1
|
Pun R, Cavanaugh AM, Aldrich E, Tran O, Rudd JC, Hansen LA, North BJ. PKCμ promotes keratinocyte cell migration through Cx43 phosphorylation-mediated suppression of intercellular communication. iScience 2024; 27:109033. [PMID: 38375220 PMCID: PMC10875573 DOI: 10.1016/j.isci.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Downregulation of intercellular communication through suppression of gap junctional conductance is necessary during wound healing. Connexin 43 (Cx43), a prominent gap junction protein in skin, is downregulated following wounding to restrict communication between keratinocytes. Previous studies found that PKCμ, a novel PKC isozyme, regulates efficient cutaneous wound healing. However, the molecular mechanism by which PKCμ regulates wound healing remains unknown. We have identified that PKCμ suppresses intercellular communication and enhances cell migration in an in vitro wound healing model by regulating Cx43 containing gap junctions. PKCμ can directly interact with and phosphorylate Cx43 at S368, which leads to Cx43 internalization and downregulation. Finally, utilizing phosphomimetic and non-phosphorylatable S368 substitutions and gap junction inhibitors, we confirmed that PKCμ regulates intercellular communication and in vitro wound healing by controlling Cx43-S368 phosphorylation. These results define PKCμ as a critical regulator of Cx43 phosphorylation to control cell migration and wound healing in keratinocytes.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ann M. Cavanaugh
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Emily Aldrich
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Olivia Tran
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Justin C. Rudd
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Laura A. Hansen
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Moemenbellah-Fard MD, Bagheri M, Bonyani M, Sedaghat H, Raz A, Azizi K, Soltani A, Alipour H. Cloning, expression and molecular analysis of recombinant Netrin-A protein of Lucilia sericata Meigen (Diptera: Calliphoridae) larvae. SAGE Open Med 2024; 12:20503121231223607. [PMID: 38292417 PMCID: PMC10826387 DOI: 10.1177/20503121231223607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Objectives Lucilia sericata (Diptera: Calliphoridae) is used in larval therapy for wound healing. Netrin-A is an enzyme secreted from the salivary glands of these larvae, and has a central role in neural regeneration and angiogenesis. This study aimed to produce the recombinant Netrin-A protein from Lucilia sericata larvae by the baculovirus expression vector system in the Sf9 insect cell line. Methods The coding sequence of Netrin-A was cloned, amplified in the pTG19 vector, and then cloned in the pFastBac HTA vector. It was then transformed into DH10Bac, and the recombinant Bacmid was subsequently transfected into Sf9 cells. The recombinant Netrin-A was purified by Ni-NTA agarose. The evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay. Results The molecular weight of this protein was 52 kDa with 404 amino acids. The signal peptide was located between amino acids 24 and 25. The concentration of Netrin-A was calculated to be 48.8 μg/ml. It reaffirmed the characterized gene codes of Lucilia sericata Netrin-A in a previous study. Conclusions The generation of recombinant Netrin-A could be used in larval therapy, and as a biomarker in certain diseases. The netrin-A of Lucilia sericata was unprecedentedly cloned and expressed in a eukaryotic cell line. Given that this larva is FDA-approved, and non-pathogenic, it conduces to research on the development of maggot therapy in future.
Collapse
Affiliation(s)
- Mohammad Djafar Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Bonyani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Sedaghat
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abouzar Soltani
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Hughes CHK, Smith OE, Meinsohn MC, Brunelle M, Gévry N, Murphy BD. Steroidogenic factor 1 (SF-1; Nr5a1) regulates the formation of the ovarian reserve. Proc Natl Acad Sci U S A 2023; 120:e2220849120. [PMID: 37494420 PMCID: PMC10410717 DOI: 10.1073/pnas.2220849120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The ovarian follicle reserve, formed pre- or perinatally, comprises all oocytes for lifetime reproduction. Depletion of this reserve results in infertility. Steroidogenic factor 1 (SF-1; Nr5a1) and liver receptor homolog 1 (LRH-1; Nr5a2) are two orphan nuclear receptors that regulate adult endocrine function, but their role in follicle formation is unknown. We developed models of conditional depletion of SF-1 or LRH-1 from prenatal ovaries. Depletion of SF-1, but not LRH-1, resulted in dramatically smaller ovaries and fewer primordial follicles. This was mediated by increased oocyte death, resulting from increased ovarian inflammation and increased Notch signaling. Major dysregulated genes were Iroquois homeobox 3 and 5 and their downstream targets involved in the establishment of the ovarian laminin matrix and oocyte-granulosa cell gap junctions. Disruptions of these pathways resulted in follicles with impaired basement membrane formation and compromised oocyte-granulosa communication networks, believed to render them more prone to atresia. This study identifies SF-1 as a key regulator of the formation of the ovarian reserve.
