of signaling factors needed to produce high densities of AChRs at neuromuscular junctions.
Collapse
MESH Headings
- Agrin/genetics
- Agrin/metabolism
- Agrin/pharmacology
- Animals
- Avian Proteins
- Binding Sites/genetics
- COS Cells
- Cell Membrane/drug effects
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Chick Embryo
- Coculture Techniques
- Extracellular Matrix/drug effects
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Heparin/metabolism
- Heparitin Sulfate/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neuregulin-1
- Neuromuscular Junction/embryology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor Aggregation/drug effects
- Receptor Aggregation/genetics
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Transfection
Collapse
Affiliation(s)
- Qunfang Li
- Department of Neurology and The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
39
|
Fromm L, Rhode M. Neuregulin-1 induces expression of Egr-1 and activates acetylcholine receptor transcription through an Egr-1-binding site. J Mol Biol 2004; 339:483-94. [PMID: 15147836 DOI: 10.1016/j.jmb.2004.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/23/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Localization of acetylcholine receptors (AChRs) to neuromuscular synapses is mediated, in part, through selective transcription of AChR genes in myofiber synaptic nuclei. Neuregulin-1 (NRG-1) and its receptors, ErbBs, are concentrated at synaptic sites, and NRG-1 activates AChR synthesis in cultured muscle cells, suggesting that NRG-1-ErbB signaling functions to activate synapse-specific transcription. Previous studies have demonstrated that NRG-1-induced transcription is conferred by cis-acting elements located within 100 bp of 5' flanking DNA from the AChR epsilon subunit gene, and that it requires a GABP binding site within this region. To determine whether additional regulatory elements have a role in NRG-1 responsiveness, we used transcriptional reporter assays in a muscle cell line, and we identified an element that is required for NRG-1-induced transcription (neuregulin response element, NRE). Proteins from myotube extracts bind the NRE and NRG-1 treatment of the cells stimulates this binding. The ability of NRG-1 to stimulate formation of a protein-DNA complex with the NRE requires induction of protein expression. The complex contains early growth response-1 (Egr-1), a member of the Egr family of transcription factors, because proteins in the complex bind specifically to an Egr consensus site, and formation of the complex is inhibited by antibodies to Egr-1. NRG-1 induces expression of Egr-1 in myotubes, which presumably is responsible for the ability of NRG-1 to stimulate protein binding to the NRE. These results suggest that NRG-1 signaling in myotubes involves induction of Egr-1 expression, which in turn serves to activate transcription of the AChR epsilon subunit gene.
Collapse
Affiliation(s)
- Larry Fromm
- Center for Medical Education, Ball State University and Indiana University School of Medicine, Muncie, IN 47306, USA.
| | | |
Collapse
|
40
|
Bromann PA, Zhou H, Sanes JR. Kinase- and rapsyn-independent activities of the muscle-specific kinase (MuSK). Neuroscience 2004; 125:417-26. [PMID: 15062984 DOI: 10.1016/j.neuroscience.2003.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 11/30/2022]
Abstract
The muscle-specific receptor tyrosine kinase (MuSK) is co-localized with nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane of the skeletal neuromuscular junction, and is required for all known aspects of postsynaptic differentiation. Studies in vitro have shown that Z(+)-agrin, a nerve-derived proteoglycan, activates MuSK's kinase activity to promote clustering of AChRs and MuSK itself with a cytoplasmic, receptor-associated protein, rapsyn. These studies, however, have used soluble forms of agrin, whereas agrin is cell- or matrix-attached in vivo. We show here that immobilized (particle- or cell-attached) agrin but not soluble agrin is able to aggregate MuSK in the absence of rapsyn and that this aggregation does not require MuSK's kinase activity but does require MuSK's cytoplasmic domain. Moreover, immobilized agrin can promote clustering of AChRs by a mechanism that requires MuSK and rapsyn but does not require MuSK's kinase activity. These results imply that rapsyn and signaling components activated by MuSK kinase may be dispensable for some early aspects of postsynaptic differentiation.
