1
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
3
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
4
|
Wang C, Zhang R, Wang X, Zheng Y, Jia H, Li H, Wang J, Wang N, Xiang F, Li Y. Silencing of KIF3B Suppresses Breast Cancer Progression by Regulating EMT and Wnt/ β-Catenin Signaling. Front Oncol 2021; 10:597464. [PMID: 33542902 PMCID: PMC7851081 DOI: 10.3389/fonc.2020.597464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most common malignant tumors in women. Kinesin family member 3B (KIF3B) is a critical regulator in mitotic progression. The objective of this study was to explore the expression, regulation, and mechanism of KIF3B in 103 cases of breast cancer tissues, 35 metastatic lymph nodes and breast cancer cell lines, including MDA-MB-231, MDA-MB-453, T47D, and MCF-7. The results showed that KIF3B expression was up-regulated in breast cancer tissues and cell lines, and the expression level was correlated with tumor recurrence and lymph node metastasis, while knockdown of KIF3B suppressed cell proliferation, migration, and invasion both in vivo and in vitro. In addition, UALCAN analysis showed that KIF3B expression in breast cancer is increased, and the high expression of KIF3B in breast cancer is associated with poor prognosis. Furthermore, we found that silencing of KIF3B decreased the expression of Dvl2, phospho-GSK-3β, total and nucleus β-catenin, then subsequent down-regulation of Wnt/β-catenin signaling target genes such as CyclinD1, C-myc, MMP-2, MMP-7 and MMP-9 in breast cancer cells. In addition, KIF3B depletion inhibited epithelial mesenchymal transition (EMT) in breast cancer cells. Taken together, our results revealed that KIF3B is up-regulated in breast cancer which is potentially involved in breast cancer progression and metastasis. Silencing KIF3B might suppress the Wnt/β-catenin signaling pathway and EMT in breast cancer cells.
Collapse
Affiliation(s)
- Chengqin Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Runze Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Li
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Jin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fenggang Xiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Frank M, Citarella CG, Quinones GB, Bentley M. A novel labeling strategy reveals that myosin Va and myosin Vb bind the same dendritically polarized vesicle population. Traffic 2020; 21:689-701. [PMID: 32959500 DOI: 10.1111/tra.12764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Neurons are specialized cells with a polarized geometry and several distinct subdomains that require specific complements of proteins. Delivery of transmembrane proteins requires vesicle transport, which is mediated by molecular motor proteins. The myosin V family of motor proteins mediates transport to the barbed end of actin filaments, and little is known about the vesicles bound by myosin V in neurons. We developed a novel strategy to visualize myosin V-labeled vesicles in cultured hippocampal neurons and systematically characterized the vesicle populations labeled by myosin Va and Vb. We find that both myosins bind vesicles that are polarized to the somatodendritic domain where they undergo bidirectional long-range transport. A series of two-color imaging experiments showed that myosin V specifically colocalized with two different vesicle populations: vesicles labeled with the transferrin receptor and vesicles labeled by low-density lipoprotein receptor. Finally, coexpression with Kinesin-3 family members found that myosin V binds vesicles concurrently with KIF13A or KIF13B, supporting the hypothesis that coregulation of kinesins and myosin V on vesicles is likely to play an important role in neuronal vesicle transport. We anticipate that this new assay will be applicable in a broad range of cell types to determine the function of myosin V motor proteins.
Collapse
Affiliation(s)
- Madeline Frank
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Clara G Citarella
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Geraldine B Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
6
|
Jiang M, Paniagua AE, Volland S, Wang H, Balaji A, Li DG, Lopes VS, Burgess BL, Williams DS. Microtubule motor transport in the delivery of melanosomes to the actin-rich apical domain of the retinal pigment epithelium. J Cell Sci 2020; 133:jcs242214. [PMID: 32661088 PMCID: PMC7420818 DOI: 10.1242/jcs.242214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.
Collapse
Affiliation(s)
- Mei Jiang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antonio E Paniagua
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stefanie Volland
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hongxing Wang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adarsh Balaji
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David G Li
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vanda S Lopes
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David S Williams
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence. Sci Rep 2020; 10:10195. [PMID: 32576969 PMCID: PMC7311519 DOI: 10.1038/s41598-020-67287-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 11/08/2022] Open
Abstract
The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms.