Collapse
Affiliation(s)
- Camilla H. K. Hughes
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| | - Olivia E. Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Mylène Brunelle
- Département de biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 0A5, Canada
| | - Nicolas Gévry
- Département de biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 0A5, Canada
| | - Bruce D. Murphy
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| |
Collapse
|
4
|
Herman-de-Sousa C, Costa MA, Silva RP, Ferreirinha F, Ribeiro S, Correia-de-Sá P. A2A receptor-induced overexpression of pannexin-1 channels indirectly mediates adenosine fibrogenic actions by favouring ATP release from human subcutaneous fibroblasts. Life Sci 2022; 310:121080. [DOI: 10.1016/j.lfs.2022.121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
5
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
6
|
Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae). Genetica 2022; 150:379-394. [PMID: 36136258 DOI: 10.1007/s10709-022-00164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
Collapse
|
7
|
Casanellas I, Lagunas A, Vida Y, Pérez-Inestrosa E, Rodríguez-Pereira C, Magalhaes J, Andrades JA, Becerra J, Samitier J. Nanoscale ligand density modulates gap junction intercellular communication of cell condensates during chondrogenesis. Nanomedicine (Lond) 2022; 17:775-791. [PMID: 35642556 DOI: 10.2217/nnm-2021-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Department of Electronics & Biomedical Engineering, University of Barcelona (UB). c/Martí i Franquès, 1, 08028, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Yolanda Vida
- Universidad de Málaga-IBIMA, Dpto. Química Orgánica. Campus de Teatinos s/n, Málaga, 29071, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Dpto. Química Orgánica. Campus de Teatinos s/n, Málaga, 29071, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain
| | - Cristina Rodríguez-Pereira
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC). c/Xubias de Arriba, 84, A Coruña, 15006, Spain
| | - Joana Magalhaes
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC). c/Xubias de Arriba, 84, A Coruña, 15006, Spain
| | - José A Andrades
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain.,Department of Cell Biology, Genetics & Physiology, Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA). Av. Cervantes, 2, Málaga, 29071, Spain
| | - José Becerra
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain.,Department of Cell Biology, Genetics & Physiology, Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA). Av. Cervantes, 2, Málaga, 29071, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Department of Electronics & Biomedical Engineering, University of Barcelona (UB). c/Martí i Franquès, 1, 08028, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| |
Collapse
|
8
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
9
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
10
|
Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G, Rousselle P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol 2020; 94:1-17. [PMID: 32621878 DOI: 10.1016/j.matbio.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.
Collapse
Affiliation(s)
- Anna Michopoulou
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
11
|
Li X, Acott TS, Nagy JI, Kelley MJ. ZO-1 associates with α3 integrin and connexin43 in trabecular meshwork and Schlemm's canal cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:1-10. [PMID: 32211117 PMCID: PMC7076326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Cellular structures that perform essential homeostatic functions include tight junctions, gap junctions, desmosomes and adherens junctions. The aqueous humor, produced by the ciliary body, passes into the anterior chamber of the eye and is filtered by the trabecular meshwork (TM), a tiny tissue found in the angle of the eye. This tissue, along with Schlemm's canal (SC) inner wall cells, is thought to control intraocular pressure (IOP) homeostasis for normal, optimal vision. The actin cytoskeleton of the tissue plays a regulatory role in maintaining IOP. One of the key risk factors for primary open angle glaucoma is persistent elevation of IOP, which compromises the optic nerve. The ZO-1 (Zonula Occludens-1), extracellular matrix protein integrins, and gap junction protein connexin43 (Cx43) are widely expressed in many different cell populations. Here, we investigated the localization and interactions of ZO-1, α3 integrin, β1 integrin, and Cx43 in cultured porcine TM and SC cells using RT-PCR, western immunoblotting and immunofluorescence labeling with confocal microscopy, along with co-immunoprecipitation. ZO-1 partially co-localized with α3 integrin, but not with β1 integrin, and co-immunoprecipitated with Cx43, as well as with α3 integrin. The association of ZO-1 with α3 integrin and Cx43 suggests that these proteins may form a multiple protein complex in porcine TM and SC cells. Since integrins interact with the actin cytoskeleton via scaffolding proteins, these results implicate junctional and scaffolding protein ZO-1 as a potential control point in regulation of IOP to normal levels for glaucoma therapy.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science UniversityPortland, Oregon, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science UniversityPortland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortland, Oregon, USA
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of ManitobaWinnipeg, MB, Canada
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science UniversityPortland, Oregon, USA
- Department of Integrative Bioscience, Oregon Health and Science UniversityPortland, Oregon, USA
| |
Collapse
|
12
|
Li X, Nagy JI, Li D, Acott TS, Kelley MJ. Gap junction connexin43 is a key element in mediating phagocytosis activity in human trabecular meshwork cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:25-31. [PMID: 32211119 PMCID: PMC7076328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Human trabecular meshwork (TM) cells play pivotal roles in maintaining homeostasis of intraocular pressure via regulation of aqueous humor outflow. These cells are capable of phagocytosis, which is considered to be essential for their regulatory function. In addition, there is a strong expression of the gap junction protein connexin43 (Cx43) in the TM. Here, we investigated functional relationships between phagocytosis activity of TM cells and their expression of Cx43. Phagocytosis was measured by showing the ability of TM cells to engulf inert fluorescent particles consisting of pHrodo. We found that internalized pHrodo was partially co-localized with Cx43 and that the phagocytic activity was dramatically reduced after knockdown of Cx43 using lentiviral Cx43 shRNA. These results suggest that Cx43 is involved in the regulation of phagocytosis by TM cells.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science UniversityPortland, Oregon, USA
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of ManitobaWinnipeg, MB, Canada
| | - Davey Li
- University of WaterlooWaterloo, ON, Canada
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science UniversityPortland, Oregon, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science UniversityPortland, Oregon, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science UniversityPortland, Oregon, USA
- Department of Integrative Biosciences, Oregon Health & Science UniversityPortland, Oregon, USA
| |
Collapse
|
13
|
Mechanism of anchorage-independency and tumor formation of cancer cells: possible involvement of cell membrane-bound laminin-332. Cell Tissue Res 2019; 379:255-259. [PMID: 31705213 DOI: 10.1007/s00441-019-03114-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/22/2019] [Indexed: 02/08/2023]
Abstract
Cancer cells are characterized by anchorage-independency and tumor formation. Involvement of laminin-332 in the pathogenesis of cancer has also been reported. I present a theory that can explain these characteristics together. Proliferating keratinocytes in wound healing produce and deposit laminin-332, which is shown in the provisional basement membrane of a wound. In association with wound closure, expression of LG4/5 domain on the α3 chain of laminin-332 disappears, implicating cleavage of LG4/5 domain. LG4/5 domain expression indicates that laminin-332 prior to the cleavage is bound to the cell membrane, because LG4/5 domain is a cell binding site. In this binding, heparan sulfate proteoglycan on the cell surface seems to be the acceptor for LG4/5 domain. I named this laminin "cell membrane-bound laminin-332" (ML332). ML332 would then bind to integrin α3β1 via LG1-3 domain, the integrin binding site, and activate FAK and the following Ras/MAPK pathway. Therefore, ML332 eliminates the need for proliferating keratinocytes to bind to processed laminin-332 secreted and deposited into the basement membrane for their proliferation (anchorage-independency). This may hold true of every proliferating epithelial cell, either benign or malignant. Whereas wound closure deprives keratinocytes of anchorage-independency, such events do not occur in cancer cells, and cancer cells maintain anchorage-independency. In the basement membrane formation by epithelial cells, short arms of laminin-332 anchored to the cell membrane bind each other and generate a meshwork polymer. This is the three-arm interaction model. In a similar manner, short-arm interactions between adjacent cancer cells may occur and induce tumor formation.