Collapse
Affiliation(s)
- P A Bromann
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 South Euclid, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
41
|
Méjat A, Ravel-Chapuis A, Vandromme M, Schaeffer L. Synapse-specific gene expression at the neuromuscular junction. Ann N Y Acad Sci 2003; 998:53-65. [PMID: 14592863 DOI: 10.1196/annals.1254.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Agrin is the key neural factor that controls muscle postsynaptic differentiation, including the induction of synapse-specific transcription via neuregulins. In 1995, the promoter element responsible for the targeting of AChR delta and epsilon gene transcription to the skeletal muscle subsynaptic area was identified. This element, named N-box, recruits the Ets-related transcription factor GABP to AChR delta and epsilon promoters, and both the N-box and GABP are required to obtain transcriptional stimulation by neuregulins. The physiological importance of the N-box has been definitively established with the discovery of myasthenic families carrying single-point mutations in the N-box of the AChR epsilon gene promoter and showing reduced levels of AChR epsilon subunit expression. The control of synapse-specific transcription by agrin and neuregulins through the N-box and GABP is not restricted to the case of AChR genes. The same regulation holds true for the ACh esterase and utrophin genes, thus showing that nerve-induced transcriptional activation of several synapse-specific genes is triggered by a common mechanism involving agrin, neuregulins, and ultimately the N-box and Ets-related transcription factors.
Collapse
Affiliation(s)
- Alexandre Méjat
- Equipe Différenciation Neuromusculaire, UMR 5161 CNRS/ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
42
|
Malavé C, Villegas GM, Hernández M, Martínez JC, Castillo C, Suárez de Mata Z, Villegas R. Role of glypican-1 in the trophic activity on PC12 cells induced by cultured sciatic nerve conditioned medium: identification of a glypican-1-neuregulin complex. Brain Res 2003; 983:74-83. [PMID: 12914968 DOI: 10.1016/s0006-8993(03)03031-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glypican-1 is an extracellular matrix component found by microsequencing in a medium conditioned by cultured rat-sciatic nerves (CM). This CM was concentrated by ultrafiltration and fractionated by quaternary ammonium chromatography, followed by Hi-Trap blue affinity chromatography to obtain the active fraction B1.2. Previously, we have reported a 54 kDa neuregulin (NRG) in the same B1.2 fraction [Villegas et al., Brain Res. 852 (2001) 304]. The effect of Glypican-1 on the neuron-like differentiation of PC12 cells was investigated by immunoprecipitation, Western blot and cellular image analysis. Removal of glypican-1 by immunoprecipitation with increasing concentrations of specific antibodies revealed a gradual decrease of the differentiation activity of fraction B1.2, which paralleled the results obtained by removal of the 54 kDa NRG protein. Colorless native electrophoresis and Western blot analysis was used to identify a glypican-1-NRG protein complex, which could be afterwards separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis into its individual components. Additionally, it was demonstrated that glypican-1, in cooperation with the 54 kDa NRG, is involved in the neuronal-like differentiation of PC12 cells and could play an important role on the regeneration responses of peripheral nerves.
Collapse
Affiliation(s)
- Caridad Malavé
- Centro de Biociencias, Instituto de Estudios Avanzados (IDEA), Apartado 17606, 1015A, Caracas, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bélanger G, Stocksley MA, Vandromme M, Schaeffer L, Furic L, DesGroseillers L, Jasmin BJ. Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. J Neurochem 2003; 86:669-77. [PMID: 12859680 DOI: 10.1046/j.1471-4159.2003.01883.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staufen is an RNA-binding protein, first identified for its role in oogenesis and CNS development in Drosophila. Two mammalian homologs of Staufen have been identified and shown to bind double-stranded RNA and tubulin, and to function in the somatodendritic transport of mRNA in neurons. Here, we examined whether Staufen proteins are expressed in skeletal muscle in relation to the neuromuscular junction. Immunofluorescence experiments revealed that Staufen1 (Stau1) and Staufen2 (Stau2) accumulate preferentially within the postsynaptic sarcoplasm of muscle fibers as well as at newly formed ectopic synapses. Western blot analyses showed that the levels of Stau1 and Stau2 are greater in slow muscles than in fast-twitch muscles. Muscle denervation induced a significant increase in the expression of Stau1 and Stau2 in the extrasynaptic compartment of both fast and slow muscles. Consistent with these observations, we also demonstrated that expression of Stau1 and Stau2 is increased during myogenic differentiation and that treatment of myotubes with agrin and neuregulin induces a further increase in the expression of both Staufen proteins. We propose that Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction.
