1
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Voorsluijs V, Avanzini F, Falasco G, Esposito M, Skupin A. Calcium oscillations optimize the energetic efficiency of mitochondrial metabolism. iScience 2024; 27:109078. [PMID: 38375217 PMCID: PMC10875125 DOI: 10.1016/j.isci.2024.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Energy transduction is central to living organisms, but the impact of enzyme regulation and signaling on its thermodynamic efficiency is generally overlooked. Here, we analyze the efficiency of ATP production by the tricarboxylic acid cycle and oxidative phosphorylation, which generate most of the chemical energy in eukaryotes. Calcium signaling regulates this pathway and can affect its energetic output, but the concrete energetic impact of this cross-talk remains elusive. Calcium enhances ATP production by activating key enzymes of the tricarboxylic acid cycle while calcium homeostasis is ATP-dependent. We propose a detailed kinetic model describing the calcium-mitochondria cross-talk and analyze it using nonequilibrium thermodynamics: after identifying the effective reactions driving mitochondrial metabolism out of equilibrium, we quantify the mitochondrial thermodynamic efficiency for different conditions. Calcium oscillations, triggered by extracellular stimulation or energy deficiency, boost the thermodynamic efficiency of mitochondrial metabolism, suggesting a compensatory role of calcium signaling in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Valérie Voorsluijs
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
| | - Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Chemical Sciences, University of Padova, 1 Via F. Marzolo, 35131 Padova, Italy
| | - Gianmaria Falasco
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Physics and Astronomy, University of Padova, 8 Via F. Marzolo, 35131 Padova, Italy
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| |
Collapse
|
3
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
D’Angelo D, Vecellio Reane D, Raffaello A. Neither too much nor too little: mitochondrial calcium concentration as a balance between physiological and pathological conditions. Front Mol Biosci 2023; 10:1336416. [PMID: 38148906 PMCID: PMC10749936 DOI: 10.3389/fmolb.2023.1336416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
Ca2+ ions serve as pleiotropic second messengers in the cell, regulating several cellular processes. Mitochondria play a fundamental role in Ca2+ homeostasis since mitochondrial Ca2+ (mitCa2+) is a key regulator of oxidative metabolism and cell death. MitCa2+ uptake is mediated by the mitochondrial Ca2+ uniporter complex (MCUc) localized in the inner mitochondrial membrane (IMM). MitCa2+ uptake stimulates the activity of three key enzymes of the Krebs cycle, thereby modulating ATP production and promoting oxidative metabolism. As Paracelsus stated, "Dosis sola facit venenum,"in pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP), enabling the release of apoptotic factors and ultimately leading to cell death. Excessive mitCa2+ accumulation is also associated with a pathological increase of reactive oxygen species (ROS). In this article, we review the precise regulation and the effectors of mitCa2+ in physiopathological processes.
Collapse
Affiliation(s)
- Donato D’Angelo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Denis Vecellio Reane
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
| | - Anna Raffaello
- Department of Biomedical Sciences, Myology Center (CIR-Myo), University of Padua, Padua, Italy
| |
Collapse
|
5
|
Peng HR, Zhang YK, Zhou JW. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci Bull 2023; 39:531-540. [PMID: 36481974 PMCID: PMC10043088 DOI: 10.1007/s12264-022-00992-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Abstract
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
7
|
Reggiani C, Marcucci L. A controversial issue: Can mitochondria modulate cytosolic calcium and contraction of skeletal muscle fibers? J Gen Physiol 2022; 154:e202213167. [PMID: 35849108 PMCID: PMC9297197 DOI: 10.1085/jgp.202213167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondria are characterized by a high capacity to accumulate calcium thanks to the electrochemical gradient created by the extrusion of protons in the respiratory chain. Thereby calcium can enter crossing the inner mitochondrial membrane via MCU complex, a high-capacity, low-affinity transport mechanism. Calcium uptake serves numerous purposes, among them the regulation of three dehydrogenases of the citric cycle, apoptosis via permeability transition, and, in some cell types, modulation of cytosolic calcium transients. This Review is focused on mitochondrial calcium uptake in skeletal muscle fibers and aims to reanalyze its functional impact. In particular, we ask whether mitochondrial calcium uptake is relevant for the control of cytosolic calcium transients and therefore of contractile performance. Recent data suggest that this may be the case, at least in particular conditions, as modified expression of MCU complex subunits or of proteins involved in mitochondrial dynamics and ablation of the main cytosolic calcium buffer, parvalbumin.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| |
Collapse
|
8
|
Gorzo KA, Gordon GR. Photonics tools begin to clarify astrocyte calcium transients. NEUROPHOTONICS 2022; 9:021907. [PMID: 35211642 PMCID: PMC8857908 DOI: 10.1117/1.nph.9.2.021907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
Astrocytes integrate information from neurons and the microvasculature to coordinate brain activity and metabolism. Using a variety of calcium-dependent cellular mechanisms, these cells impact numerous aspects of neurophysiology in health and disease. Astrocyte calcium signaling is highly diverse, with complex spatiotemporal features. Here, we review astrocyte calcium dynamics and the optical imaging tools used to measure and analyze these events. We briefly cover historical calcium measurements, followed by our current understanding of how calcium transients relate to the structure of astrocytes. We then explore newer photonics tools including super-resolution techniques and genetically encoded calcium indicators targeted to specific cellular compartments and how these have been applied to astrocyte biology. Finally, we provide a brief overview of analysis software used to accurately quantify the data and ultimately aid in our interpretation of the various functions of astrocyte calcium transients.
Collapse
Affiliation(s)
- Kelsea A. Gorzo
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Grant R. Gordon
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
10
|
Hu W, Yu Y, Sun Y, Yuan F, Zhao F. MiR-25 overexpression inhibits titanium particle-induced osteoclast differentiation via down-regulation of mitochondrial calcium uniporter in vitro. J Orthop Surg Res 2022; 17:133. [PMID: 35241114 PMCID: PMC8895597 DOI: 10.1186/s13018-022-03030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial calcium uniporter (MCU) is an important ion channel regulating calcium transport across the mitochondrial membrane. Calcium signaling, particularly via the Ca2+/NFATc1 pathway, has been identified as an important mediator of the osteoclast differentiation that leads to osteolysis around implants. The present study aimed to investigate whether down-regulation of MCU using microRNA-25 (miR-25) mimics could reduce osteoclast differentiation induced upon exposure to titanium (Ti) particles. Methods Ti particles were prepared. Osteoclast differentiation of RAW264.7 cells was induced by adding Ti particles and determined by TRAP staining. Calcium oscillation was determined using a dual-wavelength technique. After exposure of the cells in each group to Ti particles or control medium for 5 days, relative MCU and NFATc1 mRNA expression levels were determined by RT-qPCR. MCU and NFATc1 protein expression was determined by western blotting. NFATc1 activation was determined by immunofluorescence staining. Comparisons among multiple groups were conducted using one-way analysis of variance followed by Tukey test, and differences were considered significant if p < 0.05. Results MCU expression was reduced in response to miR-25 overexpression during the process of RAW 264.7 cell differentiation induced by Ti particles. Furthermore, osteoclast formation was inhibited, as evidenced by the low amplitude of calcium ion oscillation, reduced NFATc1 activation, and decreased mRNA and protein expression levels of nuclear factor-κB p65 and calmodulin kinases II/IV. Conclusions Regulation of MCU expression can impact osteoclast differentiation, and the underlying mechanism likely involves the Ca2+/NFATc1 signal pathway. Therefore, MCU may be a promising target in the development of new strategies to prevent and treat periprosthetic osteolysis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03030-7.
