1
|
Whitehead M, Faleeva M, Oexner R, Cox S, Schmidt L, Mayr M, Shanahan CM. ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes. Arterioscler Thromb Vasc Biol 2025. [PMID: 39817328 DOI: 10.1161/atvbaha.124.321467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied. METHODS Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype. ECM was synthesized using primary human VSMCs and modified during culture or after decellularization. Integrity, stiffness, and composition of the ECM was measured using superresolution microscopy, atomic force microscopy, and proteomics, respectively. VSMCs reseeded onto the modified ECM were analyzed for viability and osteogenic differentiation. RESULTS ECMs produced in response to mineral stress showed extracellular vesicle-mediated hydroxyapatite deposition and sequential changes in collagen composition and ECM properties. VSMCs seeded onto the calcified ECM exhibited increased extracellular vesicle release and Runx2 (Runt-related transcription factor 2)-mediated osteogenic gene expression due to the uptake of hydroxyapatite, which led to increased reactive oxygen species and the induction of DNA damage signaling. VSMCs seeded onto the nonmineralized, senescent ECM also exhibited increased Runx2-mediated osteogenic gene expression and accelerated calcification. In contrast, glycated ECM specifically induced increased ALP (alkaline phosphatase) activity, and this was dependent on RAGE (receptor for advanced glycation end products) signaling with both ALP and RAGE receptor inhibition attenuating calcification. CONCLUSIONS ECM modifications associated with aging and metabolic disease can directly induce osteogenic differentiation of VSMCs via distinct mechanisms and without the need for additional stimuli. This highlights the importance of the ECM microenvironment as a key driver of phenotypic modulation acting to accelerate age-associated vascular pathologies and provides a novel model system to study the mechanisms of calcification.
Collapse
Affiliation(s)
- Meredith Whitehead
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| | - Maria Faleeva
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| | - Rafael Oexner
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, United Kingdom. (S.C.)
| | - Lukas Schmidt
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| | - Manuel Mayr
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.)
| |
Collapse
|
2
|
Ahrens L, Forget A, Shastri VP. Modulation of Short-Term Delivery of Proteins from Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64568-64578. [PMID: 39552122 DOI: 10.1021/acsami.4c15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
For modulation of cellular behavior, systems that can provide controlled delivery of proteins (soluble signals) over a few hours to a few days are highly desirable. Conventional erosion-controlled systems are inadequate as their degradation spans days to months. Conversely, hydrogels offer quicker release but are limited by a high burst release that can lead to cytotoxicity and rapid depletion of the permeant. To avoid burst release and achieve controlled diffusion of proteins, we propose exploiting electrostatic interactions between the hydrogel matrix and proteins. Here we demonstrate this concept using two disparate hydrogel systems: (1) a chemically cross-linked protein (gelatin) matrix and (2) a physically cross-linked polysaccharide (agarose) matrix and three proteins having different isoelectric points. By introducing fixed charges into the hydrogel matrix using carboxylated agarose (CA), the precise and controlled release of BSA, lactoferrin, and FGF2 over a few hours to days is demonstrated. Using electroendosmosis, we further provide evidence for a clear role for CA in modulating the release. Our findings suggest that the paradigm presented herein has the potential to significantly enhance the design of hydrogel systems for the delivery of proteins and RNA therapeutics for vaccines and biomedical applications ranging from tissue engineering to functional coatings for medical devices.
Collapse
Affiliation(s)
- Lucas Ahrens
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Aurélien Forget
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Kengmana E, Ornelas-Gatdula E, Chen KL, Schulman R. Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets. J Am Chem Soc 2024. [PMID: 39565729 DOI: 10.1021/jacs.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
Collapse
Affiliation(s)
- Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Snead MP, Lovicu FJ, Nixon TR, Richards AJ, Martin H. Pathobiology of the crystalline lens in Stickler syndrome. Prog Retin Eye Res 2024; 103:101304. [PMID: 39349161 DOI: 10.1016/j.preteyeres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE The Stickler syndromes are a group of connective tissue disorders characterised by congenital myopia, giant retinal tear and retinal detachment, cleft palate, hearing loss and premature arthropathy. Patients with Stickler syndrome are also susceptible to abnormalities of the crystalline lens. Since neither type II or type XI collagen (those typically affected in the vast majority of Stickler patients) are highly expressed in the lens, this observational cohort study explores potential alternative mechanisms to explain why patients frequently exhibit such unusual but characteristic types of cataract. METHODS Author observations drawn from a cohort of over 1800 patients with genetically confirmed Stickler syndrome. RESULTS 3 distinct lens pathologies were identified. Firstly, a congenital quadrantic lamellar opacity. This can be present in both type 1 (COL2A1) and type 2 (COL11A1) Stickler syndrome. Secondly, early onset Pantone 557 C blue-green nuclear cataract. Thirdly, congenital lens coloboma associated with localised zonule deficiency. CONCLUSIONS The characteristic quadrantic lamellar lens opacity can be helpful in alerting to the possible diagnosis, particularly in sub-groups with an ocular-only phenotype. Temporal and spatial signalling pathways shared embryologically by both the developing vitreous body and crystalline lens suggest an ancillary role of the fibrillar collagens in cell signalling beyond their basic structural function. A common pathway of TGFβ/BMP super-family dysregulation may be shared with allied disorders associated with both retinal detachment and cataract as well as the pathobiology linking retinal detachment and cataract in the population at large. Congenital lens coloboma associated with localised zonule deficiency can increase the difficulty and risks of cataract surgery. Strategies to mitigate such risks are presented.
Collapse
Affiliation(s)
- Martin P Snead
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom.
| | - Frank J Lovicu
- Save Sight Institute and Molecular and Cellular Biomedicine, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Thomas Rw Nixon
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Allan J Richards
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Howard Martin
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| |
Collapse
|
5
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
6
|
Shen J, Ye D, Jin H, Wu Y, Peng L, Liang Y. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors. J Mater Chem B 2024; 12:5513-5524. [PMID: 38745541 DOI: 10.1039/d3tb03077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS Compared to the TGF-β3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.
Collapse
Affiliation(s)
- Jinpeng Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
- Department of Plastic Surgery, Taizhou Enze Medical Center, Zhejiang, P. R. China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yongxuan Wu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Lihong Peng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Yan Liang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
| |
Collapse
|
7
|
Yoshida H, Yokota S, Satoh K, Ishisaki A, Chosa N. Connective tissue growth factor enhances TGF-β1-induced osteogenic differentiation via activation of p38 MAPK in mesenchymal stem cells. J Oral Biosci 2024; 66:68-75. [PMID: 38266705 DOI: 10.1016/j.job.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs. METHODS UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Hironori Yoshida
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
8
|
Govers BM, van Huet RAC, Roosing S, Keijser S, Los LI, den Hollander AI, Klevering BJ. The genetics and disease mechanisms of rhegmatogenous retinal detachment. Prog Retin Eye Res 2023; 97:101158. [PMID: 36621380 DOI: 10.1016/j.preteyeres.2022.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.