Collapse
|
14
|
Lastwika KJ, Dunn CA, Solan JL, Lampe PD. Phosphorylation of connexin 43 at MAPK, PKC or CK1 sites each distinctly alter the kinetics of epidermal wound repair. J Cell Sci 2019; 132:jcs.234633. [PMID: 31427427 DOI: 10.1242/jcs.234633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
The gap junction protein connexin 43 (Cx43) is a key player in wound healing, and inhibitors of Cx43, which speed epidermal wound healing, are currently in clinical trials. Here, we provide direct in vivo evidence that specific phosphorylation events on Cx43 change the physiological response during wound healing. Blocking phosphorylation, through mutation of serine residues in Cx43 at the protein kinase C (PKC) or casein kinase 1 (CK1) sites, significantly slowed the rate of wound closure in vivo and in vitro and resulted in a thicker epidermal layer after reepithelialization. Conversely, preventing Cx43 phosphorylation by mitogen-activated protein kinases (MAPKs) through mutation significantly increased the rate of wound closure in vivo Defects in migration, but not proliferation, in all mutants were partially rescued in vitro by changing serine residues to aspartic or glutamic acid. These data prove that specific Cx43 phosphorylation events play an important role at different stages of wound healing. Thus, a clear physiological understanding of the spatiotemporal regulation of kinase activation and consequent effects on gap junctions could lead to a more targeted approach to modulating Cx43 expression during wound healing.
Collapse
Affiliation(s)
- Kristin J Lastwika
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Clarence A Dunn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Joell L Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| |
Collapse
|
15
|
Connexins and Integrins in Exosomes. Cancers (Basel) 2019; 11:cancers11010106. [PMID: 30658425 PMCID: PMC6356207 DOI: 10.3390/cancers11010106] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Connexins and integrins, the two structurally and functionally distinct families of transmembrane proteins, have been shown to be inter-connected by various modes of cross-talk in cells, such as direct physical coupling via lateral contact, indirect physical coupling via actin and actin-binding proteins, and functional coupling via signaling cascades. This connexin-integrin cross-talk exemplifies a biologically important collaboration between channels and adhesion receptors in cells. Exosomes are biological lipid-bilayer nanoparticles secreted from virtually all cells via endosomal pathways into the extracellular space, thereby mediating intercellular communications across a broad range of health and diseases, including cancer progression and metastasis, infection and inflammation, and metabolic deregulation. Connexins and integrins are embedded in the exosomal membranes and have emerged as critical regulators of intercellular communication. This concise review article will explain and discuss recent progress in better understanding the roles of connexins, integrins, and their cross-talk in cells and exosomes.
Collapse
|
16
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
17
|
|
18
|
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 2018; 75-76:12-26. [PMID: 29330022 DOI: 10.1016/j.matbio.2018.01.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| |
Collapse
|
19
|
Kubanov АA, Karamova AEH, Al'banova VI, CHikin VV, Monchakovskaya ES. CONGENITAL EPIDERMOLYSIS BULLOSA: PECULIARITIES OF EPIDERMIS REGENERATION AND METHODS OF TREATMENT. VESTNIK DERMATOLOGII I VENEROLOGII 2017. [DOI: 10.25208/0042-4609-2017-93-4-28-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Congenital epidermolysis bullosa is a group of hereditary skin diseases caused by mutations in the genes of structural proteins of the dermoepidermal junction of the skin, characterized by formation of blisters and erosions at the smallest mechanical trauma. In patients with severe subtypes of borderline and dystrophic epidermolysis bullosa there are long-term erosive and ulcerative defects with disruption of the healing process. Factors that impede healing include: malnutrition, anemia, pain, inactivity, local factors (presence of infection, prolonged inflammation, extensive nature of the lesion, absence of skin appendages in the affected area, deficiency or lack of formation of type VII collagen). Elimination of healing impeding factors is the main challenge in treatment of severe subtypes of bullous epidermolysis. Modern promising treatment techniques are at the stage of development and have not yet been introduced into clinical practice, and, as of today, skin care and optimal topical treatment with modern non-adhesive dressings remain the most widespread treatment methods that facilitate accelerated healing.
Collapse
|
20
|
Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:83-90. [PMID: 28414037 DOI: 10.1016/j.bbamem.2017.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP3) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
21
|
Maes M, Yanguas SC, Willebrords J, Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 2015; 30:569-577. [PMID: 26420514 PMCID: PMC4685743 DOI: 10.1016/j.tiv.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
22
|
Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair. Semin Cell Dev Biol 2015; 50:40-8. [PMID: 26706150 DOI: 10.1016/j.semcdb.2015.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing.