Collapse
|
8
|
Sonar P, Youyen W, Cleetus A, Wisanpitayakorn P, Mousavi SI, Stepp WL, Hancock WO, Tüzel E, Ökten Z. Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport. Curr Biol 2020; 30:1160-1166.e5. [PMID: 32142698 DOI: 10.1016/j.cub.2020.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
Collapse
Affiliation(s)
- Punam Sonar
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - Wiphu Youyen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Augustine Cleetus
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | | | - Sayed I Mousavi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Willi L Stepp
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Erkan Tüzel
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching 85748, Germany.
| |
Collapse
|
9
|
Duchatelet L, Delroisse J, Pinte N, Sato K, Ho HC, Mallefet J. Adrenocorticotropic Hormone and Cyclic Adenosine Monophosphate are Involved in the Control of Shark Bioluminescence. Photochem Photobiol 2019; 96:37-45. [PMID: 31441051 DOI: 10.1111/php.13154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 11/28/2022]
Abstract
Among Etmopteridae and Dalatiidae, luminous species use hormonal control to regulate bioluminescence. Melatonin (MT) triggers light emission and, conversely, alpha melanocyte-stimulating hormone (α-MSH) actively reduces ongoing luminescence. Prolactin (PRL) acts differentially, triggering light emission in Etmopteridae and inhibiting it in Dalatiidae. Interestingly, these hormones are also known as regulators of skin pigment movements in vertebrates. One other hormone, the adrenocorticotropic hormone (ACTH), also members of the skin pigmentation regulators, is here pharmacologically tested on the light emission. Results show that ACTH inhibits luminescence in both families. Moreover, as MT and α-MSH/ACTH receptors are members of the G-protein coupled receptor (GPCR) family, we investigated the effect of hormonal treatments on the cAMP level of photophores through specific cAMP assays. Our results highlight the involvement of ACTH and cAMP in the control of light emission in sharks and suggest a functional similarity between skin pigment migration and luminescence control, this latter being mediated by pigment movements in the light organ-associated iris-like structure cells.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Jérôme Delroisse
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons, Mons, Belgium
| | - Nicolas Pinte
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Keiichi Sato
- Okinawa Churaumi Aquarium, Motobu-cho, Okinawa Prefecture, Japan
| | - Hsuan-Ching Ho
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
10
|
Zhou L, Ouyang L, Chen K, Wang X. Research progress on KIF3B and related diseases. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:492. [PMID: 31700928 DOI: 10.21037/atm.2019.08.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kinesins constitute a protein superfamily that belongs to the motor protein group. Kinesins move along microtubules to exert their various functions, which include intracellular transportation, mitosis, and cell formation. Kinesins are responsible for the transport of various membrane organelles, protein complexes, mRNA and other material, as well as the regulation of intracellular molecular signal pathways. Cumulative studies have also indicated that kinesins are related to the development of a variety of human diseases. At present, there are 14 subfamilies of the kinesin superfamily (KIFs), comprising 45 members. KIF3 is the most common expression in KIFs. KIF3 is a complex composed of a KIF3A/3B heterodimer and a kinesin-related protein, known as KAP3. These complexes are organelles and protein complexes involved in membrane binding in various tissues and transport within cells (nerve cells, melanocytes, epithelial cells, etc.). As a member of the KIF3 subfamily, KIF3B is an essential protein that can regulate cell migration, and proliferation and has critical biological functions. During mitosis, KIF3B is responsible for vesicle transport and membrane expansion, thus regulating cell migration. In recent years, more and more attention has been paid to the relationship between KIF3B and the occurrence and development of diseases. This article reviews the recent advances in the study of KIF3B and its related diseases.
Collapse
Affiliation(s)
- Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Lian Ouyang
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Keying Chen
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Xucan Wang
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| |
Collapse
|
11
|
Fargallo JA, Martínez F, Wakamatsu K, Serrano D, Blanco G. Sex-Dependent Expression and Fitness Consequences of Sunlight-Derived Color Phenotypes. Am Nat 2018; 191:726-743. [DOI: 10.1086/697218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Stepp WL, Merck G, Mueller-Planitz F, Ökten Z. Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules. EMBO Rep 2017; 18:1947-1956. [PMID: 28887322 DOI: 10.15252/embr.201744097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long-range transport processes in vivo In all organisms studied so far, the kinesin-2 family is essential for long-range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin-2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin-2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin-1, kinesin-2 takes directional, off-axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin-2 to side-track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A- and B-tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co-evolved the heterodimeric kinesin-2 with the ciliary machinery to work on the specialized axonemal surface for two-way traffic.
Collapse
Affiliation(s)
- Willi L Stepp
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Georg Merck
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching, Germany .,Munich Center for Integrated Protein Science, Munich, Germany
| |
Collapse
|
13
|
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load. Proc Natl Acad Sci U S A 2017; 114:E6830-E6838. [PMID: 28761002 DOI: 10.1073/pnas.1708157114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs.