Collapse
Affiliation(s)
- Birgit M Govers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Keijser
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonoor I Los
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
10
|
Perrier-Groult E, Moustaghfir S, Pasdeloup M, Malcor JD, Lafont J, Mallein-Gerin F. Presence of type IIB procollagen in mouse articular cartilage and growth plate is revealed by immuno-histochemical analysis with a novel specific antibody. Matrix Biol Plus 2023; 18:100130. [PMID: 36941890 PMCID: PMC10024168 DOI: 10.1016/j.mbplus.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Type II collagen is the major fibrillar collagen in cartilage. It is synthesized in the form of precursors (procollagens) containing N- and C-terminal propeptides. The two main isoforms of type II procollagen protein are type IIA and type IIB procollagens, generated in a developmentally regulated manner by differential splicing of the primary gene transcript. Isoform IIA contains exon 2 and is produced mainly by chondroprogenitor cells while isoform IIB lacks exon 2 and is produced by differentiated chondrocytes. Thus, expression of IIA and IIB isoforms are reliable markers for identifying the differentiation status of chondrocytes but their biological function in the context of skeletal development is still not yet fully understood. Specific antibodies against IIA and IIB procollagen isoforms are already available. In this study, a synthetic peptide spanning the junction between exon 1 and exon 3 of the murine sequence was used as an immunogen to generate a novel rabbit polyclonal antibody directed against procollagen IIB. Characterization of this antibody by Western-blotting analysis of murine cartilage extracts and ELISA tests demonstrated its specificity to the type IIB isoform. Furthermore, by immunohistochemical studies, this antibody allowed the detection of procollagen IIB in embryonic cartilage as well as in articular cartilage and growth plate of young adult mice. Interestingly, this is the first antibody that has allowed the detection of procollagen IIB at both the intra- and extracellular level. This antibody therefore represents an interesting new tool for monitoring the spatial and temporal distribution of IIB isoforms in skeletal tissues of mouse models and for tracking the trafficking and processing of type IIB procollagen.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Mallein-Gerin
- Corresponding author at: Laboratory of Tissue Biology and Therapeutic Engineering, LBTI CNRS UMR 5305, IBCP building, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
11
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
12
|
Spanou CES, Wohl AP, Doherr S, Correns A, Sonntag N, Lütke S, Mörgelin M, Imhof T, Gebauer JM, Baumann U, Grobe K, Koch M, Sengle G. Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation. FASEB J 2023; 37:e22717. [PMID: 36563024 DOI: 10.1096/fj.202200904r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
Collapse
Affiliation(s)
- Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Doherr
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annkatrin Correns
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Sonntag
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Colzyx AB, Lund, Sweden
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
13
|
Strecanska M, Danisovic L, Ziaran S, Cehakova M. The Role of Extracellular Matrix and Hydrogels in Mesenchymal Stem Cell Chondrogenesis and Cartilage Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122066. [PMID: 36556431 PMCID: PMC9784885 DOI: 10.3390/life12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Diseases associated with articular cartilage disintegration or loss are still therapeutically challenging. The traditional treatment approaches only alleviate the symptoms while potentially causing serious side effects. The limited self-renewal potential of articular cartilage provides opportunities for advanced therapies involving mesenchymal stem cells (MSCs) that are characterized by a remarkable regenerative capacity. The chondrogenic potential of MSCs is known to be regulated by the local environment, including soluble factors and the less discussed extracellular matrix (ECM) components. This review summarizes the process of chondrogenesis, and also the biological properties of the ECM mediated by mechanotransduction as well as canonical and non-canonical signaling. Our focus is also on the influence of the ECM's physical parameters, molecular composition, and chondrogenic factor affinity on the adhesion, survival, and chondrogenic differentiation of MSCs. These basic biological insights are crucial for a more precise fabrication of ECM-mimicking hydrogels to improve cartilage tissue reconstruction. Lastly, we provide an overview of hydrogel classification and characterization. We also include the results from preclinical models combining MSCs with hydrogels for the treatment of cartilage defects, to support clinical application of this construct. Overall, it is believed that the proper combination of MSCs, hydrogels, and chondrogenic factors can lead to complex cartilage regeneration.
Collapse
Affiliation(s)
- Magdalena Strecanska
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5935-7215
| |
Collapse
|
14
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022; 13:5943. [PMID: 36209212 PMCID: PMC9547573 DOI: 10.1038/s41467-022-33623-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/27/2022] [Indexed: 01/08/2023] Open
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Mah
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
16
|
Brisson BK, Stewart DC, Burgwin C, Chenoweth D, Wells RG, Adams SL, Volk SW. Cysteine-rich domain of type III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biol 2022; 109:19-33. [PMID: 35339637 PMCID: PMC9086147 DOI: 10.1016/j.matbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
TGFβ is a key regulator of the dynamic reciprocity between cells and the extracellular matrix that drives physiologic and pathologic responses in both tissue repair and tumor microenvironments. Our studies define type III Collagen (Col3) as a suppressor of scar formation and desmoplasia through its effects, in part, on myofibroblasts. TGFβ stimulates activation of myofibroblasts, and here, we demonstrate that cultured Col3-deficient fibroblasts have increased TGFβ signaling compared to wild-type fibroblasts. Moreover, kinetic binding studies show that a synthetic peptide containing a Col3 cysteine-rich (CR) domain found within its N-propeptide binds in a dose-dependent manner to TGFβ1, while a CR control peptide with mutated cysteines does not, suggesting that Col3 attenuates TGFβ signaling in part through the N-propeptide CR domain. Consistent with this hypothesis, the CR peptide attenuates TGFβ signaling in fibroblasts and 4T1 breast cancer cells and suppresses fibroblast activation and contraction, as assessed by α-smooth-muscle actin staining, cell wrinkling of deformable silicone, and stressed-fibroblast populated collagen lattice contraction assays. Finally, CR peptide treatment of orthotopically injected breast cancer cells (4T1) suppresses intratumoral fibroblast activation and inhibits primary tumor growth compared to CR control. Treatment with the CR peptide decreases both intratumoral canonical and non-canonical downstream TGFβ signaling targets, consistent with its extracellular binding to TGFβ. Taken together, our results suggest that the Col3 N-propeptide CR domain binds TGFβ1 and attenuates (but importantly does not eliminate) TGFβ signaling in fibroblasts and cancer cells. Expanding on our previous work, this study demonstrates an additional mechanism by which Col3 regulates cell behaviors in post-injury and tumor microenvironments and suggests that novel Col3-targeted strategies could effectively control biologic responses in vivo and improve anti-scarring/fibrosis and oncologic therapies.