Collapse
Affiliation(s)
- Weifan Hu
- Department of Orthopedics, The People's Hospital of Jiawang District of Xuzhou, Xuzhou, 221000, People's Republic of China.,Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Yongbo Yu
- Department of Orthopedics, The People's Hospital of Jiawang District of Xuzhou, Xuzhou, 221000, People's Republic of China
| | - Yang Sun
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China.
| |
Collapse
|
11
|
Huang DX, Yu X, Yu WJ, Zhang XM, Liu C, Liu HP, Sun Y, Jiang ZP. Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer’s Disease. Front Cell Dev Biol 2022; 10:834962. [PMID: 35281104 PMCID: PMC8913592 DOI: 10.3389/fcell.2022.834962] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Although anything that changes spatiotemporally could be a signal, cells, particularly neurons, precisely manipulate calcium ion (Ca2+) to transmit information. Ca2+ homeostasis is indispensable for neuronal functions and survival. The cytosolic Ca2+ concentration ([Ca2+]CYT) is regulated by channels, pumps, and exchangers on cellular membrane systems. Under physiological conditions, both endoplasmic reticulum (ER) and mitochondria function as intracellular Ca2+ buffers. Furthermore, efficient and effective Ca2+ flux is observed at the ER-mitochondria membrane contact site (ERMCS), an intracellular membrane juxtaposition, where Ca2+ is released from the ER followed by mitochondrial Ca2+ uptake in sequence. Hence, the ER intraluminal Ca2+ concentration ([Ca2+]ER), the mitochondrial matrix Ca2+ concentration ([Ca2+]MT), and the [Ca2+]CYT are related to each other. Ca2+ signaling dysregulation and Ca2+ dyshomeostasis are associated with Alzheimer’s disease (AD), an irreversible neurodegenerative disease. The present review summarizes the cellular and molecular mechanism underlying Ca2+ signaling regulation and Ca2+ homeostasis maintenance at ER and mitochondria levels, focusing on AD. Integrating the amyloid hypothesis and the calcium hypothesis of AD may further our understanding of pathogenesis in neurodegeneration, provide therapeutic targets for chronic neurodegenerative disease in the central nervous system.
Collapse
Affiliation(s)
- Dong-Xu Huang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin-Min Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Ping Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Deparment of The First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Zi-Ping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zi-Ping Jiang,
| |
Collapse
|
12
|
Zhao Q, Luo T, Gao F, Fu Y, Li B, Shao X, Chen H, Zhou Z, Guo S, Shen L, Jin L, Cen D, Zhou H, Lyu J, Fang H. GRP75 Regulates Mitochondrial-Supercomplex Turnover to Modulate Insulin Sensitivity. Diabetes 2022; 71:233-248. [PMID: 34810178 DOI: 10.2337/db21-0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
GRP75 (75-kDA glucose-regulated protein), defined as a major component of both the mitochondrial quality control system and mitochondria-associated membrane, plays a key role in mitochondrial homeostasis. In this study, we assessed the roles of GRP75, other than as a component, in insulin action in both in vitro and in vivo models with insulin resistance. We found that GRP75 was downregulated in mice fed a high-fat diet (HFD) and that induction of Grp75 in mice could prevent HFD-induced obesity and insulin resistance. Mechanistically, GRP75 influenced insulin sensitivity by regulating mitochondrial function through its modulation of mitochondrial-supercomplex turnover rather than mitochondria-associated membrane communication: GRP75 was negatively associated with respiratory chain complex activity and was essential for mitochondrial-supercomplex assembly and stabilization. Moreover, mitochondrial dysfunction in Grp75-knockdown cells might further increase mitochondrial fragmentation, thus triggering cytosolic mtDNA release and activating the cGAS/STING-dependent proinflammatory response. Therefore, GRP75 can serve as a potential therapeutic target of insulin resistant-related diabetes or other metabolic diseases.
Collapse
Affiliation(s)
- Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ting Luo
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Gao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong Cen
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, Stella C, Blancard C, Salin B, Julio-Kalajzić F, Cannich A, Massa F, Varilh M, Deforges S, Robin LM, De Stefani D, Busquets-Garcia A, Gambino F, Beyeler A, Pouvreau S, Marsicano G. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep 2021; 37:110133. [PMID: 34936875 DOI: 10.1016/j.celrep.2021.110133] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Sebastien Delcasso
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Andrea Ruiz-Calvo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Carol Stella
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Benedicte Salin
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Francisca Julio-Kalajzić
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Federico Massa
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Severine Deforges
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Laurie M Robin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Arnau Busquets-Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Frederic Gambino
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Anna Beyeler
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
15
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
16
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
17
|
Vishnu N, Hamilton A, Bagge A, Wernersson A, Cowan E, Barnard H, Sancak Y, Kamer KJ, Spégel P, Fex M, Tengholm A, Mootha VK, Nicholls DG, Mulder H. Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Mol Metab 2021; 51:101239. [PMID: 33932586 PMCID: PMC8163986 DOI: 10.1016/j.molmet.2021.101239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Transport of Ca2+ into pancreatic β cell mitochondria facilitates nutrient-mediated insulin secretion. However, the underlying mechanism is unclear. Recent establishment of the molecular identity of the mitochondrial Ca2+ uniporter (MCU) and associated proteins allows modification of mitochondrial Ca2+ transport in intact cells. We examined the consequences of deficiency of the accessory protein MICU2 in rat and human insulin-secreting cells and mouse islets. METHODS siRNA silencing of Micu2 in the INS-1 832/13 and EndoC-βH1 cell lines was performed; Micu2-/- mice were also studied. Insulin secretion and mechanistic analyses utilizing live confocal imaging to assess mitochondrial function and intracellular Ca2+ dynamics were performed. RESULTS Silencing of Micu2 abrogated GSIS in the INS-1 832/13 and EndoC-βH1 cells. The Micu2-/- mice also displayed attenuated GSIS. Mitochondrial Ca2+ uptake declined in MICU2-deficient INS-1 832/13 and EndoC-βH1 cells in response to high glucose and high K+. MICU2 silencing in INS-1 832/13 cells, presumably through its effects on mitochondrial Ca2+ uptake, perturbed mitochondrial function illustrated by absent mitochondrial membrane hyperpolarization and lowering of the ATP/ADP ratio in response to elevated glucose. Despite the loss of mitochondrial Ca2+ uptake, cytosolic Ca2+ was lower in siMICU2-treated INS-1 832/13 cells in response to high K+. It was hypothesized that Ca2+ accumulated in the submembrane compartment in MICU2-deficient cells, resulting in desensitization of voltage-dependent Ca2+ channels, lowering total cytosolic Ca2+. Upon high K+ stimulation, MICU2-silenced cells showed higher and prolonged increases in submembrane Ca2+ levels. CONCLUSIONS MICU2 plays a critical role in β cell mitochondrial Ca2+ uptake. β cell mitochondria sequestered Ca2+ from the submembrane compartment, preventing desensitization of voltage-dependent Ca2+ channels and facilitating GSIS.