Collapse
MESH Headings
- Agrin/pharmacology
- Animals
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Mice
- Mice, Inbred C57BL
- Muscle Denervation
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Neuregulins/pharmacology
- Neuromuscular Junction/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/biosynthesis
Collapse
Affiliation(s)
- Guy Bélanger
- Department of Cellular and Molecular Medicine, and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Schroeder JA, Jackson LF, Lee DC, Camenisch TD. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med (Berl) 2003; 81:392-403. [PMID: 12827270 DOI: 10.1007/s00109-003-0456-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 05/26/2003] [Indexed: 10/26/2022]
Abstract
It is becoming clear that converging pathways coordinate early heart valve development and remodeling into functional valve leaflets. The integration of these pathways begins with macro and molecular interactions outside the cell in the extracellular matrix separating the myocardial and endocardial tissue components of the rudimentary heart. Such interactions regulate events at the cell surface through receptors, proteases, and other membrane molecules which in turn transduce signals into the cell. These signals trigger intracellular cascades that transduce cellular responses through both transcription factor and cofactor activation mediating gene induction or suppression. Chamber septation and valve formation occur from these coordinated molecular events within the endocardial cushions to sustain unidirectional blood flow and embryo viability. This review discusses the emerging connection between extracellular matrix and growth factor receptor signaling during endocardial cushion morphogenesis by highlighting the extracellular component, hyaluronan, and erbB receptor functions during early valve development.
Collapse
Affiliation(s)
- Joyce A Schroeder
- Department of Molecular and Cellular Biology, Arizona Cancer Center, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
45
|
Leu M, Bellmunt E, Schwander M, Fariñas I, Brenner HR, Müller U. Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development 2003; 130:2291-301. [PMID: 12702645 DOI: 10.1242/dev.00447] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuregulins and their Erbb receptors have been implicated in neuromuscular synapse formation by regulating gene expression in subsynaptic nuclei. To analyze the function of Erbb2 in this process, we have inactivated the Erbb2 gene in developing muscle fibers by Cre/Lox-mediated gene ablation. Neuromuscular synapses form in the mutant mice, but the synapses are less efficient and contain reduced levels of acetylcholine receptors. Surprisingly, the mutant mice also show proprioceptive defects caused by abnormal muscle spindle development. Sensory Ia afferent neurons establish initial contact with Erbb2-deficient myotubes. However, functional spindles never develop. Taken together, our data suggest that Erbb2 signaling regulates the formation of both neuromuscular synapses and muscle spindles.
Collapse
MESH Headings
- Actins/genetics
- Afferent Pathways/growth & development
- Animals
- Genes, erbB-2
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle Spindles/growth & development
- Muscle Spindles/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/physiology
- Promoter Regions, Genetic
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Signal Transduction
- Synaptic Transmission
Collapse
Affiliation(s)
- Marco Leu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Lacazette E, Le Calvez S, Gajendran N, Brenner HR. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J Cell Biol 2003; 161:727-36. [PMID: 12756238 PMCID: PMC2199368 DOI: 10.1083/jcb.200210156] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse.