Collapse
Affiliation(s)
- Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Chelsea Burgwin
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - David Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca G Wells
- Departments of Medicine and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sherrill L Adams
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Expanding the clinical spectrum of COL2A1 related disorders by a mass like phenotype. Sci Rep 2022; 12:4489. [PMID: 35296718 PMCID: PMC8927422 DOI: 10.1038/s41598-022-08476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
MASS phenotype is a connective tissue disorder clinically overlapping with Marfan syndrome and caused by pathogenic variants in FBN1. We report four patients from three families presenting with a MASS-like phenotype consisting of tall stature, arachnodactyly, spinal deformations, dural ectasia, pectus and/or feet deformations, osteoarthritis, and/or high arched palate. Gene panel sequencing was negative for FBN1 variants. However, it revealed likely pathogenic missense variants in three individuals [c.3936G > T p.(Lys1312Asn), c.193G > A p.(Asp65Asn)] and a missense variant of unknown significance in the fourth patient [c.4013G > A p.(Ser1338Asn)] in propeptide coding regions of COL2A1. Pathogenic COL2A1 variants are associated with type II collagenopathies comprising a remarkable clinical variablility. Main features include skeletal dysplasia, ocular anomalies, and auditory defects. A MASS-like phenotype has not been associated with COL2A1 variants before. Thus, the identification of likely pathogenic COL2A1 variants in our patients expands the phenotypic spectrum of type II collagenopathies and suggests that a MASS-like phenotype can be assigned to various hereditary disorders of connective tissue. We compare the phenotypes of our patients with related disorders of connective tissue and discuss possible pathomechanisms and genotype–phenotype correlations for the identified COL2A1 variants. Our data recommend COL2A1 sequencing in FBN1-negative patients suggestive for MASS/Marfan-like phenotype (without aortopathy).
Collapse
|
18
|
Pinkaew D, Martinez-Hackert E, Jia W, King MD, Miao F, Enger NR, Silakit R, Ramana K, Chen SY, Fujise K. Fortilin interacts with TGF-β1 and prevents TGF-β receptor activation. Commun Biol 2022; 5:157. [PMID: 35197550 PMCID: PMC8866402 DOI: 10.1038/s42003-022-03112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and prevents it from activating the TGF-β1 signaling pathway. In a standard immunoprecipitation-western blot assay, fortilin co-immunoprecipitates TGF-β1 and its isoforms. The modified ELISA assay shows that TGF-β1 remains complexed with fortilin in human serum. Both bio-layer interferometry and surface plasmon resonance (SPR) reveal that fortilin directly bind TGF-β1. The SPR analysis also reveals that fortilin and the TGF-β receptor II (TGFβRII) compete for TGF-β1. Both luciferase and secreted alkaline phosphatase reporter assays show that fortilin prevents TGF-β1 from activating Smad3 binding to Smad-binding element. Fortilin inhibits the phosphorylation of Smad3 in both quantitative western blot assays and ELISA. Finally, fortilin inhibits TGFβ-1-induced differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells. A computer-assisted virtual docking reveals that fortilin occupies the pocket of TGF-β1 that is normally occupied by TGFβRII and that TGF-β1 can bind either fortilin or TGFβRII at any given time. These data support the role of extracellular fortilin as a negative regulator of the TGF-β1 signaling pathway. Fortilin prevents the activation of the TGF-β1 receptor by occupying the pocket of TGF-β1 and competing with TGF-βRII to bind with TGF-β1. This inhibits Smad3 phosphorylation and the differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Jia
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Matthew D King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
| | - Fei Miao
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicole R Enger
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Runglawan Silakit
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Kota Ramana
- Department of Biochemistry, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Ken Fujise
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
19
|
Liu X, Dong H, Gong Y, Wang L, Zhang R, Zheng T, Zheng Y, Shen S, Zheng C, Tian M, Liu N, Zhang X, Zheng QY. A Novel missense mutation of
COL2A1
gene in a large family with stickler syndrome type I. J Cell Mol Med 2022; 26:1530-1539. [PMID: 35064646 PMCID: PMC8899160 DOI: 10.1111/jcmm.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/27/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Stickler syndrome type I (STL1, MIM 108300) is characterized by ocular, auditory, skeletal and orofacial manifestations. Nonsyndromic ocular STL1 (MIM 609508) characterized by predominantly ocular features is a subgroup of STL1, and it is inherited in an autosomal dominant manner. In this study, a novel variant c.T100>C (p.Cys34Arg) in COL2A1 related to a large nonsyndromic ocular STL1 family was identified through Exome sequencing (ES). Bioinformatics analysis indicated that the variant site was highly conserved and the pathogenic mechanism of this variant may involve in affected structure of chordin‐like cysteine‐rich (CR) repeats of ColIIA. Minigene assay indicated that this variant did not change alternative splicing of exon2 of COL2A1. Moreover, the nonsyndromic ocular STL1 family with 16 affected members showed phenotype variability and certain male gender trend. None of the family members had hearing loss. Our findings would expand the knowledge of the COL2A1 mutation spectrum, and phenotype variability associated with nonsyndromic ocular STL1. Search for genetic modifiers and related molecular pathways leading to the phenotype variation warrants further studies.
Collapse
Affiliation(s)
- Xiuzhen Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Hongliang Dong
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Yuerong Gong
- Department of Ophthalmology Binzhou Medical University Hospital Binzhou China
| | - Lianqing Wang
- Center of Translational Medicine Central Hospital of Zibo Zibo China
| | - Ruyi Zhang
- Department of Anesthesiology Binzhou Medical University Hospital Binzhou China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Yuxi Zheng
- Department of Ophthalmology Duke University Durham North Carolina USA
| | - Shuang Shen
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Chelsea Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| | - Mingming Tian
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Naiguo Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery Institute of Otolaryngology Binzhou Medical University Hospital Binzhou China
| | - Qing Yin Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| |
Collapse
|
20
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
21
|
Baratta RO, Del Buono BJ, Schlumpf E, Ceresa BP, Calkins DJ. Collagen Mimetic Peptides Promote Corneal Epithelial Cell Regeneration. Front Pharmacol 2021; 12:705623. [PMID: 34483909 PMCID: PMC8415399 DOI: 10.3389/fphar.2021.705623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The cornea of the eye is at risk for injury through constant exposure to the extraocular environment. A highly collagenous structure, the cornea contains several different types distributed across multiple layers. The anterior-most layer contains non-keratinized epithelial cells that serve as a barrier to environmental, microbial, and other insults. Renewal and migration of basal epithelial cells from the limbus involve critical interactions between secreted basement membranes, composed primarily of type IV collagen, and underlying Bowman's and stromal layers, which contain primarily type I collagen. This process is challenged in many diseases and conditions that insult the ocular surface and damage underlying collagen. We investigated the capacity of a collagen mimetic peptide (CMP), representing a fraction of a single strand of the damaged triple helix human type I collagen, to promote epithelial healing following an acute corneal wound. In vitro, the collagen mimetic peptide promoted the realignment of collagen damaged by enzymic digestion. In an in vivo mouse model, topical application of a CMP-containing formulation following a 360° lamellar keratectomy targeting the corneal epithelial layer accelerated wound closure during a 24 h period, compared to vehicle. We found that the CMP increased adherence of the basal epithelium to the underlying substrate and enhanced density of epithelial cells, while reducing variability in the regenerating layer. These results suggest that CMPs may represent a novel therapeutic to heal corneal tissue by repairing underlying collagen in conditions that damage the ocular surface.