Collapse
Affiliation(s)
- N Vishnu
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Hamilton
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Bagge
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Wernersson
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - E Cowan
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - H Barnard
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - Y Sancak
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - K J Kamer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - P Spégel
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - M Fex
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala SE-751 23, Sweden
| | - V K Mootha
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - D G Nicholls
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - H Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden.
| |
Collapse
|
18
|
Gherardi G, De Mario A, Mammucari C. The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:209-259. [PMID: 34253296 DOI: 10.1016/bs.ircmb.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
19
|
Zhao Y, Wang S, Song X, Yuan J, Qi D, Gu X, Yin MY, Han Z, Zhu Y, Liu Z, Zhang Y, Wei L, Wei ZZ. Glial Cell-Based Vascular Mechanisms and Transplantation Therapies in Brain Vessel and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:627682. [PMID: 33841101 PMCID: PMC8032950 DOI: 10.3389/fncel.2021.627682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodevelopmental and neurodegenerative diseases (NDDs) with severe neurological/psychiatric symptoms, such as cerebrovascular pathology in AD, CAA, and chronic stroke, have brought greater attention with their incidence and prevalence having markedly increased over the past few years. Causes of the significant neuropathologies, especially those observed in neurological diseases in the CNS, are commonly believed to involve multiple factors such as an age, a total environment, genetics, and an immunity contributing to their progression, neuronal, and vascular injuries. We primarily focused on the studies of glial involvement/dysfunction in part with the blood-brain barrier (BBB) and the neurovascular unit (NVU) changes, and the vascular mechanisms, which have been both suggested as critical roles in chronic stroke and many other NDDs. It has been noted that glial cells including astrocytes (which outnumber other cell types in the CNS) essentially contribute more to the BBB integrity, extracellular homeostasis, neurotransmitter release, regulation of neurogenic niches in response to neuroinflammatory stimulus, and synaptic plasticity. In a recent study for NDDs utilizing cellular and molecular biology and genetic and pharmacological tools, the role of reactive astrocytes (RACs) and gliosis was demonstrated, able to trigger pathophysiological/psychopathological detrimental changes during the disease progression. We speculate, in particular, the BBB, the NVU, and changes of the astrocytes (potentially different populations from the RACs) not only interfere with neuronal development and synaptogenesis, but also generate oxidative damages, contribute to beta-amyloid clearances and disrupted vasculature, as well as lead to neuroinflammatory disorders. During the past several decades, stem cell therapy has been investigated with a research focus to target related neuro-/vascular pathologies (cell replacement and repair) and neurological/psychiatric symptoms (paracrine protection and homeostasis). Evidence shows that transplantation of neurogenic or vasculogenic cells could be achieved to pursue differentiation and maturation within the diseased brains as expected. It would be hoped that, via regulating functions of astrocytes, astrocytic involvement, and modulation of the BBB, the NVU and astrocytes should be among major targets for therapeutics against NDDs pathogenesis by drug and cell-based therapies. The non-invasive strategies in combination with stem cell transplantation such as the well-tested intranasal deliveries for drug and stem cells by our and many other groups show great translational potentials in NDDs. Neuroimaging and clinically relevant analyzing tools need to be evaluated in various NDDs brains.
Collapse
Affiliation(s)
- Yingying Zhao
- Beijing Clinical Research Institute, Beijing, China.,Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China
| | - Shuanglin Wang
- Department of Critical Care Medicine, Airport Hospital of Tianjin Medical University General Hospital, Tianjin, China.,Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaopeng Song
- Mclean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Junliang Yuan
- Mclean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States.,Department of Neurology, Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Dong Qi
- Beijing Clinical Research Institute, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Yaoyao Yin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhou Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing, China
| | - Zhandong Liu
- Beijing Clinical Research Institute, Beijing, China
| | - Yongbo Zhang
- Beijing Clinical Research Institute, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States.,Emory Specialized Center of Sex Differences, Emory University, Atlanta, GA, United States
| |
Collapse
|
20
|
de Oliveira LG, Angelo YDS, Iglesias AH, Peron JPS. Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Front Immunol 2021; 12:624919. [PMID: 33796100 PMCID: PMC8007920 DOI: 10.3389/fimmu.2021.624919] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory and neurodegenerative diseases are a major public health problem worldwide, especially with the increase of life-expectancy observed during the last decades. For many of these diseases, we still lack a full understanding of their etiology and pathophysiology. Nonetheless their association with mitochondrial dysfunction highlights this organelle as an important player during CNS homeostasis and disease. Markers of Parkinson (PD) and Alzheimer (AD) diseases are able to induce innate immune pathways induced by alterations in mitochondrial Ca2+ homeostasis leading to neuroinflammation. Additionally, exacerbated type I IFN responses triggered by mitochondrial DNA (mtDNA), failures in mitophagy, ER-mitochondria communication and mtROS production promote neurodegeneration. On the other hand, regulation of mitochondrial dynamics is essential for CNS health maintenance and leading to the induction of IL-10 and reduction of TNF-α secretion, increased cell viability and diminished cell injury in addition to reduced oxidative stress. Thus, although previously solely seen as power suppliers to organelles and molecular processes, it is now well established that mitochondria have many other important roles, including during immune responses. Here, we discuss the importance of these mitochondrial dynamics during neuroinflammation, and how they correlate either with the amelioration or worsening of CNS disease.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Antonio H Iglesias
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Zhu J, Li Y, Liang J, Li J, Huang K, Li J, Liu C. The neuroprotective effect of oxytocin on vincristine-induced neurotoxicity in mice. Toxicol Lett 2021; 340:67-76. [PMID: 33429010 DOI: 10.1016/j.toxlet.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Vincristine (VCR) is commonly used to treat a variety of hematological malignancies and solid tumors in pediatric and adult patients. However, peripheral neuropathy is a dose-limiting side effect that leaves some patients with functional disability and long-term pain. Oxytocin (OT) has demonstrated analgesic and anti-inflammatory properties, but there is no evidence regarding its effects on VCR-induced neurotoxicity. Therefore, we evaluated the potential protective effects of OT on VCR-induced neurotoxicity. In vitro, VCR (0.005 ∼ 0.1 μmol/l) and OT (10-8 ∼ 10-5 mol/l) were added into cultured primary dorsal root ganglion (DRG) neurons of mice. The length of neurites was counted by using immunofluorescence. In vivo, neurotoxicity was induced in mice by administration of VCR (0.1 mg/kg, intraperitoneal injection for 14 days) with or without pretreatment of OT (0.1 mg/kg or 1 mg/kg). Atosiban, an OT receptor (OTR) antagonist and OTR knockout (KO) mice were used for evaluating effects of OTR. Mechanical hyperalgesia was measured by using von Frey filaments. Histology of plantar skin, sciatic nerve and DRG was observed by using transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining. Results indicated that OT alleviated VCR-induced neurite damage in cultured primary DRG neurons in vitro. In vivo, OT ameliorated VCR-induced hyperalgesia. Histologically, OT attenuated the VCR-induced damages of nerve endings, myelin sheaths and Schwann cells in sciatic nerve and DRG. These effects were antagonized by atosiban. In addition, OTR knockout mice exhibited more severe hyperalgesia than wild-type mice. Globally, these results indicated that OT may have neuroprotective effects on vincristine-induced neurotoxicity in mice.