Collapse
|
23
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
24
|
Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 2015; 153:90-106. [PMID: 26073311 DOI: 10.1016/j.pharmthera.2015.06.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Gießen, Germany.
| | | | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Luc Leybaert
- Physiology Group, Department Basic Medical Sciences, Ghent University, Belgium
| |
Collapse
|
25
|
Giannelli G, Rani B, Dituri F, Cao Y, Palasciano G. Moving towards personalised therapy in patients with hepatocellular carcinoma: the role of the microenvironment. Gut 2014; 63:1668-76. [PMID: 25053718 DOI: 10.1136/gutjnl-2014-307323] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The goal of personalised therapy based on hepatocellular carcinoma (HCC) molecular characteristics is still beyond our grasp. Systemic treatments show poor efficacy, mainly because of the great heterogeneity of the tumour. Indeed, differences in aetiology, disease stage and biochemical composition of the fibrotic liver make cirrhosis itself a highly dyshomogeneous disease. Cancer cells grow in a cirrhotic microenvironment, interacting with stromal cells and engaging matrix components that differ from patient to patient, hampering the development of drugs to treat all patients. Growing evidence suggests a role for the cross-talk between HCC and the host stroma in driving disease progression and hence prognosis and survival. Many efforts have been devoted to identifying genes responsible for good or bad prognosis, but no study has yet proven helpful in guiding therapeutic choices and management over time, also taking into account the development of drug resistance. The questions of what to target and in which patient are still unsolved. In the personalised therapy scenario, the patient rather than the disease becomes the target of the therapy. However, this still requires an evidence-based medical approach. Herein, we will discuss how individual differences in terms of quality and quantity of the tissue microenvironment components affect progression of HCC. Then, we will highlight potential druggable pathways, also considering ongoing clinical trials. The development of biomarkers will be discussed in the light of new experimental research conducted with the aim of moving towards personalised therapy in patients with HCC.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Bhavna Rani
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Francesco Dituri
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Yuan Cao
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Palasciano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
26
|
Scheiblin DA, Gao J, Caplan JL, Simirskii VN, Czymmek KJ, Mathias RT, Duncan MK. Beta-1 integrin is important for the structural maintenance and homeostasis of differentiating fiber cells. Int J Biochem Cell Biol 2014; 50:132-45. [PMID: 24607497 DOI: 10.1016/j.biocel.2014.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
β1-Integrin is a heterodimeric transmembrane protein that has roles in both cell-extra-cellular matrix and cell-cell interactions. Conditional deletion of β1-integrin from all lens cells during embryonic development results in profound lens defects, however, it is less clear whether this reflects functions in the lens epithelium alone or whether this protein plays a role in lens fibers. Thus, a conditional approach was used to delete β1-integrin solely from the lens fiber cells. This deletion resulted in two distinct phenotypes with some lenses exhibiting cataracts while others were clear, albeit with refractive defects. Analysis of "clear" conditional knockout lenses revealed that they had profound defects in fiber cell morphology associated with the loss of the F-actin network. Physiological measurements found that the lens fiber cells had a twofold increase in gap junctional coupling, perhaps due to differential localization of connexins 46 and 50, as well as increased water permeability. This would presumably facilitate transport of ions and nutrients through the lens, and may partially explain how lenses with profound structural abnormalities can maintain transparency. In summary, β1-integrin plays a role in maintaining the cellular morphology and homeostasis of the lens fiber cells.
Collapse
Affiliation(s)
- David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Jeffrey L Caplan
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, United States
| | - Vladimir N Simirskii
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
27
|
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 2014; 588:1423-9. [PMID: 24508467 DOI: 10.1016/j.febslet.2014.01.049] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially "unzip" and be internalized/endocytosed into the cell that produced each connexin.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
28
|
Defamie N, Chepied A, Mesnil M. Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588:1331-8. [PMID: 24457198 DOI: 10.1016/j.febslet.2014.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to "activate" stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed.
Collapse
Affiliation(s)
- Norah Defamie
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Amandine Chepied
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Marc Mesnil
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| |
Collapse
|
29
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
30
|
Dunn CA, Lampe PD. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 2013; 127:455-64. [PMID: 24213533 DOI: 10.1242/jcs.142497] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The proteins that form vertebrate gap junctions, the connexins, are highly regulated and have short (<2 hour) half-lives. Phosphorylation of connexin43 (Cx43) affects gap junction assembly, channel gating and turnover. After finding dramatic effects on gap junctions with Akt inhibitors, we created an antibody specific for Cx43 phosphorylated on S373, a potential Akt substrate. We found S373 phosphorylation in cells and skin or heart almost exclusively in larger gap-junctional structures that increased dramatically after wounding or hypoxia. We were able to mechanistically show that Akt-dependent phosphorylation of S373 increases gap junction size and communication by completely eliminating the interaction between Cx43 and ZO-1. Thus, phosphorylation on S373 acts as a molecular 'switch' to rapidly increase gap-junctional communication, potentially leading to initiation of activation and migration of keratinocytes or ischemic injury response in the skin and the heart, respectively.
Collapse
Affiliation(s)
- Clarence A Dunn
- Translational Research Program, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
31
|
Sakurai T, Tsuchida M, Lampe PD, Murakami M. Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance. Exp Cell Res 2013; 319:2152-65. [PMID: 23742896 DOI: 10.1016/j.yexcr.2013.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023]
Abstract
Cardiac remodeling resulting from impairment of myocardial integrity leads to heart failure, through still incompletely understood mechanisms. The fibroblast growth factor (FGF) system has been implicated in tissue maintenance, but its role in the adult heart is not well defined. We hypothesized that the FGF system plays a role in the maintenance of cardiac homeostasis, and the impairment of cardiomyocyte FGF signaling leads to pathological cardiac remodeling. We showed that FGF signaling is required for connexin 43 (Cx43) localization at cell-cell contacts in isolated cardiomyocytes and COS7 cells. Lack of FGF signaling led to decreased Cx43 phosphorylation at serines 325/328/330 (S325/328/330), sites known to be important for assembly of gap junctions. Cx43 instability induced by FGF inhibition was restored by the Cx43 S325/328/330 phospho-mimetic mutant, suggesting FGF-dependent phosphorylation of these sites. Consistent with these in vitro findings, cardiomyocyte-specific inhibition of FGF signaling in adult mice demonstrated mislocalization of Cx43 at intercalated discs, whereas localization of N-cadherin and desmoplakin was not affected. This led to premature death resulting from impaired cardiac remodeling. We conclude that cardiomyocyte FGF signaling is essential for cardiomyocyte homeostasis through phosphorylation of Cx43 at S325/328/330 residues which are important for the maintenance of gap junction.