Collapse
Affiliation(s)
| | | | | | - Brian P Ceresa
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
22
|
McAlinden A, Hudson DM, Fernandes AA, Ravindran S, Fernandes RJ. Biochemical and immuno-histochemical localization of type IIA procollagen in annulus fibrosus of mature bovine intervertebral disc. Matrix Biol Plus 2021; 12:100077. [PMID: 34337380 PMCID: PMC8313739 DOI: 10.1016/j.mbplus.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022] Open
Abstract
For next generation tissue-engineered constructs and regenerative medicine to succeed clinically, the basic biology and extracellular matrix composition of tissues that these repair techniques seek to restore have to be fully determined. Using the latest reagents coupled with tried and tested methodologies, we continue to uncover previously undetected structural proteins in mature intervertebral disc. In this study we show that the “embryonic” type IIA procollagen isoform (containing a cysteine-rich amino propeptide) was biochemically detectable in the annulus fibrosus of both calf and mature steer caudal intervertebral discs, but not in the nucleus pulposus where the type IIB isoform was predominantly localized. Specifically, the triple-helical type IIA procollagen isoform immunolocalized in the outer margins of the inner annulus fibrosus. Triple helical processed type II collagen exclusively localized within the inter-lamellae regions and with type IIA procollagen in the intra-lamellae regions. Mass spectrometry of the α1(II) collagen chains from the region where type IIA procollagen localized showed high 3-hydroxylation of Proline-944, a post-translational modification that is correlated with thin collagen fibrils as in the nucleus pulposus. The findings implicate small diameter fibrils of type IIA procollagen in select regions of the annulus fibrosus where it likely contributes to the organization of collagen bundles and structural properties within the type I-type II collagen transition zone.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.,Shriners Hospitals for Children- St Louis, MO, USA
| | - David M Hudson
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Aysel A Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Russell J Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Controlling BMP growth factor bioavailability: The extracellular matrix as multi skilled platform. Cell Signal 2021; 85:110071. [PMID: 34217834 DOI: 10.1016/j.cellsig.2021.110071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of signaling ligands which comprise a family of pluripotent cytokines regulating a multitude of cellular events. Although BMPs were originally discovered as potent factors extractable from bone matrix that are capable to induce ectopic bone formation in soft tissues, their mode of action has been mostly studied as soluble ligands in absence of the physiologically relevant cellular microenvironment. This micro milieu is defined by supramolecular networks of extracellular matrix (ECM) proteins that specifically target BMP ligands, present them to their cellular receptors, and allow their controlled release. Here we focus on functional interactions and mechanisms that were described to control BMP bioavailability in a spatio-temporal manner within the respective tissue context. Structural disturbance of the ECM architecture due to mutations in ECM proteins leads to dysregulated BMP signaling as underlying cause for connective tissue disease pathways. We will provide an overview about current mechanistic concepts of how aberrant BMP signaling drives connective tissue destruction in inherited and chronic diseases.
Collapse
|
24
|
Wang Z, Lu A. Cartilage type IIB procollagen NH<sub>2</sub>-propeptide, PIIBNP, inhibits angiogenesis. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Cartilage tissue is avascular and resistant to tumor invasion, but the basis for these properties is still unclear. Here we report that the NH<sub>2</sub>-propeptide of type IIB procollagen (PIIBNP), a product of collagen biosynthesis, is capable of inhibiting angiogenesis both <italic>in vitro</italic> and <italic>in vivo</italic>. PIIBNP inhibits tube formation in human umbilical vein cells (HUVEC), inhibits endogenous endothelial cell outgrowth in mouse aortic ring angiogenesis bioassay and is anti-angiogenic in the mouse cornea angiogenesis assay. As α<sub>V</sub>ß<sub>3</sub> and α<sub>V</sub>ß<sub>5</sub> integrins are expressed primarily in endothelial cells, cancer cells and osteoclasts, but not in normal chondrocytes and PIIBNP binds to cell surface integrin α<sub>V</sub>ß<sub>3</sub> and αVß<sub>5</sub>, we propose that natural occurring PIIBNP protects cartilage by targeting endothelial cells during chondrogenesis, thus inhibiting angiogenesis, and rendering the tissue avascular.</p>
</abstract>
Collapse
|
25
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
26
|
Patra D, Kim J, Zhang Q, Tycksen E, Sandell LJ. Site-1 protease ablation in the osterix-lineage in mice results in bone marrow neutrophilia and hematopoietic stem cell alterations. Biol Open 2020; 9:bio052993. [PMID: 32576566 PMCID: PMC7328000 DOI: 10.1242/bio.052993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Site-1 protease (S1P) ablation in the osterix-lineage in mice drastically reduces bone development and downregulates bone marrow-derived skeletal stem cells. Here we show that these mice also suffer from spina bifida occulta with a characteristic lack of bone fusion in the posterior neural arches. Molecular analysis of bone marrow-derived non-red blood cell cells, via single-cell RNA-Seq and protein mass spectrometry, demonstrate that these mice have a much-altered bone marrow with a significant increase in neutrophils and Ly6C-expressing leukocytes. The molecular composition of bone marrow neutrophils is also different as they express more and additional members of the stefin A (Stfa) family of proteins. In vitro, recombinant Stfa1 and Stfa2 proteins have the ability to drastically inhibit osteogenic differentiation of bone marrow stromal cells, with no effect on adipogenic differentiation. FACS analysis of hematopoietic stem cells show that despite a decrease in hematopoietic stem cells, S1P ablation results in an increased production of granulocyte-macrophage progenitors, the precursors to neutrophils. These observations indicate that S1P has a role in the lineage specification of hematopoietic stem cells and/or their progenitors for development of a normal hematopoietic niche. Our study designates a fundamental requirement of S1P for maintaining a balanced regenerative capacity of the bone marrow niche.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joongho Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- McDonnell Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Re-engineered cell-derived extracellular matrix as a new approach to clarify the role of native ECM. Methods Cell Biol 2020; 156:205-231. [PMID: 32222220 DOI: 10.1016/bs.mcb.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An extracellular matrix (ECM) has both biochemical and mechanophysical characteristics obtained from multiple components, which provides cells a dynamic microenvironment. During reciprocal interactions with ECM, the cells actively remodel the matrix, including synthesis, degradation, and chemical modification, which play a pivotal role in various biological events such as disease progression or tissue developmental processes. Since a cell-derived decellularized ECM (cdECM) holds in vivo-like compositional heterogeneity and interconnected fibrillary architecture, it has received much attention as a promising tool for developing more physiological in vitro model systems. Despite these advantages, the cdECM has obvious limitations to mimic versatile ECMs precisely, suggesting the need for improved in vitro modeling to clarify the functions of native ECM. Recent studies propose to tailor the cdECM via biochemically, biomechanically, or incorporation with other systems as a new approach to address the limitations. In this chapter, we summarize the studies that re-engineered the cdECM to examine the features of native ECM in-depth and to increase physiological relevancy.