Collapse
|
14
|
Myosin Va's adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro. Proc Natl Acad Sci U S A 2017; 114:E4714-E4723. [PMID: 28559319 DOI: 10.1073/pnas.1619473114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles, or melanosomes, are transported by kinesin, dynein, and myosin motors. As such, melanosome transport is an excellent model system to study the functional relationship between the microtubule- and actin-based transport systems. In mammalian melanocytes, it is well known that the Rab27a/melanophilin/myosin Va complex mediates actin-based transport in vivo. However, pathways that regulate the overall directionality of melanosomes on the actin/microtubule networks have not yet been delineated. Here, we investigated the role of PKA-dependent phosphorylation on the activity of the actin-based Rab27a/melanophilin/myosin Va transport complex in vitro. We found that melanophilin, specifically its C-terminal actin-binding domain (ABD), is a target of PKA. Notably, in vitro phosphorylation of the ABD closely recapitulated the previously described in vivo phosphorylation pattern. Unexpectedly, we found that phosphorylation of the ABD affected neither the interaction of the complex with actin nor its movement along actin tracks. Surprisingly, the phosphorylation state of melanophilin was instead important for reversible association with microtubules in vitro. Dephosphorylated melanophilin preferred binding to microtubules even in the presence of actin, whereas phosphorylated melanophilin associated with actin. Indeed, when actin and microtubules were present simultaneously, melanophilin's phosphorylation state enforced track selection of the Rab27a/melanophilin/myosin Va transport complex. Collectively, our results unmasked the regulatory dominance of the melanophilin adaptor protein over its associated motor and offer an unexpected mechanism by which filaments of the cytoskeletal network compete for the moving organelles to accomplish directional transport on the cytoskeleton in vivo.
Collapse
|
15
|
Shen HQ, Xiao YX, She ZY, Tan FQ, Yang WX. A novel role of KIF3b in the seminoma cell cycle. Exp Cell Res 2017; 352:95-103. [PMID: 28161539 DOI: 10.1016/j.yexcr.2017.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed that the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division.
Collapse
Affiliation(s)
- Hao-Qing Shen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
16
|
Hoang-Minh LB, Deleyrolle LP, Siebzehnrubl D, Ugartemendia G, Futch H, Griffith B, Breunig JJ, De Leon G, Mitchell DA, Semple-Rowland S, Reynolds BA, Sarkisian MR. Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis. Oncotarget 2016; 7:7029-43. [PMID: 26760767 PMCID: PMC4872766 DOI: 10.18632/oncotarget.6854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022] Open
Abstract
KIF3A, a component of the kinesin-2 motor, is necessary for the progression of diverse tumor types. This is partly due to its role in regulating ciliogenesis and cell responsiveness to sonic hedgehog (SHH). Notably, primary cilia have been detected in human glioblastoma multiforme (GBM) tumor biopsies and derived cell lines. Here, we asked whether disrupting KIF3A in GBM cells affected ciliogenesis, in vitro growth and responsiveness to SHH, or tumorigenic behavior in vivo. We used a lentiviral vector to create three patient-derived GBM cell lines expressing a dominant negative, motorless form of Kif3a (dnKif3a). In all unmodified lines, we found that most GBM cells were capable of producing ciliated progeny and that dnKif3a expression in these cells ablated ciliogenesis. Interestingly, unmodified and dnKif3a-expressing cell lines displayed differential sensitivities and pathway activation to SHH and variable tumor-associated survival following mouse xenografts. In one cell line, SHH-induced cell proliferation was prevented in vitro by either expressing dnKif3a or inhibiting SMO signaling using cyclopamine, and the survival times of mice implanted with dnKif3a-expressing cells were increased. In a second line, expression of dnKif3a increased the cells' baseline proliferation while, surprisingly, sensitizing them to SHH-induced cell death. The survival times of mice implanted with these dnKif3a-expressing cells were decreased. Finally, expression of dnKif3a in a third cell line had no effect on cell proliferation, SHH sensitivity, or mouse survival times. These findings indicate that KIF3A is essential for GBM cell ciliogenesis, but its role in modulating GBM cell behavior is highly variable.