Collapse
Affiliation(s)
- Jianchun Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yang Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jinghui Liang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jingxin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Kai Huang
- Department of Oncology, Shandong University Qilu Hospital, Jinan, Shandong, PR China
| | - Jing Li
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong, PR China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
22
|
Scarpelli PH, Pecenin MF, Garcia CRS. Intracellular Ca 2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci 2021; 22:ijms22010469. [PMID: 33466510 PMCID: PMC7796463 DOI: 10.3390/ijms22010469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling has been involved in controling critical cellular functions such as activation of proteases, cell death, and cell cycle control. The endoplasmatic reticulum plays a significant role in Ca2+ storage inside the cell, but mitochondria have long been recognized as a fundamental Ca2+ pool. Protozoan parasites such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi display a Ca2+ signaling toolkit with similarities to higher eukaryotes, including the participation of mitochondria in Ca2+-dependent signaling events. This review summarizes the most recent knowledge in mitochondrial Ca2+ signaling in protozoan parasites, focusing on the mechanism involved in mitochondrial Ca2+ uptake by pathogenic protists.
Collapse
|
23
|
Xu S, Cheng X, Wu L, Zheng J, Wang X, Wu J, Yu H, Bao J, Zhang L. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal 2020; 75:109733. [PMID: 32771398 DOI: 10.1016/j.cellsig.2020.109733] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Life science and Technology, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Sugano E, Endo Y, Sugai A, Kikuchi Y, Tabata K, Ozaki T, Kurose T, Takai Y, Mitsuguchi Y, Honma Y, Tomita H. Geranylgeranyl acetone prevents glutamate-induced cell death in HT-22 cells by increasing mitochondrial membrane potential. Eur J Pharmacol 2020; 883:173193. [PMID: 32659301 DOI: 10.1016/j.ejphar.2020.173193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Geranylgeranyl acetone (GGA) protects against various types of cell damages by upregulating heat shock proteins. We investigated whether GGA protects neuronal cells from cell death induced by oxidative stress. Glutamate exposure was lethal to HT-22 cells which comprise a neuronal line derived from mouse hippocampus. This configuration is often used as a model for hippocampus neurodegeneration in vitro. In the present study, GGA protected HT-22 cells from glutamate-induced oxidative stress. GGA pretreatment did not induce heat shock proteins (Hsps). Moreover, reactive oxygen species increased to the same extent in both GGA-pretreated and untreated cells exposed to glutamate. In contrast, glutamate exposure and GGA pretreatment increased mitochondrial membrane potential. However, increases in intracellular Ca2+ concentration were inhibited by GGA pretreatment. In addition, the increase of phosphorylated ERKs by the glutamate exposure was inhibited by GGA pretreatment. These findings suggest that GGA protects HT-22 cells from glutamate-provoked cell death without Hsp induction and that the mitochondrial calcium buffering capacity plays an important role in this protective effect.
Collapse
Affiliation(s)
- Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Yuka Endo
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Akihisa Sugai
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Yuki Kikuchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Taku Ozaki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Takahiro Kurose
- Rohto Pharmaceutical Co., Ltd, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan.
| | - Yoshihiro Takai
- Rohto Pharmaceutical Co., Ltd, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan.
| | - Yoko Mitsuguchi
- Rohto Pharmaceutical Co., Ltd, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan.
| | - Yoichi Honma
- Rohto Pharmaceutical Co., Ltd, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan.
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
25
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
26
|
Zhang X, Lee MD, Wilson C, McCarron JG. Hydrogen peroxide depolarizes mitochondria and inhibits IP 3-evoked Ca 2+ release in the endothelium of intact arteries. Cell Calcium 2019; 84:102108. [PMID: 31715384 PMCID: PMC6891240 DOI: 10.1016/j.ceca.2019.102108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
H2O2 is produced by several cell processes including mitochondria and may act as an intracellular messenger and cell-cell signalling molecule. Spontaneous local Ca2+ signals and IP3-evoked Ca2+ increases were inhibited by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria via a decrease in the mitochondrial membrane potential. H2O2-induced mitochondrial depolarization and inhibition of IP3-evoked Ca2+ release, may protect mitochondria from Ca2+ overload during IP3-linked Ca2+ signals.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
27
|
Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beussman K, Showalter MR, Smith AT, Hofsteen P, Yang X, Macadangdang J, Manninen T, Raftery D, Madan A, Suomalainen A, Kim DH, Murry CE, Fiehn O, Sniadecki NJ, Wang Y, Ruohola-Baker H. TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nat Commun 2019; 10:4671. [PMID: 31604922 PMCID: PMC6789043 DOI: 10.1038/s41467-019-12482-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial trifunctional protein deficiency, due to mutations in hydratase subunit A (HADHA), results in sudden infant death syndrome with no cure. To reveal the disease etiology, we generated stem cell-derived cardiomyocytes from HADHA-deficient hiPSCs and accelerated their maturation via an engineered microRNA maturation cocktail that upregulated the epigenetic regulator, HOPX. Here we report, matured HADHA mutant cardiomyocytes treated with an endogenous mixture of fatty acids manifest the disease phenotype: defective calcium dynamics and repolarization kinetics which results in a pro-arrhythmic state. Single cell RNA-seq reveals a cardiomyocyte developmental intermediate, based on metabolic gene expression. This intermediate gives rise to mature-like cardiomyocytes in control cells but, mutant cells transition to a pathological state with reduced fatty acid beta-oxidation, reduced mitochondrial proton gradient, disrupted cristae structure and defective cardiolipin remodeling. This study reveals that HADHA (tri-functional protein alpha), a monolysocardiolipin acyltransferase-like enzyme, is required for fatty acid beta-oxidation and cardiolipin remodeling, essential for functional mitochondria in human cardiomyocytes.
