1
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Kim BS, Alcantara AV, Moon JH, Higashitani A, Higashitani N, Etheridge T, Szewczyk NJ, Deane CS, Gaffney CJ, Higashibata A, Hashizume T, Yoon KH, Lee JI. Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans. Int J Mol Sci 2023; 24:12640. [PMID: 37628820 PMCID: PMC10454569 DOI: 10.3390/ijms241612640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
While spaceflight is becoming more common than before, the hazards spaceflight and space microgravity pose to the human body remain relatively unexplored. Astronauts experience muscle atrophy after spaceflight, but the exact reasons for this and solutions are unknown. Here, we take advantage of the nematode C. elegans to understand the effects of space microgravity on worm body wall muscle. We found that space microgravity induces muscle atrophy in C. elegans from two independent spaceflight missions. As a comparison to spaceflight-induced muscle atrophy, we assessed the effects of acute nutritional deprivation and muscle disuse on C. elegans muscle cells. We found that these two factors also induce muscle atrophy in the nematode. Finally, we identified clp-4, which encodes a calpain protease that promotes muscle atrophy. Mutants of clp-4 suppress starvation-induced muscle atrophy. Such comparative analyses of different factors causing muscle atrophy in C. elegans could provide a way to identify novel genetic factors regulating space microgravity-induced muscle atrophy.
Collapse
Affiliation(s)
- Ban-seok Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea; (B.-s.K.); (A.V.A.J.); (J.-H.M.)
| | - Alfredo V. Alcantara
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea; (B.-s.K.); (A.V.A.J.); (J.-H.M.)
| | - Je-Hyun Moon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea; (B.-s.K.); (A.V.A.J.); (J.-H.M.)
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (N.H.)
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan (N.H.)
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK; (T.E.); (C.S.D.)
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA;
| | - Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK; (T.E.); (C.S.D.)
- Human Development & Health Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Christopher J. Gaffney
- Lancaster Medical School, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4AT, UK;
| | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba 305-0047, Japan
| | - Toko Hashizume
- Advanced Engineering Services Co., Ltd., Tsukuba 305-0032, Japan
| | - Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Republic of Korea; (B.-s.K.); (A.V.A.J.); (J.-H.M.)
| |
Collapse
|
3
|
Barker TJ, Chan FY, Carvalho AX, Sundaram MV. Apical-basal polarity of the spectrin cytoskeleton in the C. elegans vulva. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000863. [PMID: 37396793 PMCID: PMC10308243 DOI: 10.17912/micropub.biology.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
The C. elegans vulva is a polarized epithelial tube that has been studied extensively as a model for cell-cell signaling, cell fate specification, and tubulogenesis. Here we used endogenous fusions to show that the spectrin cytoskeleton is polarized in this organ, with conventional beta-spectrin ( UNC-70 ) found only at basolateral membranes and beta heavy spectrin ( SMA-1 ) found only at apical membranes. The sole alpha-spectrin ( SPC-1 ) is present at both locations but requires SMA-1 for its apical localization. Thus, beta spectrins are excellent markers for vulva cell membranes and polarity.
Collapse
Affiliation(s)
- Trevor J. Barker
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Fung-Yi Chan
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Ana X. Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Bonacossa-Pereira I, Coakley S, Hilliard MA. Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain. Cell Rep 2022; 38:110501. [PMID: 35263583 DOI: 10.1016/j.celrep.2022.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
Collapse
Affiliation(s)
- Igor Bonacossa-Pereira
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Sci Rep 2021; 11:22370. [PMID: 34785759 PMCID: PMC8595726 DOI: 10.1038/s41598-021-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Collapse
Affiliation(s)
- Kaname Tsutsui
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chizu Yoshikata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Kenji Kimura
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| |
Collapse
|
6
|
Das R, Lin LC, Català-Castro F, Malaiwong N, Sanfeliu-Cerdán N, Porta-de-la-Riva M, Pidde A, Krieg M. An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity. SCIENCE ADVANCES 2021; 7:eabg4617. [PMID: 34533987 PMCID: PMC8448456 DOI: 10.1126/sciadv.abg4617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/27/2021] [Indexed: 05/07/2023]
Abstract
A repetitive gait cycle is an archetypical component within the behavioral repertoire of many animals including humans. It originates from mechanical feedback within proprioceptors to adjust the motor program during locomotion and thus leads to a periodic orbit in a low-dimensional space. Here, we investigate the mechanics, molecules, and neurons responsible for proprioception in Caenorhabditis elegans to gain insight into how mechanosensation shapes the orbital trajectory to a well-defined limit cycle. We used genome editing, force spectroscopy, and multiscale modeling and found that alternating tension and compression with the spectrin network of a single proprioceptor encodes body posture and informs TRP-4/NOMPC and TWK-16/TREK2 homologs of mechanosensitive ion channels during locomotion. In contrast to a widely accepted model of proprioceptive “stretch” reception, we found that proprioceptors activated locally under compressive stresses in-vivo and in-vitro and propose that this property leads to compartmentalized activity within long axons delimited by curvature-dependent mechanical stresses.