Collapse
|
29
|
Setiawan IGNY, Suyasa IK, Astawa P, Dusak IWS, Kawiyana IKS, Aryana IGNW. Recombinant platelet derived growth factor-BB and hyaluronic acid effect in rat osteoarthritis models. J Orthop 2019; 16:230-233. [PMID: 30906129 DOI: 10.1016/j.jor.2019.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022] Open
Abstract
Osteoarthritis (OA) arises from imbalance of cartilage metabolism between the synthesis and degradation of type II collagen by the chondrocyte. Collagen type II degradation is characterized by increase in the biomarker of C-telopeptide fragment of type II collagen (CTX-II), while the anabolic process of cartilage is characterized by an increase in the biosynthesis of procollagen amino terminal N-propeptide type IIA (PIIANP). Platelet derived growth factor (PDGF) with Hyaluronic Acid (HA) as a potent growth factor can be used to stimulate the higher formation of chondrocyte and PIIANP levels and lower CTX-II levels in mouse knee osteoarthritis model.
Collapse
Affiliation(s)
| | - I Ketut Suyasa
- Department of Orthopaedic and Traumatology, Udayana Faculty of Medicine, Indonesia
| | - Putu Astawa
- Department of Orthopaedic and Traumatology, Udayana Faculty of Medicine, Indonesia
| | | | | | | |
Collapse
|
30
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
31
|
Bone morphogenetic protein 4 (BMP4) loss-of-function variant associated with autosomal dominant Stickler syndrome and renal dysplasia. Eur J Hum Genet 2018; 27:369-377. [PMID: 30568244 PMCID: PMC6460578 DOI: 10.1038/s41431-018-0316-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
Stickler syndrome is a genetic disorder that can lead to joint problems, hearing difficulties and retinal detachment. Genes encoding collagen types II, IX and XI are usually responsible, but some families have no causal variant identified. We investigate a variant in the gene encoding growth factor BMP4 in a family with Stickler syndrome with associated renal dysplasia. Next generation sequencing of the coding region of COL2A1, COL11A1 and a panel of genes associated with congenital anomalies of the kidney and urinary tract (CAKUT) was performed. A novel heterozygous BMP4 variant causing a premature stop codon, c. 130G>T, p.(Gly44Ter), which segregated with clinical features of Stickler syndrome in multiple family members, was identified. No variant affecting gene function was detected in COL2A1 or COL11A1. Skin fibroblasts were cultured with and without emetine, and the mRNA extracted and analysed by Sanger sequencing to assess whether the change was causing nonsense-mediated decay. Nonsense-mediated decay was not observed from the extracted BMP4 mRNA. BMP4 is a growth factor known to contribute to eye development in animals, and gene variants in humans have been linked to microphthalmia/anophthalmia as well as CAKUT. The variant identified here further demonstrates the importance of BMP4 in eye development. This is the first report of a BMP4 DNA variant causing Stickler syndrome, and we suggest BMP4 be added to standard diagnostic gene panels for this condition.
Collapse
|
32
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Luo Y, He Y, Reker D, Gudmann NS, Henriksen K, Simonsen O, Ladel C, Michaelis M, Mobasheri A, Karsdal M, Bay-Jensen AC. A Novel High Sensitivity Type II Collagen Blood-Based Biomarker, PRO-C2, for Assessment of Cartilage Formation. Int J Mol Sci 2018; 19:ijms19113485. [PMID: 30404167 PMCID: PMC6275061 DOI: 10.3390/ijms19113485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/07/2023] Open
Abstract
N-terminal propeptide of type II collagen (PIINP) is a biomarker reflecting cartilage formation. PIINP exists in two main splice variants termed as type IIA and type IIB collagen NH₂-propeptide (PIIANP, PIIBNP). PIIANP has been widely recognized as a cartilage formation biomarker. However, the utility of PIIBNP as a marker in preclinical and clinical settings has not been fully investigated yet. In this study, we aimed to characterize an antibody targeting human PIIBNP and to develop an immunoassay assessing type II collagen synthesis in human blood samples. A high sensitivity electrochemiluminescence immunoassay, hsPRO-C2, was developed using a well-characterized antibody against human PIIBNP. Human cartilage explants from replaced osteoarthritis knees were cultured for ten weeks in the presence of growth factors, insulin-like growth factor 1 (IGF-1) or recombinant human fibroblast growth factor 18 (rhFGF-18). The culture medium was changed every seven days, and levels of PIIBNP, PIIANP, and matrix metalloproteinase 9-mediated degradation of type II collagen (C2M) were analyzed herein. Serum samples from a cross-sectional knee osteoarthritis cohort, as well as pediatric and rheumatoid arthritis samples, were assayed for PIIBNP and PIIANP. Western blot showed that the antibody recognized PIIBNP either as a free fragment or attached to the main molecule. Immunohistochemistry demonstrated that PIIBNP was predominately located in the extracellular matrix of the superficial and deep zones and chondrocytes in both normal and osteoarthritic articular cartilage. In addition, the hsPRO-C2 immunoassay exhibits acceptable technical performances. In the human cartilage explants model, levels of PIIBNP, but not PIIANP and C2M, were increased (2 to 7-fold) time-dependently in response to IGF-1. Moreover, there was no significant correlation between PIIBNP and PIIANP levels when measured in knee osteoarthritis, rheumatoid arthritis, and pediatric serum samples. Serum PIIBNP was significantly higher in controls (KL0/1) compared to OA groups (KL2/3/4, p = 0.012). The hsPRO-C2 assay shows completely different biological and clinical patterns than PIIANP ELISA, suggesting that it may be a promising biomarker of cartilage formation.
Collapse
Affiliation(s)
- Yunyun Luo
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark.
| | - Yi He
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Ditte Reker
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Natasja Stæhr Gudmann
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Kim Henriksen
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | - Ole Simonsen
- Department Orthopedic Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark.
| | | | | | - Ali Mobasheri
- D-BOARD EU Consortium for Biomarker Discovery, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, Surrey, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, Nottinghamshire, UK.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| | - Morten Karsdal
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark.