Collapse
Affiliation(s)
- Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Elisa Clark
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Damien Detraux
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Andrea Leonard
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Kevin Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Alec T Smith
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Peter Hofsteen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Jesse Macadangdang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tuula Manninen
- Helsinki University Hospital, 00290, Helsinki, Finland
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Anu Suomalainen
- Helsinki University Hospital, 00290, Helsinki, Finland
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
- Neuroscience Center, University of Helsinki, 00290, Helsinki, Finland
| | - Deok-Ho Kim
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA, 98109, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Alshelh Z, Mills EP, Kosanovic D, Di Pietro F, Macey PM, Vickers ER, Henderson LA. Effects of the glial modulator palmitoylethanolamide on chronic pain intensity and brain function. J Pain Res 2019; 12:2427-2439. [PMID: 31447580 PMCID: PMC6683964 DOI: 10.2147/jpr.s209657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Chronic neuropathic pain (NP) is a complex disease that results from damage or presumed damage to the somatosensory nervous system. Current treatment regimens are often ineffective. The major impediment in developing effective treatments is our limited understanding of the underlying mechanisms. Preclinical evidence suggests that glial changes are crucial for the development of NP and a recent study reported oscillatory activity differences within the ascending pain pathway at frequencies similar to that of cyclic gliotransmission in NP. Furthermore, there is evidence that glial modifying medications may be effective in treating NP. The aim of this Phase I open-label clinical trial is to determine whether glial modifying medication palmitoylethanolamide (PEA) will reduce NP and whether this is associated with reductions in oscillatory activity within the pain pathway. Methods: We investigated whether 6 weeks of PEA treatment would reduce pain and infra-slow oscillatory activity within the ascending trigeminal pathway in 22 individuals (17 females) with chronic orofacial NP. Results: PEA reduced pain in 16 (73%) of the 22 subjects, 11 subjects showed pain reduction of over 20%. Whilst both the responders and non-responders showed reductions in infra-slow oscillatory activity where orofacial nociceptor afferents terminate in the brainstem, only responders displayed reductions in the thalamus. Furthermore, functional connections between the brainstem and thalamus were altered only in responders. Conclusion: PEA is effective at relieving NP. This reduction is coupled to a reduction in resting oscillations along the ascending pain pathway that are likely driven by rhythmic astrocytic gliotransmission.
Collapse
Affiliation(s)
- Zeynab Alshelh
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| | - Emily P Mills
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| | - Danny Kosanovic
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| | - Flavia Di Pietro
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| | - Paul M Macey
- School of Nursing and Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - E Russell Vickers
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Chang JYA, Yu F, Shi L, Ko ML, Ko GYP. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J Diabetes Res 2019; 2019:8463125. [PMID: 31098384 PMCID: PMC6487082 DOI: 10.1155/2019/8463125] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and fusion are dependent on cellular nutritional states, and maintaining this dynamics is critical for the health of cells. Starvation triggers mitochondrial fusion to maintain bioenergetic efficiency, but during nutrient overloads (as with hyperglycemic conditions), fragmenting mitochondria is a way to store nutrients to avoid waste of energy. In addition to ATP production, mitochondria play an important role in buffering intracellular calcium (Ca2+). We found that in cultured 661W cells, a photoreceptor-derived cell line, hyperglycemic conditions triggered an increase of the expression of dynamin-related protein 1 (DRP1), a protein marker of mitochondrial fission, and a decrease of mitofusin 2 (MFN2), a protein for mitochondrial fusion. Further, these hyperglycemic cells also had decreased mitochondrial Ca2+ but increased cytosolic Ca2+. Treating these hyperglycemic cells with melatonin, a multifaceted antioxidant, averted hyperglycemia-altered mitochondrial fission-and-fusion dynamics and mitochondrial Ca2+ levels. To mimic how people most commonly take melatonin supplements, we gave melatonin to streptozotocin- (STZ-) induced type 1 diabetic mice by daily oral gavage and determined the effects of melatonin on diabetic eyes. We found that melatonin was not able to reverse the STZ-induced systemic hyperglycemic condition, but it prevented STZ-induced damage to the neural retina and retinal microvasculature. The beneficial effects of melatonin in the neural retina in part were through alleviating STZ-caused changes in mitochondrial dynamics and Ca2+ buffering.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
| | - Fei Yu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
30
|
Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca 2+ signals. Semin Cell Dev Biol 2019; 94:11-19. [PMID: 30659886 DOI: 10.1016/j.semcdb.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Voorsluijs
- Nonlinear Physical Chemistry Unit & Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
31
|
Wilson C, Lee MD, Heathcote HR, Zhang X, Buckley C, Girkin JM, Saunter CD, McCarron JG. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate-evoked calcium signaling. J Biol Chem 2019; 294:737-758. [PMID: 30498088 PMCID: PMC6341391 DOI: 10.1074/jbc.ra118.005913] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells are reported to be glycolytic and to minimally rely on mitochondria for ATP generation. Rather than providing energy, mitochondria in endothelial cells may act as signaling organelles that control cytosolic Ca2+ signaling or modify reactive oxygen species (ROS). To control Ca2+ signaling, these organelles are often observed close to influx and release sites and may be tethered near Ca2+ transporters. In this study, we used high-resolution, wide-field fluorescence imaging to investigate the regulation of Ca2+ signaling by mitochondria in large numbers of endothelial cells (∼50 per field) in intact arteries from rats. We observed that mitochondria were mostly spherical or short-rod structures and were distributed widely throughout the cytoplasm. The density of these organelles did not increase near contact sites with smooth muscle cells. However, local inositol trisphosphate (IP3)-mediated Ca2+ signaling predominated near these contact sites and required polarized mitochondria. Of note, mitochondrial control of Ca2+ signals occurred even when mitochondria were far from Ca2+ release sites. Indeed, the endothelial mitochondria were mobile and moved throughout the cytoplasm. Mitochondrial control of Ca2+ signaling was mediated by ATP production, which, when reduced by mitochondrial depolarization or ATP synthase inhibition, eliminated local IP3-mediated Ca2+ release events. ROS buffering did not significantly alter local Ca2+ release events. These results highlight the importance of mitochondrial ATP production in providing long-range control of endothelial signaling via IP3-evoked local Ca2+ release in intact endothelium.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - John M Girkin
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Christopher D Saunter
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| |
Collapse
|
32
|
Shih EK, Robinson MB. Role of Astrocytic Mitochondria in Limiting Ischemic Brain Injury? Physiology (Bethesda) 2019; 33:99-112. [PMID: 29412059 DOI: 10.1152/physiol.00038.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Until recently, astrocyte processes were thought to be too small to contain mitochondria. However, it is now clear that mitochondria are found throughout fine astrocyte processes and are mobile with neuronal activity resulting in positioning near synapses. In this review, we discuss evidence that astrocytic mitochondria confer selective resiliency to astrocytes during ischemic insults and the functional significance of these mitochondria for normal brain function.