Collapse
|
7
|
Kalichamy SS, Alcantara AV, Kim BS, Park J, Yoon KH, Lee JI. Muscle and epidermal contributions of the structural protein β-spectrin promote hypergravity-induced motor neuron axon defects in C. elegans. Sci Rep 2020; 10:21214. [PMID: 33273580 PMCID: PMC7713079 DOI: 10.1038/s41598-020-78414-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 11/09/2022] Open
Abstract
Biology is adapted to Earth's gravity force, and the long-term effects of varying gravity on the development of animals is unclear. Previously, we reported that high gravity, called hypergravity, increases defects in the development of motor neuron axons in the nematode Caenorhabditis elegans. Here, we show that a mutation in the unc-70 gene that encodes the cytoskeletal β-spectrin protein suppresses hypergravity-induced axon defects. UNC-70 expression is required in both muscle and epidermis to promote the axon defects in high gravity. We reveal that the location of axon defects is correlated to the size of the muscle cell that the axon traverses. We also show that mutations that compromise key proteins of hemidesmosomal structures suppress hypergravity-induced axon defects. These hemidesmosomal structures play a crucial role in coupling mechanical force between the muscle, epidermis and the external cuticle. We speculate a model in which the rigid organization of muscle, epidermal and cuticular layers under high gravity pressure compresses the narrow axon migration pathways in the extracellular matrix hindering proper axon pathfinding of motor neurons.
Collapse
Affiliation(s)
- Saraswathi S Kalichamy
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus 304, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Alfredo V Alcantara
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus 304, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Ban-Seok Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus 304, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Junsoo Park
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus 304, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus 304, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea.
| |
Collapse
|
8
|
Jia R, Chai Y, Xie C, Liu G, Zhu Z, Huang K, Li W, Ou G. The spectrin-based membrane skeleton is asymmetric and remodels during neural development in C. elegans. J Cell Sci 2020; 133:jcs248583. [PMID: 32620698 DOI: 10.1242/jcs.248583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Jia R, Li D, Li M, Chai Y, Liu Y, Xie Z, Shao W, Xie C, Li L, Huang X, Chen L, Li W, Ou G. Spectrin-based membrane skeleton supports ciliogenesis. PLoS Biol 2019; 17:e3000369. [PMID: 31299042 PMCID: PMC6655744 DOI: 10.1371/journal.pbio.3000369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/24/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cilia are remarkable cellular devices that power cell motility and transduce extracellular signals. To assemble a cilium, a cylindrical array of 9 doublet microtubules push out an extension of the plasma membrane. Membrane tension regulates cilium formation; however, molecular pathways that link mechanical stimuli to ciliogenesis are unclear. Using genome editing, we introduced hereditary elliptocytosis (HE)- and spinocerebellar ataxia (SCA)-associated mutations into the Caenorhabditis elegans membrane skeletal protein spectrin. We show that these mutations impair mechanical support for the plasma membrane and change cell shape. RNA sequencing (RNA-seq) analyses of spectrin-mutant animals uncovered a global down-regulation of ciliary gene expression, prompting us to investigate whether spectrin participates in ciliogenesis. Spectrin mutations affect intraflagellar transport (IFT), disrupt axonemal microtubules, and inhibit cilium formation, and the endogenous spectrin periodically distributes along cilia. Mammalian spectrin also localizes in cilia and regulates ciliogenesis. These results define a previously unrecognized yet conserved role of spectrin-based mechanical support for cilium biogenesis.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yufan Liu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wenxin Shao