| | | |
Collapse
|
34
|
Aisenbrey EA, Bryant SJ. A MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J Biomed Mater Res A 2018; 106:2344-2355. [PMID: 29577606 PMCID: PMC6030485 DOI: 10.1002/jbm.a.36412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Cartilage tissue engineering strategies that use in situ forming degradable hydrogels for mesenchymal stem cell (MSC) delivery are promising for treating chondral defects. Hydrogels that recapitulate aspects of the native tissue have the potential to encourage chondrogenesis, permit cellular mediated degradation, and facilitate tissue growth. This study investigated photoclickable poly(ethylene glycol) hydrogels, which were tailored to mimic the cartilage microenvironment by incorporating extracellular matrix analogs, chondroitin sulfate and RGD, and crosslinks sensitive to matrix metalloproteinase 7 (MMP7). Human MSCs were encapsulated in the hydrogel, cultured up to nine weeks, and assessed by mRNA expression, protein production and biochemical analysis. Chondrogenic genes, SOX9, ACAN, and COL2A1, significantly increased with culture time, and the ratios of COL2A1:COL10A1 and SOX9:RUNX2 reached values of ∼20-100 by week 6. The encapsulated MSCs degraded the hydrogel, which was nearly undetectable by week 9. There was substantial deposition of aggrecan and collagen II, which correlated with degradation of the hydrogel. Minimal collagen X was detectable, but collagen I was prevalent. After week 1, extracellular matrix elaboration was accompanied by a ∼twofold increase in compressive modulus with culture time. The MMP7-sensitive cartilage mimetic hydrogel supported MSC chondrogenesis and promoted macroscopic neocartilaginous matrix elaboration representative of fibrocartilage. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2344-2355, 2018.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
- Material Science and Engineering Program, University of Colorado, Boulder, CO 80309
| |
Collapse
|
35
|
McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E. Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 2018; 161:240-255. [PMID: 29421560 PMCID: PMC5826638 DOI: 10.1016/j.biomaterials.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023]
Abstract
High-density mesenchymal stem cell (MSC) aggregates can be guided to form bone-like tissue via endochondral ossification in vitro when culture media is supplemented with proteins, such as growth factors (GFs), to first guide the formation of a cartilage template, followed by culture with hypertrophic factors. Recent reports have recapitulated these results through the controlled spatiotemporal delivery of chondrogenic transforming growth factor-β1 (TGF-β1) and chondrogenic and osteogenic bone morphogenetic protein-2 (BMP-2) from microparticles embedded within human MSC aggregates to avoid diffusion limitations and the lengthy, costly in vitro culture necessary with repeat exogenous supplementation. However, since GFs have limited stability, localized gene delivery is a promising alternative to the use of proteins. Here, mineral-coated hydroxyapatite microparticles (MCM) capable of localized delivery of Lipofectamine-plasmid DNA (pDNA) nanocomplexes encoding for TGF-β1 (pTGF-β1) and BMP-2 (pBMP-2) were incorporated, alone or in combination, within MSC aggregates from three healthy porcine donors to induce sustained production of these transgenes. Three donor populations were investigated in this work due to the noted MSC donor-to-donor variability in differentiation capacity documented in the literature. Delivery of pBMP-2 within Donor 1 aggregates promoted chondrogenesis at week 2, followed by an enhanced osteogenic phenotype at week 4. Donor 2 and 3 aggregates did not promote robust glycosaminoglycan (GAG) production at week 2, but by week 4, Donor 2 aggregates with pTGF-β1/pBMP-2 and Donor 3 aggregates with both unloaded MCM and pBMP-2 enhanced osteogenesis compared to controls. These results demonstrate the ability to promote osteogenesis in stem cell aggregates through controlled, non-viral gene delivery within the cell masses. These findings also indicate the need to screen donor MSC regenerative potential in response to gene transfer prior to clinical application. Taken together, this work demonstrates a promising gene therapy approach to control stem cell fate in biomimetic 3D condensations for treatment of bone defects.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Pathology Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Tomas Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Peilin Ge
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; The National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; School of Dentistry, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
36
|
Chinzei N, Brophy RH, Duan X, Cai L, Nunley RM, Sandell LJ, Rai MF. Molecular influence of anterior cruciate ligament tear remnants on chondrocytes: a biologic connection between injury and osteoarthritis. Osteoarthritis Cartilage 2018; 26:588-599. [PMID: 29391276 PMCID: PMC5871587 DOI: 10.1016/j.joca.2018.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) injury initiates a cascade of events often leading to osteoarthritis (OA). ACL reconstruction does not alter the course of OA, suggesting that heightened OA risk is likely due to factors in addition to the joint instability. We showed that torn ACL remnants express periostin (POSTN) in the acute phase of injury. Considering that ACL injury predisposes to OA and that POSTN is associated with cartilage metabolism, we hypothesize that ACL injury affects chondrocytes via POSTN. DESIGN Cartilage was obtained from osteoarthritic patients and ACL remnants were collected from patients undergoing ACL reconstruction. Crosstalk between ACL remnants and chondrocytes was studied in a transwell co-culture system. Expression of POSTN and other anabolic and catabolic genes was assessed via real-time polymerase chain reaction (PCR). Immunostaining for periostin was performed in human and mouse cartilage. The impact of exogenous periostin and siRNA-mediated ablation of periostin on matrix metabolism and cell migration was examined. Furthermore, the effect of anabolic (transforming growth factor beta 1 [TGF-β1]) and catabolic (interleukin 1 beta [IL-1β]) factors on POSTN expression was investigated. RESULTS ACL remnants induced expression of POSTN, MMP13 and ADAMTS4. Periostin levels were significantly higher in osteoarthritic compared to normal cartilage. Exogenous periostin induced MMP13 expression and cell migration, and repressed COL1A1 expression while POSTN knockdown inhibited expression of both anabolic and catabolic genes and impeded cell migration. TGF-β1 and IL-1β treatment did not alter POSTN expression but influenced chondrocyte metabolism as determined by quantification of anabolic and catabolic genes via real-time PCR. CONCLUSIONS ACL remnants can exert paracrine effects on cartilage, altering cellular homeostasis. Over time, this metabolic imbalance could contribute to OA development.
Collapse
Affiliation(s)
- N Chinzei
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - R H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - X Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - L Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - R M Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - L J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, St. Louis, MO 63130, United States.