Collapse
Affiliation(s)
- Takashi Sakurai
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
32
|
Davis NG, Phillips A, Becker DL. Connexin dynamics in the privileged wound healing of the buccal mucosa. Wound Repair Regen 2013; 21:571-8. [PMID: 23627777 DOI: 10.1111/wrr.12054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
Wound closure is fundamental to maintaining tissue homeostasis; a plethora of processes and signals must be coordinated, and gap junctions play a critical role. Some tissues exhibit privileged healing, such as buccal mucosa, repairing more rapidly, but gap junction connexin dynamics during wound healing in such tissues have not been investigated. To determine connexin changes during this rapid healing process, incisional wounds were made in the cheeks of mice and microscopically observed. We discovered that buccal mucosa wound edge keratinocytes do not form a thin tongue of migratory cells like epidermis; instead, a wedge of cells rapidly moves into the wound. The dorsal surfaces of opposing sides of the wounds then touch and join in a "V," which subsequently fills up with cells to form a "delta" that remodels into a flat sheet. Immunostaining showed that connexin26, connexin30, and connexin43 are expressed at significantly higher levels in the buccal mucosa than the epidermis and that, unlike the skin, all three are rapidly down-regulated at the wound edge within 6 hours of wounding. This rapid down-regulation of all three connexins may in part underlie the rapid healing of the buccal mucosa.
Collapse
Affiliation(s)
- Nicola G Davis
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | | | |
Collapse
|
33
|
Abstract
Laminin 332, composed of the α3, β3 and γ2 chains, is an epithelial-basement membrane specific laminin variant. Its main role in normal tissues is the maintenance of epithelial-mesenchymal cohesion in tissues exposed to external forces, including skin and stratified squamous mucosa. After being secreted and deposited in the extracellular matrix, laminin 332 undergoes physiological maturation processes consisting in the proteolytic processing of domains located within the α3 and the γ2 chains. These maturation events are essential for laminin 332 integration into the basement membrane where it plays an important function in the nucleation and maintenance of anchoring structures. Studies in normal and pathological situations have revealed that laminin 332 can trigger distinct cellular events depending on the level of its proteolytic cleavages. In this review, the biological and structural characteristics of laminin 332 domains are presented and we discuss whether they trigger specific functions.
Collapse
Affiliation(s)
- Patricia Rousselle
- SFR BioSciences Gerland-Lyon Sud, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS, Université Lyon 1, Lyon, France.
| | | |
Collapse
|
34
|
Márquez-Rosado L, Singh D, Rincón-Arano H, Solan JL, Lampe PD. CASK (LIN2) interacts with Cx43 in wounded skin and their coexpression affects cell migration. J Cell Sci 2012; 125:695-702. [PMID: 22389404 DOI: 10.1242/jcs.084400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vertebrate gap junctions are composed of proteins from the connexin family. Co-immunoprecipitation, in vitro binding and far western experiments demonstrate that mammalian CASK (also known as LIN2) directly interacts with Cx43. Immunoprecipitation studies indicate that the CASK mainly interacts with the hypophosphorylated form of Cx43. Functional co-regulation of these proteins was found in MDCK cells migrating into a scratch wound, where expression of either protein individually inhibits migration but their coexpression abrogates this inhibitory effect. Immunofluorescence shows colocalization of Cx43 and CASK in mouse brain astrocytes and in response to wounding in human foreskin. During wounding, CASK is mobilized to the plasma membrane where it colocalizes with Cx43 and CADM1 1 hour after skin explant wounding. Together, these studies indicate that CASK interaction with Cx43 occurs relatively early in the connexin life cycle and imply a plasma membrane targeting role for the interaction that apparently affects cellular processes including cellular migration and wound healing.
Collapse
Affiliation(s)
- Lucrecia Márquez-Rosado
- Molecular Diagnostics Program, Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
35
|
Churko JM, Kelly JJ, MacDonald A, Lee J, Sampson J, Bai D, Laird DW. The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation. Exp Dermatol 2012; 21:612-8. [DOI: 10.1111/j.1600-0625.2012.01532.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jared M. Churko
- Department of Anatomy and Cell Biology; University of Western Ontario; London; ON; Canada
| | - John J. Kelly
- Department of Anatomy and Cell Biology; University of Western Ontario; London; ON; Canada
| | - Andrew MacDonald
- Department of Physiology and Pharmacology; University of Western Ontario; London; ON; Canada
| | - Jack Lee
- Department of Physiology and Pharmacology; University of Western Ontario; London; ON; Canada
| | - Jacinda Sampson
- Department of Neurology; University of Utah School of Medicine; Salt Lake City; UT; USA
| | - Donglin Bai
- Department of Physiology and Pharmacology; University of Western Ontario; London; ON; Canada
| | | |
Collapse
|
36
|
Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G. Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol 2012; 47:407-23. [PMID: 22551357 DOI: 10.3109/10409238.2012.683482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.
Collapse
Affiliation(s)
- Jérôme Gilleron
- INSERM U 1065, University Nice Sophia Antipolis, Team 5, C3M, 151 route Saint-Antoine de Ginestière, France
| | | | | | | | | |
Collapse
|
37
|
Carulli S, Beck K, Dayan G, Boulesteix S, Lortat-Jacob H, Rousselle P. Cell surface proteoglycans syndecan-1 and -4 bind overlapping but distinct sites in laminin α3 LG45 protein domain. J Biol Chem 2012; 287:12204-16. [PMID: 22351752 DOI: 10.1074/jbc.m111.300061] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Keratinocyte migration during epidermal repair depends on interactions between cellular heparan sulfate proteoglycan receptors, syndecan-1 and -4, and the C-terminal globular domains (LG45) of the extracellular matrix protein laminin 332. This study investigates the molecular basis of the binding specificity of the syndecan-1 and -4 receptors expressed by human keratinocytes. We used site-directed mutagenesis to alter a recombinant LG45 protein by substituting the most critical basic residues with glutamine. All proteins were expressed in mammalian cells, purified, and characterized biochemically. We used in vitro binding assays, including surface plasmon resonance, to examine interactions between mutated LG45 and heparan sulfates, syndecan-1 and -4. We identify a major heparin binding domain on the outer edge of a β-strand of LG45 surrounded by a track of converging low affinity residues. This domain harbors distinctive syndecan-1 and -4 binding-specific sequences. This is the first study to demonstrate a binding specificity of two proteoglycans produced by a single cell type. In addition, we found that although syndecan-1 interacts exclusively through its glycosaminoglycan chains, syndecan-4 binding relies on both its core protein and its heparan sulfate chains. These results suggest that LG45 may trigger different signals toward keratinocytes depending on its interaction with syndecan-1 or -4.