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaoshuai Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Liu CH, Rasband MN. Axonal Spectrins: Nanoscale Organization, Functional Domains and Spectrinopathies. Front Cell Neurosci 2019; 13:234. [PMID: 31191255 PMCID: PMC6546920 DOI: 10.3389/fncel.2019.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Spectrin cytoskeletons are found in all metazoan cells, and their physical interactions between actin and ankyrins establish a meshwork that provides cellular structural integrity. With advanced super-resolution microscopy, the intricate spatial organization and associated functional properties of these cytoskeletons can now be analyzed with unprecedented clarity. Long neuronal processes like peripheral sensory and motor axons may be subject to intense mechanical forces including bending, stretching, and torsion. The spectrin-based cytoskeleton is essential to protect axons against these mechanical stresses. Additionally, spectrins are critical for the assembly and maintenance of axonal excitable domains including the axon initial segment and the nodes of Ranvier (NoR). These sites facilitate rapid and efficient action potential initiation and propagation in the nervous system. Recent studies revealed that pathogenic spectrin variants and diseases that protealyze and breakdown spectrins are associated with congenital neurological disorders and nervous system injury. Here, we review recent studies of spectrins in the nervous system and focus on their functions in axonal health and disease.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Neil Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Tang LT, Diaz-Balzac CA, Rahman M, Ramirez-Suarez NJ, Salzberg Y, Lázaro-Peña MI, Bülow HE. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization. eLife 2019; 8:38949. [PMID: 30694177 PMCID: PMC6370339 DOI: 10.7554/elife.38949] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dendritic arbors are crucial for nervous system assembly, but the intracellular mechanisms that govern their assembly remain incompletely understood. Here, we show that the dendrites of PVD neurons in Caenorhabditis elegans are patterned by distinct pathways downstream of the DMA-1 leucine-rich transmembrane (LRR-TM) receptor. DMA-1/LRR-TM interacts through a PDZ ligand motif with the guanine nucleotide exchange factor TIAM-1/GEF in a complex with act-4/Actin to pattern higher order 4° dendrite branches by localizing F-actin to the distal ends of developing dendrites. Surprisingly, TIAM-1/GEF appears to function independently of Rac1 guanine nucleotide exchange factor activity. A partially redundant pathway, dependent on HPO-30/Claudin, regulates formation of 2° and 3° branches, possibly by regulating membrane localization and trafficking of DMA-1/LRR-TM. Collectively, our experiments suggest that HPO-30/Claudin localizes the DMA-1/LRR-TM receptor on PVD dendrites, which in turn can control dendrite patterning by directly modulating F-actin dynamics through TIAM-1/GEF.
Collapse
Affiliation(s)
- Leo Th Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Carlos A Diaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | | | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Maria I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
13
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
14
|
Mallik B, Kumar V. Regulation of actin-Spectrin cytoskeleton by ICA69 at the Drosophila neuromuscular junction. Commun Integr Biol 2017. [PMCID: PMC5824968 DOI: 10.1080/19420889.2017.1381806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bin-Amphiphysin-Rvs (BAR) domain containing proteins with their membrane deforming properties have emerged as key players in shaping up neuronal morphology and regulating cytoskeletal dynamics. However, the in vivo contexts in which BAR-domain proteins integrate membrane dynamics with cytoskeletal rearrangements remain poorly understood. Recently, we identified islet cell autoantigen 69 kDa as one of the N-BAR-domain containing proteins which regulate synaptic development and organization at the Drosophila neuromuscular junction. ICA69 genetically functions downstream of Rab2 to regulate synapse morphology. We found that ICA69 alters Spectrin level at the Drosophila NMJ, and redistributes actin regulatory proteins in cultured cells suggesting that ICA69 may regulate NMJ organization by regulating actin-Spectrin cytoskeleton. We propose a model in which ICA69 genetically interact with components of actin regulatory proteins for cytoskeleton dynamics to regulate NMJ development and synapse organization.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
15
|
Han SM, Baig HS, Hammarlund M. Mitochondria Localize to Injured Axons to Support Regeneration. Neuron 2017; 92:1308-1323. [PMID: 28009276 DOI: 10.1016/j.neuron.2016.11.025] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 08/31/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo, single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth-cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase 1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell-biological mechanism that helps determine the regenerative response of injured neurons.