| | - M F Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
37
|
Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr Top Dev Biol 2018; 130:1-37. [PMID: 29853174 DOI: 10.1016/bs.ctdb.2018.02.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The extracellular matrix is a complex network of hydrated macromolecular proteins and sugars that, in concert with bound soluble factors, comprise the acellular stromal microenvironment of tissues. Rather than merely providing structural information to cells, the extracellular matrix plays an instructive role in development and is critical for the maintenance of tissue homeostasis. In this chapter, we review the composition of the extracellular matrix and summarize data illustrating its importance in embryogenesis, tissue-specific development, and stem cell differentiation. We discuss how the biophysical and biochemical properties of the extracellular matrix ligate specific transmembrane receptors to activate intracellular signaling that alter cell shape and cytoskeletal dynamics to modulate cell growth and viability, and direct cell migration and cell fate. We present examples describing how the extracellular matrix functions as a highly complex physical and chemical entity that regulates tissue organization and cell behavior through a dynamic and reciprocal dialogue with the cellular constituents of the tissue. We suggest that the extracellular matrix not only transmits cellular and tissue-level force to shape development and tune cellular activities that are key for coordinated tissue behavior, but that it is itself remodeled such that it temporally evolves to maintain the integrated function of the tissue. Accordingly, we argue that perturbations in extracellular matrix composition and structure compromise key developmental events and tissue homeostasis, and promote disease.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, CA, United States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
38
|
|
39
|
|
40
|
Li X, Shi S, Chen J, Zhong G, Li X, Liu Z. Leptin differentially regulates endochondral ossification in tibial and vertebral epiphyseal plates. Cell Biol Int 2017; 42:169-179. [PMID: 28980745 DOI: 10.1002/cbin.10882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/30/2017] [Indexed: 11/11/2022]
Abstract
Longitudinal bone growth is governed by a complex network of endocrine signals including leptin. In mouse, leptin deficiency leads to distinct phenotypes in bones of the limb and spine, suggesting the appendicular and axial skeletons are subject to differential regulation by leptin. We established primary cultures for the chondrocytes from tibial and vertebral epiphyseal plates. Cellular proliferation and apoptosis were analyzed for the chondrocytes that had been treated with various concentrations of leptin. Crucial factors for chondrocyte proliferation and differentiation, such as BMP7 and Wnt3, were measured in the cells treated with leptin alone or in combination with pharmacological inhibitors of STAT and ERK signaling pathways. Primary culture of tibial epiphyseal plate chondrocytes has greater proliferating capability compared with that of vertebral epiphyseal plate chondrocytes. Leptin could promote the proliferation of tibial epiphyseal plate chondrocytes, while its effect on vertebral epiphyseal plate chondrocytes was inhibitory. Consistently, apoptosis is inhibited in tibial but promoted in vertebral epiphyseal plate chondrocytes by leptin. Importantly, leptin differentially modulates chondrogenic signaling pathways in tibial and vertebral epiphyseal chondrocytes through STAT and ERK pathways. Leptin differentially regulates chondrogenic proliferation and differentiation in appendicular and axial regions of the skeletons. The signaling pathways in these two regions are also distinct and subject to differential regulation by leptin through the STAT pathway in tibial epiphyseal plate chondrocytes but through the ERK pathway in vertebral epiphyseal plate chondrocytes. Therefore, the regulation of leptin is multi-faceted in the distinct anatomical regions of the skeleton. Knowledge gained from this system will provide insights into the pathophysiological causes for the diseases related to bone development and metabolism.
Collapse
Affiliation(s)
- Xiaomiao Li
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Sheng Shi
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Jianwei Chen
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Guibin Zhong
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Xinfeng Li
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Zude Liu
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
41
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
42
|
Xu ER, Blythe EE, Fischer G, Hyvönen M. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. J Biol Chem 2017; 292:12516-12527. [PMID: 28584056 DOI: 10.1074/jbc.m117.788992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Emily E Blythe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
43
|
Knopf-Marques H, Barthes J, Wolfova L, Vidal B, Koenig G, Bacharouche J, Francius G, Sadam H, Liivas U, Lavalle P, Vrana NE. Auxiliary Biomembranes as a Directional Delivery System To Control Biological Events in Cell-Laden Tissue-Engineering Scaffolds. ACS OMEGA 2017; 2:918-929. [PMID: 30023620 PMCID: PMC6044576 DOI: 10.1021/acsomega.6b00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/02/2017] [Indexed: 06/08/2023]
Abstract
Delivery of growth factors is an indispensable part of tissue engineering. Here, we describe a detachable membrane-based release system composed of extracellular matrix components that can be attached to hydrogels to achieve directional release of bioactive molecules. This way, the release of cytokines/growth factors can be started at a desired point of tissue maturation or directly in vivo. As a model, we develop thin films of an interpenetrating network of double-cross-linked gelatin and hyaluronic acid derivatives. The use of the auxiliary release system with vascular endothelial growth factor results in extensive sprouting by encapsulated vascular endothelial cells. The presence of the release system with interleukin-4 results in clustering of encapsulated macrophages with a significant decrease in M1 macrophages (proinflammatory). This system can be used in conjunction with three-dimensional structures as an auxiliary system to control artificial tissue maturation and growth.
Collapse
Affiliation(s)
- Helena Knopf-Marques
- INSERM
UMR 1121, 11 rue Humann, 67085 Strasbourg, France
- Faculté
de Chirurgie Dentaire, Université
de Strasbourg, 8 rue
Sainte Elisabeth, 67000 Strasbourg, France
| | - Julien Barthes
- INSERM
UMR 1121, 11 rue Humann, 67085 Strasbourg, France
- PROTiP
Medical, 8 Place de l’Hôpital, 67000 Strasbourg, France
| | - Lucie Wolfova
- Contipro
Biotech S.R.O., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic
| | - Bérengère Vidal
- PROTiP
Medical, 8 Place de l’Hôpital, 67000 Strasbourg, France
| | | | - Jalal Bacharouche
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement, CNRS,
UMR 7564, 405 rue de
Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Grégory Francius
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement, CNRS,
UMR 7564, 405 rue de
Vandoeuvre, 54600 Villers-les-Nancy, France
| | | | | | - Philippe Lavalle
- INSERM
UMR 1121, 11 rue Humann, 67085 Strasbourg, France
- Faculté
de Chirurgie Dentaire, Université
de Strasbourg, 8 rue
Sainte Elisabeth, 67000 Strasbourg, France
| | - Nihal Engin Vrana
- INSERM
UMR 1121, 11 rue Humann, 67085 Strasbourg, France
- PROTiP
Medical, 8 Place de l’Hôpital, 67000 Strasbourg, France
| |
Collapse
|
44
|
Post-Traumatic Osteoarthritis in Mice Following Mechanical Injury to the Synovial Joint. Sci Rep 2017; 7:45223. [PMID: 28345597 PMCID: PMC5366938 DOI: 10.1038/srep45223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/20/2017] [Indexed: 01/14/2023] Open
Abstract
We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention.
Collapse
|
45
|
Extracellular regulation of BMP signaling: welcome to the matrix. Biochem Soc Trans 2017; 45:173-181. [DOI: 10.1042/bst20160263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023]
Abstract
Given its importance in development and homeostasis, bone morphogenetic protein (BMP) signaling is tightly regulated at the extra- and intracellular level. The extracellular matrix (ECM) was initially thought to act as a passive mechanical barrier that sequesters BMPs. However, a new understanding about how the ECM plays an instructive role in regulating BMP signaling is emerging. In this mini-review, we discuss various ways in which the biochemical and physical properties of the ECM regulate BMP signaling.