Collapse
Affiliation(s)
- Sonia Carulli
- Structure Fédérative de Recherche BioSciences Gerland-Lyon Sud, Institut de Biologie et Chimie des Protéines, FRE 3310, CNRS, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | |
Collapse
|
38
|
Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A 2012; 109:3359-64. [PMID: 22331870 DOI: 10.1073/pnas.1115967109] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connexin 43 (Cx43) hemichannel (HC) in the mechanosensory osteocytes is a major portal for the release of factors responsible for the anabolic effects of mechanical loading on bone formation and remodeling. However, little is known about how the Cx43 molecule responds to mechanical stimulation leading to the opening of the HC. Here, we demonstrate that integrin α5β1 interacts directly with Cx43 and that this interaction is required for mechanical stimulation-induced opening of the Cx43 HC. Direct mechanical perturbation via magnetic beads or conformational activation of integrin α5β1 leads to the opening of the Cx43 HC, and this role of the integrin is independent of its association with an extracellular fibronectin substrate. PI3K signaling is responsible for the shear stress-induced conformational activation of integrin α5β1 leading to the opening of the HC. These results identify an unconventional function of integrin that acts as a mechanical tether to induce opening of the HC and provide a mechanism connecting the effect of mechanical forces directly to anabolic function of the bone.
Collapse
|
39
|
Suh HN, Kim MO, Han HJ. Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/drebrin complex. Stem Cells Dev 2012; 21:2058-70. [PMID: 22150760 DOI: 10.1089/scd.2011.0505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gap junctions within extracellular matrix (ECM)-defined boundaries ensure synchronous activity between cells destined to become functional mediators that regulate cell behavior. However, the role of ECM in connexin (Cx) function in mouse embryonic stem cells (mESCs) has not been elucidated. Therefore, we examined the role of laminin-111 in the control of Cx43 functions and related signal pathways in mESCs. ECM components (laminin-111, fibronectin, and collagen I) increased Cx43 phosphorylation and decreased Lucifer yellow (Ly) diffusion. In addition, laminin-111 increased the proliferation index through reduction of gap junctional intercellular communication (GJIC), which was confirmed by 18α-glycyrrhetinic acid (18α-GA). Laminin-111 increased phosphorylation of focal adhesion kinase (FAK)/Src and protein kinase C (PKC), which were inhibited by integrin β1 antibody (Ab) and laminin receptor-1 (LR-1) Ab, respectively. In addition, inhibition of both FAK/Src and PKC blocked Cx43 phosphorylation. Laminin-111 increased the Ras homolog gene family, member A (RhoA) activation, which was blocked by FAK/Src and PKC inhibitors, suggesting the existence of parallel pathways that merge at RhoA. Inhibition of RhoA reversed the laminin-111-induced increase of Cx43 phosphorylation and reduction of GJIC. Laminin-111 also stimulated the dissociation of Cx43/ZO-1 complex followed by disruption of Cx43/drebrin and Cx43/F-actin complexes, which were reversed by C3 (RhoA inhibitor). ZO-1 small interfering (si) RNA significantly decreased Ly diffusion. Moreover, laminin-111 decreased Cx43 labeling at the intercellular junction, whereas pretreatment with degradation inhibitors (lysosomal protease inhibitor, chloroquine; proteasome inhibitor, lactacystin) increased Cx43 expression, reversely. In conclusion, laminin-111 stimulated mESC proliferation through a reduction of GJIC via RhoA-mediated Cx43 phosphorylation and Cx43/ZO-1/drebrin complex instability-mediated Cx43 degradation.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | |
Collapse
|
40
|
Ichikawa-Tomikawa N, Ogawa J, Douet V, Xu Z, Kamikubo Y, Sakurai T, Kohsaka S, Chiba H, Hattori N, Yamada Y, Arikawa-Hirasawa E. Laminin α1 is essential for mouse cerebellar development. Matrix Biol 2012; 31:17-28. [PMID: 21983115 PMCID: PMC3259268 DOI: 10.1016/j.matbio.2011.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022]
Abstract
Laminin α1 (Lama1), which is a subunit of laminin-1 (laminin-111), a heterotrimeric ECM protein, is essential for embryonic development and promotes neurite outgrowth in culture. Because the deletion of Lama1 causes lethality at early embryonic stages in mice, the in vivo role of Lama1 in neural development and functions has not yet been possible to determine. In this study, we generated conditional Lama1 knockout (Lama1(CKO)) mice in the epiblast lineage using Sox2-Cre mice. These Lama1(CKO) mice survived, but displayed behavioral disorders and impaired formation of the cerebellum. Deficiency of Lama1 in the pial basement membrane of the meninges resulted in defects in the conformation of the meninges. During cerebellar development, Lama1 deficiency also caused a decrease in the proliferation and migration of granule cell precursors, disorganization of Bergmann glial fibers and endfeet, and a transient reduction in the activity of Akt. A marked reduction in numbers of dendritic processes in Purkinje cells was observed in Lama1(CKO) mice. Together, these results indicate that Lama1 is required for cerebellar development and functions.