Collapse
Affiliation(s)
- Sung Min Han
- Departments of Genetics and Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Huma S Baig
- Departments of Genetics and Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Krieg M, Stühmer J, Cueva JG, Fetter R, Spilker K, Cremers D, Shen K, Dunn AR, Goodman MB. Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife 2017; 6. [PMID: 28098556 PMCID: PMC5298879 DOI: 10.7554/elife.20172] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022] Open
Abstract
Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in β-spectrin and tau may sensitize neurons to damage. DOI:http://dx.doi.org/10.7554/eLife.20172.001
Collapse
Affiliation(s)
- Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Chemical Engineering, Stanford University, Stanford, United States
| | - Jan Stühmer
- Department of Informatics, Technical University of Munich, , Germany
| | - Juan G Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Richard Fetter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Kerri Spilker
- Department of Biology, Stanford University, Stanford, United States
| | - Daniel Cremers
- Department of Informatics, Technical University of Munich, , Germany
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
17
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
18
|
Lefebvre C, Largeau C, Michelet X, Fourrage C, Maniere X, Matic I, Legouis R, Culetto E. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans. J Cell Sci 2016; 129:1490-9. [PMID: 26906413 DOI: 10.1242/jcs.178467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.
Collapse
Affiliation(s)
- Christophe Lefebvre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Céline Largeau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Xavier Michelet
- Brigham and Women's Hospital, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - Cécile Fourrage
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Xavier Maniere
- Faculté de médecine Paris Descartes, Inserm U1001 - 24, rue du Faubourg St-Jacques, Paris 75014, France
| | - Ivan Matic
- Faculté de médecine Paris Descartes, Inserm U1001 - 24, rue du Faubourg St-Jacques, Paris 75014, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Emmanuel Culetto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
19
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
20
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
21
|
Kelley M, Yochem J, Krieg M, Calixto A, Heiman MG, Kuzmanov A, Meli V, Chalfie M, Goodman MB, Shaham S, Frand A, Fay DS. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. eLife 2015; 4. [PMID: 25798732 PMCID: PMC4395870 DOI: 10.7554/elife.06565] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
During development, biomechanical forces contour the body and provide shape to internal organs. Using genetic and molecular approaches in combination with a FRET-based tension sensor, we characterized a pulling force exerted by the elongating pharynx (foregut) on the anterior epidermis during C. elegans embryogenesis. Resistance of the epidermis to this force and to actomyosin-based circumferential constricting forces is mediated by FBN-1, a ZP domain protein related to vertebrate fibrillins. fbn-1 was required specifically within the epidermis and FBN-1 was expressed in epidermal cells and secreted to the apical surface as a putative component of the embryonic sheath. Tiling array studies indicated that fbn-1 mRNA processing requires the conserved alternative splicing factor MEC-8/RBPMS. The conserved SYM-3/FAM102A and SYM-4/WDR44 proteins, which are linked to protein trafficking, function as additional components of this network. Our studies demonstrate the importance of the apical extracellular matrix in preventing mechanical deformation of the epidermis during development. DOI:http://dx.doi.org/10.7554/eLife.06565.001 For an animal embryo to develop, its cells must organize themselves into tissues and organs. For example, skin and the lining of internal organs—such as the lungs and gut—are made from cells called epithelial cells, which are tightly linked to form flat sheets. In a microscopic worm called Caenorhabditis elegans, the outermost layer of epithelial cells (called the epidermis) forms over the surface of the embryo early on in embryonic development. Shortly afterwards, the embryonic epidermis experiences powerful contractions along the surface of the embryo. The force generated by these contractions converts the embryo from an oval shape to a roughly cylindrical form. These contractions also squeeze the internal tissues and organs, which correspondingly elongate along with the epidermis. It has been known for decades that such ‘mechanical’ forces are important for the normal development of embryos. However, it remains poorly understood how these forces generate tissues and organs of the proper shape—partly because it is difficult to measure forces in living embryos. It is also not