Collapse
Affiliation(s)
- Lan B Hoang-Minh
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Dorit Siebzehnrubl
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - George Ugartemendia
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Hunter Futch
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Benjamin Griffith
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Joshua J Breunig
- Cedars-Sinai Regenerative Medicine Institute, Cedar-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, UCLA Geffen School of Medicine, Los Angeles, California, USA
| | - Gabriel De Leon
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,UF Brain Tumor Immunotherapy Program, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,UF Brain Tumor Immunotherapy Program, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Susan Semple-Rowland
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA
| |
Collapse
|
17
|
Albracht CD, Guzik-Lendrum S, Rayment I, Gilbert SP. Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run. J Biol Chem 2016; 291:23248-23256. [PMID: 27637334 DOI: 10.1074/jbc.m116.752196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/06/2022] Open
Abstract
Mammalian KIF3AB is an N-terminal processive kinesin-2 that is best known for its roles in intracellular transport. There has been significant interest in KIF3AB to define the key principles that underlie its processivity but also to define the mechanistic basis of its sensitivity to force. In this study, the kinetics for entry into the processive run were quantified. The results show for KIF3AB that the kinetics of microtubule association at 7 μm-1 s-1 is less than the rates observed for KIF3AA at 13 μm-1 s-1 or KIF3BB at 11.9 μm-1 s-1 ADP release after microtubule association for KIF3AB is 33 s-1 and is significantly slower than ADP release from homodimeric KIF3AA and KIF3BB, which reach 80-90 s-1 To explore the interhead communication implied by the rate differences at these first steps, we compared the kinetics of KIF3AB microtubule association followed by ADP release with the kinetics for mixtures of KIF3AA plus KIF3BB. Surprisingly, the kinetics of KIF3AB are not equivalent to any of the mixtures of KIF3AA + KIF3BB. In fact, the transients for each of the mixtures overlay the transients for KIF3AA and KIF3BB. These results reveal that intermolecular communication within the KIF3AB heterodimer modulates entry into the processive run, and the results suggest that it is the high rate of microtubule association that drives rebinding to the microtubule after force-dependent motor detachment.
Collapse
Affiliation(s)
- Clayton D Albracht
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
18
|
Raghupathy RK, Zhang X, Alhasani RH, Zhou X, Mullin M, Reilly J, Li W, Liu M, Shu X. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish. Cell Biochem Funct 2016; 34:429-40. [PMID: 27470972 DOI: 10.1002/cbf.3205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.
Collapse
Affiliation(s)
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem H Alhasani
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
19
|
Cargo transport at microtubule crossings: evidence for prolonged tug-of-war between kinesin motors. Biophys J 2016; 108:1480-1483. [PMID: 25809260 DOI: 10.1016/j.bpj.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/06/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022] Open
Abstract
Intracellular transport of cargos along microtubules is often complicated by the topology of the underlying filament network. The fundamental building blocks for this complex arrangement are filament intersections. The navigation of cargos across microtubule intersections remains poorly understood. Here, we demonstrate that kinesin-driven cargos are engaged in a tug-of-war at microtubule intersections. Tug-of-war events result in long pauses that can last from a few seconds to several minutes. We demonstrate that the extent of the tug-of-war and the duration of pauses change with the number of motors on the cargo and can be regulated by ionic strength. We also show that dwell times at intersections depend on the angle between crossing microtubules. Our data suggest that local microtubule geometry can regulate microtubule-based transport.
Collapse
|
20
|
Rezaul K, Gupta D, Semenova I, Ikeda K, Kraikivski P, Yu J, Cowan A, Zaliapin I, Rodionov V. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo. Traffic 2016; 17:475-86. [PMID: 26843027 DOI: 10.1111/tra.12385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/19/2023]
Abstract
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching a large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore, in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo.
Collapse
Affiliation(s)
- Karim Rezaul
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Dipika Gupta
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Irina Semenova
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Kazuho Ikeda
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA.,Current address: Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Pavel Kraikivski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | - Ji Yu
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Ann Cowan
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557, USA
| | - Vladimir Rodionov
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| |
Collapse
|
21
|
Sköld HN, Aspengren S, Cheney KL, Wallin M. Fish Chromatophores—From Molecular Motors to Animal Behavior. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:171-219. [DOI: 10.1016/bs.ircmb.2015.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Jiang M, Esteve-Rudd J, Lopes VS, Diemer T, Lillo C, Rump A, Williams DS. Microtubule motors transport phagosomes in the RPE, and lack of KLC1 leads to AMD-like pathogenesis. J Cell Biol 2015; 210:595-611. [PMID: 26261180 PMCID: PMC4539993 DOI: 10.1083/jcb.201410112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/02/2015] [Indexed: 11/22/2022] Open
Abstract
The degradation of phagosomes, derived from the ingestion of photoreceptor outer segment (POS) disk membranes, is a major role of the retinal pigment epithelium (RPE). Here, POS phagosomes were observed to associate with myosin-7a, and then kinesin-1, as they moved from the apical region of the RPE. Live-cell imaging showed that the phagosomes moved bidirectionally along microtubules in RPE cells, with kinesin-1 light chain 1 (KLC1) remaining associated in both directions and during pauses. Lack of KLC1 did not inhibit phagosome speed, but run length was decreased, and phagosome localization and degradation were impaired. In old mice, lack of KLC1 resulted in RPE pathogenesis that was strikingly comparable to aspects of age-related macular degeneration (AMD), with an excessive accumulation of RPE and sub-RPE deposits, as well as oxidative and inflammatory stress responses. These results elucidate mechanisms of POS phagosome transport in relation to degradation, and demonstrate that defective microtubule motor transport in the RPE leads to phenotypes associated with AMD.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Julian Esteve-Rudd
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Vanda S Lopes
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Centre of Ophthalmology, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University Coimbra, 3000-548 Coimbra, Portugal
| | - Tanja Diemer
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Concepción Lillo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Agrani Rump
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - David S Williams
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093 Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
23
|
De Rossi MC, De Rossi ME, Sued M, Rodríguez D, Bruno L, Levi V. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport. FEBS Lett 2015; 589:2763-8. [DOI: 10.1016/j.febslet.2015.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
24
|
Andreasson JOL, Shastry S, Hancock WO, Block SM. The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load. Curr Biol 2015; 25:1166-75. [PMID: 25866395 DOI: 10.1016/j.cub.2015.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 12/11/2022]
Abstract
The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length, and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains and not to the neck linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1.