Collapse
Affiliation(s)
- Eric Lacazette
- Department of Physiology, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
47
|
Karasewski L, Ferreira A. MAPK signal transduction pathway mediates agrin effects on neurite elongation in cultured hippocampal neurons. JOURNAL OF NEUROBIOLOGY 2003; 55:14-24. [PMID: 12605455 DOI: 10.1002/neu.10197] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that agrin regulates the rates of axonal and dendritic elongation by modulating the expression of microtubule-associated proteins in cultured hippocampal neurons. However, the mechanisms by which agrin-induced signals are propagated to the nucleus where they can lead to the phosphorylation, and hence the activation, of transcription factors, are not known. In the present study, we identified downstream elements that play essential roles in the agrin-signaling pathway in developing central neurons. Our results indicate that agrin induces the combined activation of the extracellular signal-regulated kinases (ERK1/ERK2) and p38 in central neurons. In addition, they showed that PD98059 and SB202190, synthetic inhibitors of ERK1/ERK2 and p38 respectively, prevented the changes in the rate of neurite elongation induced by agrin in cultured hippocampal neurons. Collectively, these results suggest that agrin might modulate the expression of neuron-specific genes involved in neurite elongation by inducing CREB phosphorylation through the activation of the MAPK signal transduction pathway in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Lisa Karasewski
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- Steven J Burden
- Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016, USA.
| |
Collapse
|
49
|
Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 2002. [PMID: 11896160 DOI: 10.1523/jneurosci.22-06-02206.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proper formation of neuromuscular synapses requires ongoing synaptic activity that is translated into complex structural changes to produce functional synapses. One mechanism by which activity could be converted into these structural changes is through the regulated expression of specific synaptic regulatory factors. Here we demonstrate that blocking synaptic activity with curare reduces synaptic neuregulin expression in a dose-dependent manner yet has little effect on synaptic agrin or a muscle-derived heparan sulfate proteoglycan. These changes are associated with a fourfold increase in number and a twofold reduction in average size of synaptic acetylcholine receptor clusters that appears to be caused by excessive axonal sprouting with the formation of new, smaller acetylcholine receptor clusters. Activity blockade also leads to threefold reductions in brain-derived neurotrophic factor and neurotrophin 3 expression in muscle without appreciably changing the expression of these same factors in spinal cord. Adding back these or other neurotrophic factors restores synaptic neuregulin expression and maintains normal end plate band architecture in the presence of activity blockade. The expression of neuregulin protein at synapses is independent of spinal cord and muscle neuregulin mRNA levels, suggesting that neuregulin accumulation at synapses is independent of transcription. These findings suggest a local, positive feedback loop between synaptic regulatory factors that translates activity into structural changes at neuromuscular synapses.
Collapse
|
50
|
Loeb JA, Hmadcha A, Fischbach GD, Land SJ, Zakarian VL. Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 2002; 22:2206-14. [PMID: 11896160 PMCID: PMC6758272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The proper formation of neuromuscular synapses requires ongoing synaptic activity that is translated into complex structural changes to produce functional synapses. One mechanism by which activity could be converted into these structural changes is through the regulated expression of specific synaptic regulatory factors. Here we demonstrate that blocking synaptic activity with curare reduces synaptic neuregulin expression in a dose-dependent manner yet has little effect on synaptic agrin or a muscle-derived heparan sulfate proteoglycan. These changes are associated with a fourfold increase in number and a twofold reduction in average size of synaptic acetylcholine receptor clusters that appears to be caused by excessive axonal sprouting with the formation of new, smaller acetylcholine receptor clusters. Activity blockade also leads to threefold reductions in brain-derived neurotrophic factor and neurotrophin 3 expression in muscle without appreciably changing the expression of these same factors in spinal cord. Adding back these or other neurotrophic factors restores synaptic neuregulin expression and maintains normal end plate band architecture in the presence of activity blockade. The expression of neuregulin protein at synapses is independent of spinal cord and muscle neuregulin mRNA levels, suggesting that neuregulin accumulation at synapses is independent of transcription. These findings suggest a local, positive feedback loop between synaptic regulatory factors that translates activity into structural changes at neuromuscular synapses.
Collapse
Affiliation(s)
- Jeffrey A Loeb
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|