clear how the mechanical properties of specific tissues are controlled. Now, Kelley, Yochem, Krieg et al. have analyzed the development of C. elegans' embryos and discovered a novel mechanical interplay between the feeding organ (called the pharynx) and the worm's epidermis. The experiments involved studying several mutant worms that perturb epidermal contractions and disrupt the attachment of the pharynx to the epidermis. These studies suggested that the pharynx exerts a strong inward pulling force on the epidermis during development. Using recently developed methods, Kelley, Yochem, Krieg et al. then measured mechanical forces within intact worm embryos and demonstrated that greater forces were experienced in cells that were being pulled by the pharynx. Kelley, Yochem, Krieg et al. further analyzed how the epidermis normally resists this pulling force from the pharynx and implicated a protein called FBN-1. This worm protein is structurally related to a human protein that is affected in people with a disorder called Marfan Syndrome. Worm embryos without the FBN-1 protein become severely deformed because they are unable to withstand mechanical forces at the epidermis. FBN-1 is normally synthesized and then transported to the outside of the worm embryo by epidermal cells, where it is thought to assemble into a meshwork of long fibers. This provides a strong scaffold that attaches to the epidermis to prevent the epidermis from undergoing excessive deformation while it experiences mechanical forces. The work of Kelley, Yochem, Krieg et al. provides an opportunity to understand how FBN-1 and other fiber-forming proteins are produced and transported to the cell surface. Moreover, these findings may have implications for human diseases and birth defects that result from an inability of tissues to respond appropriately to mechanical forces. DOI:http://dx.doi.org/10.7554/eLife.06565.002
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - John Yochem
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Andrea Calixto
- Department of Biological Sciences, Columbia University, New York, United States
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School, Boston Children's Hospital, Boston, United States
| | - Aleksandra Kuzmanov
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Vijaykumar Meli
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Alison Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - David S Fay
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| |
Collapse
|
22
|
Wong KKL, Li W, An Y, Duan Y, Li Z, Kang Y, Yan Y. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network. J Biol Chem 2015; 290:6397-407. [PMID: 25589787 DOI: 10.1074/jbc.m114.629493] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | - Wenyang Li
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yanru An
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | | | | | - Yibin Kang
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yan Yan
- From the Division of Life Science and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| |
Collapse
|
23
|
Choi YJ, Aliota MT, Mayhew GF, Erickson SM, Christensen BM. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions. PLoS Negl Trop Dis 2014; 8:e2905. [PMID: 24853112 PMCID: PMC4031193 DOI: 10.1371/journal.pntd.0002905] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. METHODOLOGY/PRINCIPAL FINDINGS Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. CONCLUSIONS/SIGNIFICANCE The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies.
Collapse
Affiliation(s)
- Young-Jun Choi
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - George F. Mayhew
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sara M. Erickson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
AlphaII-spectrin participates in the surface expression of cell adhesion molecule L1 and neurite outgrowth. Exp Cell Res 2014; 322:365-80. [DOI: 10.1016/j.yexcr.2014.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
|
25
|
Krieg M, Dunn AR, Goodman MB. Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 2014; 16:224-33. [PMID: 24561618 PMCID: PMC4046587 DOI: 10.1038/ncb2915] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 01/10/2014] [Indexed: 01/20/2023]
Abstract
The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans β-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in sensory neuron morphology under compressive stress in moving animals. Through atomic force spectroscopy experiments on isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer imaging to measure force across single cells and molecules, we show that spectrin is held under constitutive tension in living animals, which contributes to elevated pre-stress in touch receptor neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively impair touch sensation, suggesting that such pre-tension is essential for efficient responses to external mechanical stimuli.