Collapse
Affiliation(s)
- Naoki Ichikawa-Tomikawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junko Ogawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Vanessa Douet
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Zhuo Xu
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Kohsaka
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, U.S.A
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Kasprick DS, Kish PE, Junttila TL, Ward LA, Bohnsack BL, Kahana A. Microanatomy of adult zebrafish extraocular muscles. PLoS One 2011; 6:e27095. [PMID: 22132088 PMCID: PMC3223174 DOI: 10.1371/journal.pone.0027095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 01/11/2023] Open
Abstract
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.
Collapse
Affiliation(s)
- Daniel S. Kasprick
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tyler L. Junttila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lindsay A. Ward
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brenda L. Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
The idea that the gap junction family of proteins, connexins, are tumour suppressors has been widely supported through numerous cancer models. However, the paradigm that connexins and enhanced gap junctional intercellular communication is of universal benefit by restricting tumour growth has been challenged by more recent evidence that suggests a role for connexins in facilitating tumour progression and metastasis. Therefore, connexins might be better classified as conditional tumour suppressors that modulate cell proliferation, as well as adhesion and migration.
Collapse
Affiliation(s)
- Christian C Naus
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T-1Z3, Canada.
| | | |
Collapse
|
43
|
Hamill KJ, Paller AS, Jones JCR. Adhesion and migration, the diverse functions of the laminin alpha3 subunit. Dermatol Clin 2010; 28:79-87. [PMID: 19945619 DOI: 10.1016/j.det.2009.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The laminins are a secreted family of heterotrimeric molecules essential for basement membrane formation, structure, and function. It is now well established that the alpha3 subunit of laminins-332, -321, and -311 plays an important role in mediating epidermal-dermal integrity and is essential for the skin to withstand mechanical stresses. These laminins also regulate cell migration and mechanosignal transduction. This article provides an overview of the gene, transcripts, and protein structures of laminin alpha3. Also discussed are the proposed functions for the alpha3 subunit-containing laminins.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Tarry 8-746, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
44
|
Abstract
Within the integrin family of cell adhesion receptors, integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 make up a laminin-binding subfamily. The literature is divided on the role of these laminin-binding integrins in metastasis, with different studies indicating either pro- or antimetastatic functions. The opposing roles of the laminin-binding integrins in different settings might derive in part from their unusually robust associations with tetraspanin proteins. Tetraspanins organise integrins into multiprotein complexes within discrete plasma membrane domains termed tetraspanin-enriched microdomains (TEMs). TEM association is crucial to the strikingly rapid cell migration mediated by some of the laminin-binding integrins. However, emerging data suggest that laminin-binding integrins also promote the stability of E-cadherin-based cell-cell junctions, and that tetraspanins are essential for this function as well. Thus, TEM association endows the laminin-binding integrins with both pro-invasive functions (rapid migration) and anti-invasive functions (stable cell junctions), and the composition of TEMs in different cell types might help determine the balance between these opposing activities. Unravelling the tetraspanin control mechanisms that regulate laminin-binding integrins will help to define the settings where inhibiting the function of these integrins would be helpful rather than harmful, and may create opportunities to modulate integrin activity in more sophisticated ways than simple functional blockade.
Collapse
|
45
|
Chang YC, Sabourin CLK, Lu SE, Sasaki T, Svoboda KKH, Gordon MK, Riley DJ, Casillas RP, Gerecke DR. Upregulation of gamma-2 laminin-332 in the mouse ear vesicant wound model. J Biochem Mol Toxicol 2009; 23:172-84. [PMID: 19526566 PMCID: PMC4465420 DOI: 10.1002/jbt.20275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epithelial cell migration during wound healing is regulated in part by enzymatic processing of laminin-332 (formerly LN-5), a heterodimer formed from alpha, beta, and gamma polypeptide chains. Under static conditions, laminin-332 is secreted into the extracellular matrix as a proform and has two chains processed to smaller forms, allowing it to anchor epithelial cells to the basement membrane of the dermis. During incisional wounding, laminin gamma2 chains in particular are processed to smaller sizes and function to promote epithelial sheet migration over the wound bed. The present study examines whether this same function occurs following chemical injury. The mouse ear vesicant model (MEVM) was used to follow the pathology in the ear and test whether processed laminin-332 enhances epithelial cell migration. Skin biopsies of sulfur mustard (SM) exposed ears for several time points were analyzed by histology, immunohistochemistry, real-time PCR, and Western blot analysis. SM exposure greatly increased mRNA levels for laminin-gamma2 in comparison to the other two chains. Protein production of laminin-gamma2 was upregulated, and there was an increase in the processed forms. Protein production was in excess of the amount required to form heterotrimeric laminin-332 and was associated with the migrating epithelial sheet, suggesting a potential role in wound healing for monomeric laminin-gamma2.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, EOHSI, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | - Shou-En Lu
- Department of Biostatistics, UMDNJ School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Takako Sasaki
- Department of Molecular Biology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kathy K. H. Svoboda
- Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Marion K. Gordon
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, EOHSI, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - David J. Riley
- Department of Medicine, UMDNJ–Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Robert P. Casillas
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201-2693, USA
| | - Donald R. Gerecke
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, EOHSI, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 2009; 83:5329-38. [PMID: 19297475 DOI: 10.1128/jvi.00089-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human adenovirus E4orf6 and E1B55K proteins promote viral replication by targeting several cellular proteins for degradation. The E4orf6 product has been shown by our group and others to form an E3 ubiquitin ligase complex that contains elongins B and C and cullin family member Cul5. E1B55K associates with this complex, where it is believed to function primarily to introduce bound substrates for degradation via proteasomes. In addition to p53, its first known substrate, the E4orf6/E1B 55-kDa complex (E4orf6/E1B55K) was shown to promote the degradation of Mre11 and DNA ligase IV; however, additional substrates are believed to exist. This notion is strengthened by the fact that none of these substrates seems likely to be associated with additional functions shown to be mediated by the E4orf6-associated E3 ubiquitin ligase complex, including export of late viral mRNAs and blockage of export of the bulk cellular mRNAs from the nucleus. In an attempt to identify new E4orf6/E1B55K substrates, we undertook a proteomic screen using human p53-null, non-small-cell lung carcinoma H1299 cells expressing either E4orf6 protein alone or in combination with E1B55K through infection by appropriate adenovirus vectors. One cellular protein that appeared to be degraded by E1B55K in combination with the E4orf6 protein was a species of molecular mass approximately 130 kDa that was identified as the integrin alpha3 subunit (i.e., very late activation antigen 3 alpha subunit). Preliminary analyses suggested that degradation of alpha3 may play a role in promoting release and spread of progeny virions.