Collapse
|
46
|
Spickett C, Hysi P, Hammond CJ, Prescott A, Fincham GS, Poulson AV, McNinch AM, Richards AJ, Snead MP. Deep Intronic Sequence Variants in COL2A1 Affect the Alternative Splicing Efficiency of Exon 2, and May Confer a Risk for Rhegmatogenous Retinal Detachment. Hum Mutat 2016; 37:1085-96. [PMID: 27406592 DOI: 10.1002/humu.23050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
COL2A1 mutations causing haploinsufficiency of type II collagen cause type 1 Stickler syndrome that has a high risk of retinal detachment and failure of the vitreous to develop normally. Exon 2 of COL2A1 is alternatively spliced, expressed in the eye but not in mature cartilage and encodes a region that binds growth factors TGFβ1 and BMP-2. We investigated how both an apparently de novo variant and a polymorphism in intron 2 altered the efficiency of COL2A1 exon 2 splicing and how the latter may act as a predisposing risk factor for the occurrence of posterior vitreous detachment (PVD)-associated rhegmatogenous retinal detachment (RRD) in the general population. Using amplification of illegitimate transcripts and allele-specific minigenes expressed in cultured cells, we demonstrate variability in exon 2 inclusion not only between different control individuals, but also between different COL2A1 alleles. We identify transacting factors that bind to allele-specific RNA sequences, and investigate the effect of knockdown and overexpression of these factors on exon 2 splicing efficiency. Finally, using a specific cohort of patients with PVD-associated RRD and a control population, we demonstrate a significant difference in the frequency of the COL2A1 intronic variant rs1635532 between the two groups.
Collapse
Affiliation(s)
- Carl Spickett
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Pirro Hysi
- Academic Unit Ophthalmology, King's College London, London, SE1 7EH, UK
| | | | - Alan Prescott
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Gregory S Fincham
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Arabella V Poulson
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Annie M McNinch
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.,Regional Molecular Genetics Laboratory, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Allan J Richards
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Regional Molecular Genetics Laboratory, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Martin P Snead
- Vitreoretinal Research Group, Cambridge University NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
47
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
48
|
Mechanobiology of TGFβ signaling in the skeleton. Matrix Biol 2016; 52-54:413-425. [PMID: 26877077 DOI: 10.1016/j.matbio.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Physical and biochemical cues play fundamental roles in the skeleton at both the tissue and cellular levels. The precise coordination of these cues is essential for skeletal development and homeostasis, and disruption of this coordination can drive disease progression. The growth factor TGFβ is involved in both the regulation of and cellular response to the physical microenvironment. It is essential to summarize the current findings regarding the mechanisms by which skeletal cells integrate physical and biochemical cues so that we can identify and address remaining gaps that could ultimately improve skeletal health. In this review, we describe the role of TGFβ in mechanobiological signaling in bone and cartilage at the tissue and cellular levels. We provide detail on how static and dynamic physical cues at the macro-level are transmitted to the micro-level, ultimately leading to regulation at each level of the TGFβ pathway and to cell differentiation. The continued integration of engineering and biological approaches is needed to answer many remaining questions, such as the mechanisms by which cells generate a coordinated response to physical and biochemical cues. We propose one such mechanism, through which the combination of TGFβ and an optimal physical microenvironment leads to synergistic induction of downstream TGFβ signaling.
Collapse
|
49
|
Hettiaratchi MH, Guldberg RE, McDevitt TC. Biomaterial strategies for controlling stem cell fate via morphogen sequestration. J Mater Chem B 2016; 4:3464-3481. [DOI: 10.1039/c5tb02575c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review explores the role of protein sequestration in the stem cell niche and how it has inspired the design of biomaterials that exploit natural protein sequestration to influence stem cell fate.
Collapse
Affiliation(s)
- M. H. Hettiaratchi
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The Wallace H. Coulter Department of Biomedical Engineering
| | - R. E. Guldberg
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The George W. Woodruff School of Mechanical Engineering
| | - T. C. McDevitt
- The Gladstone Institute of Cardiovascular Disease
- San Francisco
- USA
- The Department of Bioengineering and Therapeutic Sciences
- University of California San Francisco
| |
Collapse
|
50
|
Rys JP, DuFort CC, Monteiro DA, Baird MA, Oses-Prieto JA, Chand S, Burlingame AL, Davidson MW, Alliston TN. Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension. eLife 2015; 4:e09300. [PMID: 26652004 PMCID: PMC4728123 DOI: 10.7554/elife.09300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/04/2015] [Indexed: 11/13/2022] Open
Abstract
Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling. We find that TGFβ receptors are discretely organized to segregated spatial domains at the cell surface. Integrin-rich focal adhesions organize TβRII around TβRI, limiting the integration of TβRII while sequestering TβRI at these sites. Disruption of cellular tension leads to a collapse of this spatial organization and drives formation of heteromeric TβRI/TβRII complexes and Smad activation. This work details a novel mechanism by which cellular tension regulates TGFβ receptor organization, multimerization, and function, providing new insight into the mechanisms that integrate biochemical and physical cues. DOI:http://dx.doi.org/10.7554/eLife.09300.001 Cells constantly encounter diverse physical and biological signals in their surroundings. Information contained in these signals is transmitted from the cell surface to the interior to trigger coordinated changes in the cell’s behavior. Physical signals include the forces generated by cells pulling on one another or on their surroundings. These pulling forces calibrate the cell’s response to biological signals through mechanisms that remain unclear. The cell surface contains many different proteins that are specialized to sense these signals and guide the cell’s response. In animals, these membrane proteins include the receptors that detect a small signaling protein known as TGFβ. TGFβ first binds to one of these receptors (called TβRII). Next another receptor (called TβRI) is recruited to the complex. Once this complex is formed, the TGFβ receptors activate a complicated signaling pathway that controls how cells grow and divide. Previous work has shown that the TGFβ pathway can also sense and respond to mechanical forces. But it remains poorly understood how pulling forces (or tension) impact TGFβ receptors at the cell surface. Rys, DuFort et al. have now used cutting-edge microscopy and biochemical techniques to analyze individual TβRI and TβRII receptors and observe how they respond to mechanical forces in real-time. This revealed that TβRI and TβRII exist in discrete regions on the cell surface. Rys, DuFort et al. observed that TβRI is enriched at assemblies of molecules called focal adhesions. Focal adhesions are the sites on cell surfaces that allow cells to adhere to one another and to the molecular scaffolding in their surroundings. Unlike TβRI, TβRII was often excluded from these sites and more commonly appeared to ‘bounce’ around the edges of individual focal adhesions. Therefore, focal adhesions limit the interactions between TβRI and TβRII, by sequestering one away from the other. Rys, DuFort et al. next treated cells with a chemical that disrupts tension, and saw that the physical separation between TβRI and TβRII collapsed, which permitted these two receptors to interact and form a working signaling complex. Further work is needed to understand how physical control of TGFβ receptor interactions helps cells coordinate their tasks in response to the myriad biological and physical signals in their surroundings. DOI:http://dx.doi.org/10.7554/eLife.09300.002
Collapse
Affiliation(s)
- Joanna P Rys
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Christopher C DuFort
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - David A Monteiro
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Michelle A Baird
- National High Magnetic Field Laboratory,Department of Biological Science, Florida State University, Tallahassee, United States
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Shreya Chand
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Michael W Davidson
- National High Magnetic Field Laboratory,Department of Biological Science, Florida State University, Tallahassee, United States
| | - Tamara N Alliston
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, Department of Otolaryngology-Head and Neck Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| |
Collapse
|