Collapse
Affiliation(s)
| | - Shankar Shastry
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - William O Hancock
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Regulation of microtubule-based transport by MAP4. Mol Biol Cell 2014; 25:3119-32. [PMID: 25143402 PMCID: PMC4196864 DOI: 10.1091/mbc.e14-01-0022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
Collapse
Affiliation(s)
- Irina Semenova
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Kazuho Ikeda
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Karim Resaul
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Pavel Kraikivski
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557
| | - Ann Cowan
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir Rodionov
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
26
|
Abstract
Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.
Collapse
|
27
|
Albracht CD, Rank KC, Obrzut S, Rayment I, Gilbert SP. Kinesin-2 KIF3AB exhibits novel ATPase characteristics. J Biol Chem 2014; 289:27836-48. [PMID: 25122755 DOI: 10.1074/jbc.m114.583914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm(-1) s(-1), followed by rate-limiting ADP release at 12.8 s(-1). ATP binding at 7.5 μm(-1) s(-1) was followed by an ATP-promoted isomerization at 84 s(-1) to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s(-1). ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s(-1). The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm(-1) s(-1), which is inconsistent with fast ATP binding at 7.5 μm(-1) s(-1) and a Kd ,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km ,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.
Collapse
Affiliation(s)
- Clayton D Albracht
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Katherine C Rank
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Steven Obrzut
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
28
|
Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 2014; 9:e87372. [PMID: 24489905 PMCID: PMC3906139 DOI: 10.1371/journal.pone.0087372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022] Open
Abstract
Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage.
Collapse
|
29
|
Pardo-Diaz C, Jiggins CD. Neighboring genes shaping a single adaptive mimetic trait. Evol Dev 2014; 16:3-12. [DOI: 10.1111/ede.12058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina Pardo-Diaz
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ United Kingdom
| | - Chris D. Jiggins
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ United Kingdom
- Smithsonian Tropical Research Institute; Balboa AA2072 Panama
| |
Collapse
|
30
|
Suppression of KIF3B expression inhibits human hepatocellular carcinoma proliferation. Dig Dis Sci 2014; 59:795-806. [PMID: 24368420 PMCID: PMC3958719 DOI: 10.1007/s10620-013-2969-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/15/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human hepatocellular carcinoma (HCC) is one of the most common fatal cancers and an important health problem worldwide, but its mechanism is still unclear. Microtubule (MT) kinesin motor proteins orchestrate a variety of cellular processes (e.g. mitosis, motility and organelle transportation) and have been involved in human carcinogenesis. KIF3B, the kinesin superfamily of proteins (KIFs), plays an important role in the regulation of mitotic progression. AIM The expression of KIF3B and its involvement in HCC was investigated. METHODS Western blot and immunohistochemistry were used to measure the expression of KIF3B protein in HCC and adjacent non-tumorous tissues in 57 patients and Cell Counting Kit-8 to analyze the effects of growth and interference of KIF3B in the cell cycle process. RESULTS KIF3B protein level was increased in HCC tissues compared with the adjacent non-tumorous tissues. It was significantly associated with histological differentiation, tumor size, the level of alpha fetal protein (AFP) and proliferation marker Ki-67. Over-expression of KIF3B was correlated with poor survival. Following release of HepG2 cells from serum starvation, the expression of KIF3B was up-regulated. Furthermore, suppression of KIF3B not only decreased cancer cell growth but also induced apoptosis of cells. CONCLUSIONS Our results suggested that KIF3B expression was upregulated in HCC tumor tissues and proliferating HCC cells, and an increased KIF3B expression was associated with poor overall survival. KIF3B over-expression is involved in the pathogenesis of hepatocellular carcinoma and may serve as a potential therapeutic target for human HCC.