Collapse
|
47
|
Imbeault S, Gauvin LG, Toeg HD, Pettit A, Sorbara CD, Migahed L, DesRoches R, Menzies AS, Nishii K, Paul DL, Simon AM, Bennett SA. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells. BMC Neurosci 2009; 10:13. [PMID: 19236721 PMCID: PMC2655299 DOI: 10.1186/1471-2202-10-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 02/24/2009] [Indexed: 11/23/2022] Open
Abstract
Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells.
Collapse
Affiliation(s)
- Sophie Imbeault
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Dept. of Biochemistry, Microbiology, and Immunology, University of Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
D'Alessio S, Gerasi L, Blasi F. uPAR-deficient mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting migration in vivo and in vitro. J Cell Sci 2008; 121:3922-32. [PMID: 19001498 DOI: 10.1242/jcs.037549] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The urokinase receptor (uPAR) is involved in a series of pathological processes, from inflammation to cancer. We have analyzed in detail the role of uPAR and the mechanisms involved in keratinocyte behavior during wound healing by exploiting uPAR-knockout (KO) mice. In vivo, uPAR-KO mice showed delayed wound healing, with abnormal keratinocyte migration and proliferation. In vitro, unlike wild-type cells, primary uPAR-KO keratinocytes did not proliferate in response to epidermal growth factor (EGF), their growth and migration were not inhibited by EGF-receptor (EGFR) inhibitors, and they did not adhere to uncoated surfaces. Whereas EGFR levels in uPAR-KO keratinocytes were normal, there was no tyrosine phosphorylation upon addition of EGF, and its downstream targets, extracellular-signal-regulated kinases 1 and 2 (ERK1/2), were not activated. Re-introduction of mouse uPAR rescued all phenotypes. In vitro adhesion and migration defects were associated with the failure of uPAR-KO keratinocytes to normally produce and secrete laminin-5 (LN5), an event that requires EGFR signaling. These results were confirmed in vivo, with LN5 being upregulated during wound healing in wild-type but not in uPAR-KO epidermis.
Collapse
Affiliation(s)
- Silvia D'Alessio
- Università Vita Salute San Raffaele and Istituto Scientifico H San Raffaele, via Olgettina 60, 20132 Milano, Italy
| | | | | |
Collapse
|
49
|
Momota Y, Suzuki N, Kasuya Y, Kobayashi T, Mizoguchi M, Yokoyama F, Nomizu M, Shinkai H, Iwasaki T, Utani A. Lamininα3 LG4 Module Induces Keratinocyte Migration: Involvement of Matrix Metalloproteinase-9. J Recept Signal Transduct Res 2008; 25:1-17. [PMID: 15960391 DOI: 10.1081/rrs-200047870] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Laminin alpha3 chain, a functionally key subunit of laminin-5, contains a large globular module (G module) which consists of a tandem repeat of five homologous LG modules (LG1-5). We previously demonstrated that the LG4 module of laminin alpha3 chain (alpha3 LG4) induces a matrix metalloproteinase-1 (MMP-1) expression through the interaction with syndecans leading to MAPK activation/IL-1beta expression signaling loop (Utani et al., J. Biol. Chem. 278, 34483-34490, 2003). Here, we show that a recombinant alpha3 LG4 and synthetic peptides containing syndecan binding motif induced a cell motility and a MMP-9 expression in ketarinocytes. The synthetic peptide (A3G756)-induced cell migration and MMP-9 upregulation were inhibited by each application of a heparin and an IL-1 receptor antagonist (IL-1RA), suggesting the involvement of syndecans and IL-1beta autocrine. Furthermore, the A3G756-induced cell motility was inhibited by an MMP-9 inhibitor and a neutralizing antibody of MMP-9, indicating induced cell motility was dependent on an MMP-9 activity. Taken these together, laminin-5 alpha3 LG4 module may play an important role in re-epithelialization at tissue remodeling.
Collapse
Affiliation(s)
- Yutaka Momota
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Das Sarma J, Kaplan BE, Willemsen D, Koval M. Identification of rab20 as a potential regulator of connexin 43 trafficking. ACTA ACUST UNITED AC 2008; 15:65-74. [PMID: 18649179 DOI: 10.1080/15419060802014305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Connexin oligomerization and trafficking are regulated processes. To identify proteins that control connexin 43 (Cx43), a screen was designed using HeLa cells expressing a Cx43 construct with di-lysine endoplasmic reticulum (ER)-retention/retrieval motif, Cx43-HKKSL. At moderate levels of expression, Cx43-HKKSL is retained in the ER as monomers; however, Cx43-HKKSL stably overexpressed by HeLa cells localizes to the perinuclear region and oligomerizes. HeLa/Cx43-HKKSL overexpressors were transiently transfected with pooled clones from a human kidney cDNA library and used immunofluorescence microscopy to identify cDNAs that enabled overexpressed Cx43-HKKSL to convert from a perinuclear to ER localization pattern. Using this approach, a small molecular weight GTPase, rab20, was identified as a candidate protein with the ability to regulate Cx43 trafficking. Enhanced green fluorescent protein (EGFP)-tagged rab20 showed a predominantly perinuclear and ER localization pattern and caused wild-type Cx43 to be retained inside the cell. By contrast, mutant EGFP-rab20T19N, which lacks the ability to bind GTP, had no effect on Cx43. These results suggest Cx43 is transported through an intracellular compartment regulated by rab20 along the secretory pathway.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|