Collapse
Affiliation(s)
- Evelyn K Shih
- Children's Hospital of Philadelphia Research Institute , Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Division of Neurology , Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute , Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Wang X, Zhu Y, Long H, Pan S, Xiong H, Fang Q, Hill K, Lai R, Yuan H, Sha SH. Mitochondrial Calcium Transporters Mediate Sensitivity to Noise-Induced Losses of Hair Cells and Cochlear Synapses. Front Mol Neurosci 2019; 11:469. [PMID: 30670946 PMCID: PMC6331433 DOI: 10.3389/fnmol.2018.00469] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria modulate cellular calcium homeostasis by the combined action of the mitochondrial calcium uniporter (MCU), a selective calcium entry channel, and the sodium calcium exchanger (NCLX), which extrudes calcium from mitochondria. In this study, we investigated MCU and NCLX in noise-induced hearing loss (NIHL) using adult CBA/J mice and noise-induced alterations of inner hair cell (IHC) synapses in MCU knockout mice. Following noise exposure, immunoreactivity of MCU increased in cochlear sensory hair cells of the basal turn, while immunoreactivity of NCLX decreased in a time- and exposure-dependent manner. Inhibition of MCU activity via MCU siRNA pretreatment or the specific pharmacological inhibitor Ru360 attenuated noise-induced loss of sensory hair cells and synaptic ribbons, wave I amplitudes, and NIHL in CBA/J mice. This protection was afforded, at least in part, through reduced cleavage of caspase 9 (CC9). Furthermore, MCU knockout mice on a hybrid genetic CD1 and C57/B6 background showed resistance to noise-induced seizures compared to wild-type littermates. Owing to the CD1 background, MCU knockouts and littermates suffer genetic high frequency hearing loss, but their IHCs remain intact. Noise-induced loss of IHC synaptic connections and reduction of auditory brainstem response (ABR) wave I amplitude were recovered in MCU knockout mice. These results suggest that cellular calcium influx during noise exposure leads to mitochondrial calcium overload via MCU and NCLX. Mitochondrial calcium overload, in turn, initiates cell death pathways and subsequent loss of hair cells and synaptic connections, resulting in NIHL.
Collapse
Affiliation(s)
- Xianren Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanping Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haishan Long
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Kayla Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hu Yuan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
34
|
Solesio ME, Peixoto PM, Debure L, Madamba SM, de Leon MJ, Wisniewski T, Pavlov EV, Fossati S. Carbonic anhydrase inhibition selectively prevents amyloid β neurovascular mitochondrial toxicity. Aging Cell 2018; 17:e12787. [PMID: 29873184 PMCID: PMC6052473 DOI: 10.1111/acel.12787] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 11/27/2022] Open
Abstract
Mounting evidence suggests that mitochondrial dysfunction plays a causal role in the etiology and progression of Alzheimer's disease (AD). We recently showed that the carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) prevents amyloid β (Aβ)-mediated onset of apoptosis in the mouse brain. In this study, we used MTZ and, for the first time, the analog CAI acetazolamide (ATZ) in neuronal and cerebral vascular cells challenged with Aβ, to clarify their protective effects and mitochondrial molecular mechanism of action. The CAIs selectively inhibited mitochondrial dysfunction pathways induced by Aβ, without affecting metabolic function. ATZ was effective at concentrations 10 times lower than MTZ. Both MTZ and ATZ prevented mitochondrial membrane depolarization and H2 O2 generation, with no effects on intracellular pH or ATP production. Importantly, the drugs did not primarily affect calcium homeostasis. This work suggests a new role for carbonic anhydrases (CAs) in the Aβ-induced mitochondrial toxicity associated with AD and cerebral amyloid angiopathy (CAA), and paves the way to AD clinical trials for CAIs, FDA-approved drugs with a well-known profile of brain delivery.
Collapse
Affiliation(s)
- María E. Solesio
- Department of Basic SciencesNew York University College of DentistryNew YorkNew York
| | - Pablo M. Peixoto
- Department of Natural SciencesBaruch CollegeGraduate CenterThe City University of New YorkNew YorkNew York
| | - Ludovic Debure
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
| | - Stephen M. Madamba
- Department of Natural SciencesBaruch CollegeGraduate CenterThe City University of New YorkNew YorkNew York
| | - Mony J. de Leon
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
| | - Thomas Wisniewski
- Department of NeurologyCenter for Cognitive NeurologyNew York University School of MedicineNew YorkNew York
| | - Evgeny V. Pavlov
- Department of Basic SciencesNew York University College of DentistryNew YorkNew York
| | - Silvia Fossati
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
- Department of NeurologyCenter for Cognitive NeurologyNew York University School of MedicineNew YorkNew York
| |
Collapse
|
35
|
Naserzadeh P, Mortazavi SA, Ashtari K, Salimi A, Farokhi M, Pourahmad J. Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. J Biochem Mol Toxicol 2018; 32:e22056. [PMID: 29719092 DOI: 10.1002/jbt.22056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023]
Abstract
Silk fibroin nanoparticles (SFNPs) as a natural polymer have been utilized in biomedical applications such as suture, tissue engineering-based scaffolds, and drug delivery carriers. Since there is little data regarding the toxicity effects on different cells and tissues, we aimed to determine the toxicity mechanisms of SFNPs on human lymphocytes and monocytes based on reliable methods. Our results showed that SFNPs (0.5, 1, and 2 mg/mL) induced oxidative stress via increasing reactive oxygen species production, mitochondrial membrane potential (∆Ψ) collapse, which was correlated to cytochrome c release and Adenosine diphosphate (ADP)/Adenosine tri phosphate (ATP) ratio increase as well as lysosomal as another toxicity mechanism, which led to cytosolic release of lysosomal digestive proteases, phosphor lipases, and apoptosis signaling. Taken together, these data suggested that SFNPs toxicity was associated with mutual mitochondrial/lysosomal cross-talk and oxidative stress on human lymphocytes and monocytes with activated apoptosis signaling.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Lu A, Lei H, Li L, Lai L, Liang W, Xu S. Role of mitochondrial Ca2+uniporter in remifentanil-induced postoperative allodynia. Eur J Neurosci 2018; 47:305-313. [PMID: 29363836 DOI: 10.1111/ejn.13842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Aizhu Lu
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
- University of Ottawa Heart Institute & Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - Hongyi Lei
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Le Li
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Luying Lai
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Wenbin Liang
- University of Ottawa Heart Institute & Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - Shiyuan Xu
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| |
Collapse
|
37
|
Adiele RC, Adiele CA. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1257-70. [PMID: 27392851 DOI: 10.3233/jad-150967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative brain disorder with progressive cognitive decline that leads to terminal dementia and death. For decades, amyloid-beta (Aβ) and neurofibrillary tangle (NFT) aggregation hypotheses have dominated studies on the pathogenesis and identification of potential therapeutic targets in AD. Little attention has been paid to the mitochondrial molecular/biochemical pathways leading to AD. Mitochondria play a critical role in cell viability and death including neurons and neuroglia, not only because they regulate energy and oxygen metabolism but also because they regulate cell death pathways. Mitochondrial impairment and oxidative stress are implicated in the pathogenesis of AD. Interestingly, current therapeutics provide symptomatic benefits to AD patients resulting in the use of preventive trials on presymptomatic subjects. This review article elucidates the pathophysiology of AD and emphasizes the need to explore the mitochondrial pathways to provide solutions to unanswered questions in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
38
|
The MCU complex in cell death. Cell Calcium 2018; 69:73-80. [DOI: 10.1016/j.ceca.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
|
39
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
40
|
Prieto-Lloret J, Snetkov VA, Shaifta Y, Docio I, Connolly MJ, MacKay CE, Knock GA, Ward JPT, Aaronson PI. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2017; 314:L670-L685. [PMID: 29351439 PMCID: PMC5966778 DOI: 10.1152/ajplung.00283.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Application of H2S ("sulfide") elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 μM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 μM) and by 50 μM ryanodine; the Ca2+ channel blocker nifedipine (1 μM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 μM), the NADPH oxidase (NOX) blocker VAS2870 (10 μM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 μM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 μM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production.