Collapse
|
31
|
Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. NATURE NANOTECHNOLOGY 2014; 9:44-7. [PMID: 24213281 PMCID: PMC3883648 DOI: 10.1038/nnano.2013.230] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/08/2013] [Indexed: 05/23/2023]
Abstract
In eukaryotic cells, cargo is transported on self-organized networks of microtubule trackways by kinesin and dynein motor proteins. Synthetic microtubule networks have previously been assembled in vitro, and microtubules have been used as shuttles to carry cargoes on lithographically defined tracks consisting of surface-bound kinesin motors. Here, we show that molecular signals can be used to program both the architecture and the operation of a self-organized transport system that is based on kinesin and microtubules and spans three orders of magnitude in length scale. A single motor protein, dimeric kinesin-1, is conjugated to various DNA nanostructures to accomplish different tasks. Instructions encoded into the DNA sequences are used to direct the assembly of a polar array of microtubules and can be used to control the loading, active concentration and unloading of cargo on this track network, or to trigger the disassembly of the network.
Collapse
Affiliation(s)
- Adam J M Wollman
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Carlos Sanchez-Cano
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Helen M J Carstairs
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Robert A Cross
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
32
|
Ooi CP, Bastin P. More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front Cell Infect Microbiol 2013; 3:71. [PMID: 24312899 PMCID: PMC3826061 DOI: 10.3389/fcimb.2013.00071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
T. brucei, the causative parasite for African trypanosomiasis, faces an interesting dilemma in its life cycle. It has to successfully complete its infection cycle in the tsetse vector to be able to infect other vertebrate hosts. T. brucei has to undergo multiple morphological changes as it invades the alimentary canal of the tsetse to finally achieve infectivity in the salivary glands. In this review, we attempt to elucidate how these morphological changes are possible for a parasite that has evolved a highly robust cell structure to survive the chemically and physically diverse environments it finds itself in. To achieve this, we juxtaposed the experimental evidence that has been collected from T. brucei forms that are cultured in vitro with the observations that have been carried out on tsetse-infective forms in vivo. Although the accumulated knowledge on T. brucei biology is by no means trivial, several outstanding questions remain for how the parasite mechanistically changes its morphology as it traverses the tsetse and how those changes are triggered. However, we conclude that with recent breakthroughs allowing for the replication of the tsetse-infection process of T. brucei in vitro, these outstanding questions can finally be addressed.
Collapse
Affiliation(s)
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, CNRS URA2581, Institut PasteurParis, France
| |
Collapse
|
33
|
When size does matter: organelle size influences the properties of transport mediated by molecular motors. Biochim Biophys Acta Gen Subj 2013; 1830:5095-103. [DOI: 10.1016/j.bbagen.2013.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 06/29/2013] [Indexed: 12/18/2022]
|
34
|
Nguyen M, Poudel MK, Stewart AM, Kalueff AV. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research. Brain Res Bull 2013; 98:145-54. [DOI: 10.1016/j.brainresbull.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 01/04/2023]
|
35
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|
36
|
|
37
|
Schroeder HW, Hendricks AG, Ikeda K, Shuman H, Rodionov V, Ikebe M, Goldman YE, Holzbaur ELF. Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections. Biophys J 2012; 103:48-58. [PMID: 22828331 DOI: 10.1016/j.bpj.2012.05.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 12/20/2022] Open
Abstract
Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads. Single kinesin-2 motors exerted forces up to ∼5 pN, similar to kinesin-1. However, kinesin-2 motors were more likely to detach at submaximal forces, and the duration of force maintenance was short as compared to kinesin-1. In multimotor assays, force increased with kinesin-2 density but was not affected by the presence of myosin-V. In crossed filament assays, switching frequencies of motor-bound beads were dependent on the starting track. At equal average forces, beads tended to switch from microtubules onto overlying actin filaments consistent with the relatively faster detachment of kinesin-2 at near-maximal forces. Thus, in addition to relative force, switching probability at filament intersections is determined by the dynamics of motor-filament interaction, such as the quick detachment of kinesin-2 under load. This may enable fine-tuning of filament switching in the cell.
Collapse
Affiliation(s)
- Harry W Schroeder
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee SM, Chin LS, Li L. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. ACTA ACUST UNITED AC 2012; 199:799-816. [PMID: 23166352 PMCID: PMC3514783 DOI: 10.1083/jcb.201204137] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIMPLE functions with the ESCRT machinery to promote endosome-to-lysosome trafficking, and this function is impaired by Charcot-Marie-Tooth disease–associated mutations. Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to-lysosome trafficking. Our analyses revealed that SIMPLE was required for efficient recruitment of ESCRT components to endosomal membranes and for regulating endosomal trafficking and signaling attenuation of ErbB receptors. We found that the ability of SIMPLE to regulate ErbB trafficking and signaling was impaired by CMT-linked SIMPLE mutations via a loss-of-function, dominant-negative mechanism, resulting in prolonged activation of ERK1/2 signaling. Our findings indicate a function of SIMPLE as a regulator of endosomal trafficking and provide evidence linking dysregulated endosomal trafficking to CMT pathogenesis.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
39
|
Kinesin-2 family motors in the unusual photoreceptor cilium. Vision Res 2012; 75:33-6. [PMID: 23123805 DOI: 10.1016/j.visres.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/13/2023]
Abstract
This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire.