Collapse
Affiliation(s)
- Jesus Prieto-Lloret
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Vladimir A Snetkov
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Inmaculada Docio
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Michelle J Connolly
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| | - Philip I Aaronson
- Division of Asthma, Allergy and Lung Biology, King's College London , London , United Kingdom
| |
Collapse
|
41
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
42
|
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology 2017; 391:109-115. [PMID: 28655545 PMCID: PMC5681369 DOI: 10.1016/j.tox.2017.06.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction is central to the pathogenesis of neurological disorders. Neurons rely on oxidative phosphorylation to meet their energy requirements and thus alterations in mitochondrial function are linked to energy failure and neuronal cell death. Furthermore, in neurons, dysfunctional mitochondria are reported to increase the steady-state levels of reactive oxygen species derived from the leakage of electrons from the electron transport chain. Research aimed at understanding mitochondrial dysfunction and its role in neurological disorders has been primarily geared towards neurons. In contrast, the effects of mitochondrial dysfunction in glial cells' function and its implication for neuronal homeostasis and brain function has been largely understudied. Unlike neurons and oligodendrocytes, astrocytes and microglia do not degenerate upon the impairment of mitochondrial function, as they rely primarily on glycolysis to produce energy and have a higher antioxidant capacity than neurons. However, recent evidence highlights the role of mitochondrial metabolism and signaling in glial cell function. In this work, we review the functional role of mitochondria in glial cells and the evidence regarding its potential role regulating neuronal homeostasis and disease progression.
Collapse
Affiliation(s)
- Jordan Rose
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Christian Brian
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
43
|
Yamamura H, Kawasaki K, Inagaki S, Suzuki Y, Imaizumi Y. Local Ca 2+ coupling between mitochondria and sarcoplasmic reticulum following depolarization in guinea pig urinary bladder smooth muscle cells. Am J Physiol Cell Physiol 2017; 314:C88-C98. [PMID: 29046294 DOI: 10.1152/ajpcell.00208.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spatiotemporal changes in cytosolic Ca2+ concentration ([Ca2+]c) trigger a number of physiological functions in smooth muscle cells (SMCs). We previously imaged Ca2+-induced Ca2+ release following membrane depolarization as local Ca2+ transients, Ca2+ hotspots, in subplasmalemmal regions. In this study, the physiological significance of mitochondria on local Ca2+ signaling was examined. Cytosolic and mitochondrial Ca2+ images following depolarization or action potentials were recorded in single SMCs from the guinea pig urinary bladder using a fast-scanning confocal fluorescent microscope. Depolarization- and action potential-induced [Ca2+]c transients occurred at several discrete sites in subplasmalemmal regions, peaked within 30 ms, and then spread throughout the whole-cell. In contrast, Ca2+ concentration in the mitochondria matrix ([Ca2+]m) increased after a delay of ~50 ms from the start of depolarization, and then peaked within 500 ms. Following repolarization, [Ca2+]c returned to the resting level with a half-decay time of ~500 ms, while [Ca2+]m recovered more slowly (∼1.5 s). Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, a mitochondrial uncoupler, abolished depolarization-induced [Ca2+]m elevations and slowed [Ca2+]c changes. Importantly, short depolarization-induced changes in [Ca2+]m and transmembrane potential in mitochondria coupled to Ca2+ hotspots were significantly larger than those in other mitochondria. Total internal reflection fluorescence imaging revealed that a subset of mitochondria closely localized with ryanodine receptors and voltage-dependent Ca2+ channels. These results indicate that particular mitochondria are functionally coupled to ion channels and sarcoplasmic reticulum fragments within the local Ca2+ microdomain, and thus, strongly contribute to [Ca2+]c regulation in SMCs.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan
| | - Keisuke Kawasaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan
| | - Sou Inagaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan
| |
Collapse
|
44
|
Mollá B, Muñoz-Lasso DC, Riveiro F, Bolinches-Amorós A, Pallardó FV, Fernandez-Vilata A, de la Iglesia-Vaya M, Palau F, Gonzalez-Cabo P. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice. Front Mol Neurosci 2017; 10:264. [PMID: 28912677 PMCID: PMC5583981 DOI: 10.3389/fnmol.2017.00264] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG) of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.
Collapse
Affiliation(s)
- Belén Mollá
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Instituto de Biomedicina de Valencia (IBV), CSICValencia, Spain
| | - Diana C Muñoz-Lasso
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-Instituto de Investigación Sanitaria (INCLIVA)Valencia, Spain.,Associated Unit for Rare Diseases INCLIVA-CIPFValencia, Spain.,VEDAS Corporación de Investigación e Innovación, VEDASCIIMedellín, Colombia
| | - Fátima Riveiro
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Fundacion Publica Galega de Medicina Xenomica (FPGMX)-SERGAS, Grupo de Medicina Xenomica, Hospital Clínico UniversitarioSantiago de Compostela, Spain
| | - Arantxa Bolinches-Amorós
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Cell Therapy Program, Prince Felipe Research Centre (CIPF)Valencia, Spain
| | - Federico V Pallardó
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-Instituto de Investigación Sanitaria (INCLIVA)Valencia, Spain.,Associated Unit for Rare Diseases INCLIVA-CIPFValencia, Spain
| | | | - María de la Iglesia-Vaya
- Regional Ministry of Health in Valencia, Hospital Sagunto (CEIB-CSUSP)Valencia, Spain.,Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF)Valencia, Spain.,CIBER de Salud Mental (CIBERSAM)Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Department of Genetic and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelona, Spain.,Department of Pediatrics, University of Barcelona School of MedicineBarcelona, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-Instituto de Investigación Sanitaria (INCLIVA)Valencia, Spain.,Associated Unit for Rare Diseases INCLIVA-CIPFValencia, Spain
| |
Collapse
|
45
|
Pham HHT, Seong YA, Ngabire D, Oh CW, Kim GD. Cyperus amuricus induces G1 arrest and apoptosis through endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:157-164. [PMID: 28684299 DOI: 10.1016/j.jep.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Cyperus amuricus (C. amuricus), belongs to the family Cyperaceae, was used to exert wound healing, diuretic, astringent and other intestinal problems in oriental medicine. However, only a few studies have reported its anticancer activities. AIM OF THE STUDY In this study, we determined the activity of C. amuricus on ER stress-induced cell death and G1 cell cycle arrest in human hepatocellular carcinoma (HCC) Hep3B cells. MATERIALS AND METHODS The in vitro cell proliferation assay of C. amuricus was tested on Hep3B and human embryonic kidney HEK293 cells. Subsequently, the cell cycle distribution in the indicated stages using flow cytometric analysis, the expression of cell cycle-related proteins by western blot analysis and immunofluorescence detection of p21CIP1/WAF1 were determined for the comprehensive identification of cell cycle arrest in Hep3B cells. The effect of C. amuricus on the expression of apoptosis-related proteins in Hep3B cells was also performed by western blot analysis. Furthermore, induction of the ER stress mediators in C. amuricus-treated Hep3B cells were observed by western blot analysis, intracellular Ca2+ mobilization assay and immunofluorescence detection of caspase-12. RESULTS C. amuricus strongly exhibited cytotoxic activity on Hep3B cells, but not on HEK293 cells. C. amuricus affected the phosphorylation levels of endoplasmic reticulum sensors and increased the expression of GRP78/BiP and CHOP, resulting in the accumulation of unfolded proteins in the ER and triggering the unfolded protein response. These changes occurred by the elevation of intracellular Ca2+ concentrations, which contributed to ER stress-induced apoptosis in C. amuricus-treated Hep3B cells. C. amuricus also coordinated the stimulation of ER chaperones, which initiated G1 cell cycle arrest through the induction of CDKIs and the inhibition of cyclins and CDKs. Furthermore, C. amuricus triggered apoptosis through the activation of mitochondrial-dependent pathway in Hep3B cells. CONCLUSIONS Our results suggest that C. amuricus is an effective apoptosis inducing agent for Hep3B cells via the G1 arrest, ER stress and mitochondrial mediated apoptotic pathways.
Collapse
Affiliation(s)
- Hai Ha Thi Pham
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeong-Ae Seong
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Daniel Ngabire
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
46
|
Ghanbari F, Nasarzadeh P, Seydi E, Ghasemi A, Taghi Joghataei M, Ashtari K, Akbari M. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: A comparative study. J Biomed Mater Res A 2017; 105:2047-2055. [PMID: 28296041 DOI: 10.1002/jbm.a.36063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
With the ever-increasing use of carbon nanotubes (CNTs) in health-related and engineering applications, the hazardous risks of this material have become a major concern. It is well known that CNTs accumulate with cytotoxic and genotoxic levels within vital organs. It has also been shown that treating cell cultures with CNTs resulted in cell-cycle arrest and increased apoptosis/necrosis. The goal of this pilot study is to perform a comprehensive comparative study on the toxicity of single-wall (SW) and multiwall (MW) CNTs in rat skin cells. Our results confirm a dose-dependent toxicity of SWCNTs and MWCNTs due to the loss of mitochondrial activity, increase in mitochondrial reactive oxygen species (ROS) formation, and mitochondrial membrane potential collapse before mitochondrial swelling. Moreover, disturbance in the oxidative phosphorylation is observed by a decrease in ATP level. These events induced the release of cytochrome c via outer membrane rupture or MPT pore opening and subsequently programmed cell death of all doses compared to control group. Our results demonstrate that although MWCNTs can be very toxic, SWCNTs cause more mitochondrial damage to the cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2047-2055, 2017.
Collapse
Affiliation(s)
- Fatemeh Ghanbari
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Nasarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health Engineering, Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Ghasemi
- Department of Chemistry, University Campus 2, University of Guilan, Rasht, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Department, Faculty of Advanced Technology in Medicine, Iran university of Medical Sciences, Tehran, Iran
| | - Khadijeh Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Center for Biomedical Research (CBR), University of Victoria, Victoria, Canada
- Center for Advanced Materials and Related Technologies (CAMTEC), Victoria, Canada
| |
Collapse
|
47
|
Tetramethylpyrazine Protects against Early Brain Injury after Experimental Subarachnoid Hemorrhage by Affecting Mitochondrial-Dependent Caspase-3 Apoptotic Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3514914. [PMID: 28337226 PMCID: PMC5350396 DOI: 10.1155/2017/3514914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
This study was to test the hypothesis that tetramethylpyrazine (TMP) protected against early brain injury after subarachnoid hemorrhage (SAH) by affecting the mitochondrial-dependent caspase-3 apoptotic pathway. TMP was administrated after the rats' prechiasmatic SAH mode. Animal neurobehavioral functions were assessed and the mitochondrial morphology, mitochondrial and cytoplasmic calcium, and mitochondrial membrane potential changes (Δψm) of the brain tissues were measured. The expressions of cytoplasmic cytochrome c (cyt c), second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3 B-cell lymphoma 2 (bcl-2) in cells were determined and cellular apoptosis was detected. The treatment of TMP resulted in less apoptotic cells and milder mitochondrial injury and potentially performed better in the neurobehavioral outcome compared to those with saline. Also, TMP ameliorated calcium overload in mitochondria and cytoplasm and alleviated the decrease of Δψm. In addition, TMP inhibited the expression of cytoplasmic cyt c, Smac, and cleaved caspase-3, yet it upregulated the expression of bcl-2. These findings suggest that TMP exerts an antiapoptosis property in the SAH rat model and this is probably mediated by the caspase-3 apoptotic pathway triggered by mitochondrial calcium overload. The finding offers a new therapeutic candidate for early brain injury after SAH.
Collapse
|
48
|
Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes. J Neurosci 2016; 35:15199-213. [PMID: 26558789 DOI: 10.1523/jneurosci.2049-15.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na(+)/Ca(2+)-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca(2+) signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca(2+). As recently reported, we observed spontaneous Ca(2+) spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca(2+) spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca(2+) signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca(2+)-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1(KK) had a modest effect on the frequency of these Ca(2+) spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca(2+) followed by an increase in the decay time and the spread of the spontaneous Ca(2+) spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca(2+). Together, these studies show that Ca(2+) regulates mitochondrial mobility, and mitochondria in turn regulate Ca(2+) signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca(2+) buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response to neuronal activity and glutamate uptake. Here, we demonstrate a mechanism by which mitochondria are immobilized in astrocytes subsequent to increases in intracellular [Ca(2+)] and provide evidence that mitochondria contribute to the compartmentalization of spontaneous Ca(2+) signals in astrocyte processes. Immobilization of mitochondria at sites of glutamate uptake in astrocyte processes provides a mechanism to coordinate increases in activity with increases in mitochondrial metabolism.
Collapse
|
49
|
Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). TOXICS 2015; 3:198-223. [PMID: 29056658 PMCID: PMC5634687 DOI: 10.3390/toxics3020198] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.
Collapse
|
50
|
Abstract
Astrocytes exhibit cellular excitability through variations in their intracellular calcium (Ca²⁺) levels in response to synaptic activity. Astrocyte Ca²⁺ elevations can trigger the release of neuroactive substances that can modulate synaptic transmission and plasticity, hence promoting bidirectional communication with neurons. Intracellular Ca²⁺ dynamics can be regulated by several proteins located in the plasma membrane, within the cytosol and by intracellular organelles such as mitochondria. Spatial dynamics and strategic positioning of mitochondria are important for matching local energy provision and Ca²⁺ buffering requirements to the demands of neuronal signalling. Although relatively unresolved in astrocytes, further understanding the role of mitochondria in astrocytes may reveal more about the complex bidirectional relationship between astrocytes and neurons in health and disease. In the present review, we discuss some recent insights regarding mitochondrial function, transport and turnover in astrocytes and highlight some important questions that remain to be answered.
Collapse
|