Collapse
|
40
|
Yu X, Wen H, Cao J, Sun B, Ding T, Li M, Wu H, Long L, Cheng X, Xu G, Zhang F. Temporal and spatial expression of KIF3B after acute spinal cord injury in adult rats. J Mol Neurosci 2012; 49:387-94. [PMID: 23093447 DOI: 10.1007/s12031-012-9901-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
Abstract
The KIF3 subunit KIF3B was proved to be associated with mitosis. It has been known to be engaged in intracellular transport of neurons. To elucidate the certain expression and biological function in central nervous system, we performed an acute spinal cord contusion injury model in adult rats. Western blot analysis indicated a marked upregulation of KIF3B after spinal cord injury (SCI). Immunohistochemistry revealed wide distribution of KIF3B in spinal cord, including neurons and glial cells. Double immunofluorescent staining for proliferating cell nuclear antigen and phenotype-specific markers showed increases of KIF3B expression in proliferating microglia and astrocytes. Our data suggest that KIF3B may be implicated in the proliferation of microglia and astrocytes after SCI.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bouzat S, Levi V, Bruno L. Transport properties of melanosomes along microtubules interpreted by a tug-of-war model with loose mechanical coupling. PLoS One 2012; 7:e43599. [PMID: 22952716 PMCID: PMC3431353 DOI: 10.1371/journal.pone.0043599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
In this work, we explored theoretically the transport of organelles driven along microtubules by molecular motors of opposed polarities using a stochastic model that considers a Langevin dynamics for the cargo, independent cargo-motor linkers and stepping motion for the motors. It has been recently proposed that the stiffness of the motor plays an important role when multiple motors collectively transport a cargo. Therefore, we considered in our model the recently reported values for the stiffness of the cargo-motor linker determined in living cells (∼0.01 pN/nm, [1]) which is significantly lower than the motor stiffness obtained in in vitro assays and used in previous studies. Our model could reproduce the multimodal velocity distributions and typical trajectory characteristics including the properties of the reversions in the overall direction of motion observed during melanosome transport along microtubules in Xenopus laevis melanophores. Moreover, we explored the contribution of the different motility states of the cargo-motor system to the different modes of the velocity distributions and could identify the microscopic mechanisms of transport leading to trajectories compatible with those observed in living cells. Finally, by changing the attachment and detachment rates, the model could reproduce the different velocity distributions observed during melanosome transport along microtubules in Xenopus laevis melanophores stimulated for aggregation and dispersion. Our analysis suggests that active tug-of-war processes with loose mechanical coupling can account for several aspects of cargo transport along microtubules in living cells.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Centro Atómico Bariloche - Comisión Nacional de Energía Atómica, Bariloche, Río Negro, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Bruno
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
42
|
Ishida M, Ohbayashi N, Maruta Y, Ebata Y, Fukuda M. Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J Cell Sci 2012; 125:5177-87. [PMID: 22854043 DOI: 10.1242/jcs.109314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanosomes are transported to the cell periphery of melanocytes by coordination between bidirectional microtubule-dependent movements and unidirectional actin-dependent movement. Although both the mechanism of the actin-dependent melanosome transport and the mechanism of the microtubule-dependent retrograde melanosome transport in mammalian skin melanocytes have already been determined, almost nothing is known about the mechanism of the microtubule-dependent anterograde melanosome transport. Small GTPase Rab proteins are common regulators of membrane traffic in all eukaryotes, and in this study we performed genome-wide screening for Rab proteins that are involved in anterograde melanosome transport by expressing 60 different constitutive active (and negative) mutants, and succeeded in identifying Rab1A, originally described as a Golgi-resident Rab, as a prime candidate. Endogenous Rab1A protein was found to be localized to mature melanosomes in melanocytes, and its functional ablation either by siRNA-mediated knockdown or by overexpression of a cytosolic form of Rab1A-GTPase-activating protein/TBC1D20 induced perinuclear melanosome aggregation. The results of time-lapse imaging further revealed that long-range anterograde melanosome movements were specifically suppressed in Rab1A-deficient melanocytes, whereas retrograde melanosome transport occurred normally. Taken together, these findings indicate that Rab1A is the first crucial component of the anterograde melanosome transport machinery to be identified in mammalian skin melanocytes.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
43
|
Differential trafficking of transport vesicles contributes to the localization of dendritic proteins. Cell Rep 2012; 2:89-100. [PMID: 22840400 DOI: 10.1016/j.celrep.2012.05.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/04/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022] Open
Abstract
In neurons, transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here, we use a novel pulse-chase system, which allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum to follow movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon, they very rarely moved beyond the axon initial segment but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.
Collapse
|
44
|
Brunnbauer M, Dombi R, Ho TH, Schliwa M, Rief M, Ökten Z. Torque Generation of Kinesin Motors Is Governed by the Stability of the Neck Domain. Mol Cell 2012; 46:147-58. [DOI: 10.1016/j.molcel.2012.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/23/2012] [Accepted: 04/06/2012] [Indexed: 11/28/2022]
|
45
|
Zimmermann D, Abdel Motaal B, Voith von Voithenberg L, Schliwa M, Ökten Z. Diffusion of myosin V on microtubules: a fine-tuned interaction for which E-hooks are dispensable. PLoS One 2011; 6:e25473. [PMID: 21966532 PMCID: PMC3180451 DOI: 10.1371/journal.pone.0025473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/05/2011] [Indexed: 01/15/2023] Open
Abstract
Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Basma Abdel Motaal
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Manfred Schliwa
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Zeynep Ökten
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
46
|
Kasraee B, Pataky M, Nikolic DS, Carraux P, Piguet V, Salomon D, Sorg O, Saurat JH. A new spectrophotometric method for simple quantification of melanosomal transfer from melanocytes to keratinocytes. Exp Dermatol 2011; 20:938-42. [DOI: 10.1111/j.1600-0625.2011.01356.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Duangtum N, Junking M, Sawasdee N, Cheunsuchon B, Limjindaporn T, Yenchitsomanus PT. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B). Biochem Biophys Res Commun 2011; 413:69-74. [PMID: 21871436 DOI: 10.1016/j.bbrc.2011.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.
Collapse
Affiliation(s)
- Natapol Duangtum
- Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
48
|
Bruno L, Salierno M, Wetzler DE, Despósito MA, Levi V. Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS One 2011; 6:e18332. [PMID: 21483765 PMCID: PMC3069964 DOI: 10.1371/journal.pone.0018332] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ∼ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.
Collapse
Affiliation(s)
- Luciana Bruno
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - Marcelo Salierno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - Diana E. Wetzler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - Marcelo A. Despósito
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
49
|
Snezhko A, Barlan K, Aranson IS, Gelfand VI. Statistics of active transport in Xenopus melanophores cells. Biophys J 2011; 99:3216-23. [PMID: 21081069 DOI: 10.1016/j.bpj.2010.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/09/2010] [Accepted: 09/28/2010] [Indexed: 11/15/2022] Open
Abstract
The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of ∼1 μm. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of ∼4 μm and pair lifetime ∼5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.
Collapse
Affiliation(s)
- Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, Argonne, IL, USA.
| | | | | | | |
Collapse
|
50
|
Ikeda K, Zhapparova O, Brodsky I, Semenova I, Tirnauer JS, Zaliapin I, Rodionov V. CK1 activates minus-end-directed transport of membrane organelles along microtubules. Mol Biol Cell 2011; 22:1321-9. [PMID: 21307338 PMCID: PMC3078062 DOI: 10.1091/mbc.e10-09-0741] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study shows that the signal transduction pathway responsible for the initiation of minus-end–directed movement of membrane-bounded pigment granules in melanophores involves sequential activation of protein phosphatase 2A and casein kinase 1 and that this activation correlates with increased phosphorylation of the dynein intermediate chain. Microtubule (MT)-based organelle transport is driven by MT motor proteins that move cargoes toward MT minus-ends clustered in the cell center (dyneins) or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of transport in response to external cues, but the signaling events that control switching remain poorly understood. Here, we examined the signaling mechanism responsible for the rapid activation of dynein-dependent MT minus-end–directed pigment granule movement in Xenopus melanophores (pigment aggregation). We found that, along with the previously identified protein phosphatase 2A (PP2A), pigment aggregation signaling also involved casein kinase 1ε (CK1ε), that both enzymes were bound to pigment granules, and that their activities were increased during pigment aggregation. Furthermore we found that CK1ε functioned downstream of PP2A in the pigment aggregation signaling pathway. Finally, we discovered that stimulation of pigment aggregation increased phosphorylation of dynein intermediate chain (DIC) and that this increase was partially suppressed by CK1ε inhibition. We propose that signal transduction during pigment aggregation involves successive activation of PP2A and CK1ε and CK1ε-dependent phosphorylation of DIC, which stimulates dynein motor activity and increases minus-end–directed runs of pigment granules.
Collapse
Affiliation(s)
- Kazuho Ikeda
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|