Collapse
Affiliation(s)
- Michael Krieg
- Department of Molecular & Cellular Physiology, Stanford University, USA
- Department of Chemical Engineering, Stanford University, USA
| | | | - Miriam B. Goodman
- Department of Molecular & Cellular Physiology, Stanford University, USA
| |
Collapse
|
26
|
Peden AS, Mac P, Fei YJ, Castro C, Jiang G, Murfitt KJ, Miska EA, Griffin JL, Ganapathy V, Jorgensen EM. Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nat Neurosci 2013; 16:1794-801. [PMID: 24212673 PMCID: PMC3955162 DOI: 10.1038/nn.3575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022]
Abstract
Prior to the advent of synthetic nematocides, natural products such as seaweed were used to control nematode infestations. The nematocidal agent in seaweed is betaine, an amino acid that functions as an osmolyte and methyl donor. However, the molecular mechanisms of betaine toxicity are unknown. Here, we identify the betaine transporter SNF-3 and a betaine receptor ACR-23 in the nematode C. elegans. Mutating snf-3 in a sensitized background causes the animals to be hypercontracted and paralyzed, presumably because of excess extracellular betaine. These behavioral defects are suppressed by mutations in acr-23, which encodes a ligand-gated cation channel of the cys-loop family. ACR-23 is activated by betaine and functions in the mechanosensory neurons to maintain basal levels of locomotion. However, overactivation of the receptor by excess betaine or by the allosteric modulator monepantel causes hypercontraction and death of the nematode. Thus, monepantel targets a betaine signaling pathway in nematodes.
Collapse
Affiliation(s)
- Aude S Peden
- 1] Department of Biology and Howard Hughes Medical Institute, University of Utah, Utah, USA. [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Firnhaber C, Hammarlund M. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLoS Genet 2013; 9:e1003921. [PMID: 24244189 PMCID: PMC3820814 DOI: 10.1371/journal.pgen.1003921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism. Living organisms often reuse the same genes multiple times for different purposes. If one function of a gene is essential, death or arrest of the mutant masks other functions. Understanding the functions of essential genes is particularly critical in the nervous system, which must maintain plasticity and fend off disease long after development is complete. However, current strategies for generating conditional knockouts rely on making a new transgenic animal for each gene and thus are not useful for forward genetic screens or for other experiments involving a large number of genes. We have developed a technique in C. elegans for generating gene knockdown in selected neuron sub-types in response to feeding RNAi. Using this technique, we performed a screen aimed at identifying essential genes that are required for the function of mature GABAergic neurons. By knocking these genes down in only GABAergic neurons, we can circumvent the muddying effects of pleiotropy and find essential genes that function cell intrinsically to promote GABA neuron function. The genes we identified using this method provide a more complete understanding of the complex genetic requirements of post-developmental neurons.
Collapse
Affiliation(s)
- Christopher Firnhaber
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Franco CF, Soares R, Pires E, Santos R, Coelho AV. Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 2012; 33:3764-78. [DOI: 10.1002/elps.201200274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/05/2012] [Accepted: 07/14/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Catarina F. Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | | | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| |
Collapse
|
29
|
Abstract
Axon regeneration is a medically relevant process that can repair damaged neurons. This review describes current progress in understanding axon regeneration in the model organism Caenorhabditis elegans. Factors that regulate axon regeneration in C. elegans have broadly similar roles in vertebrate neurons. This means that using C. elegans as a tool to leverage discovery is a legitimate strategy for identifying conserved mechanisms of axon regeneration.
Collapse
Affiliation(s)
- Rachid El Bejjani
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
30
|
Chiu H, Alqadah A, Chuang CF, Chang C. C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adh Migr 2012; 5:387-94. [PMID: 21975547 DOI: 10.4161/cam.5.5.17985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research into conditions that improve axon regeneration has the potential to open a new door for treatment of brain injury caused by stroke and neurodegenerative diseases of aging, such as Alzheimer, by harnessing intrinsic neuronal ability to reorganize itself. Elucidating the molecular mechanisms of axon regeneration should shed light on how this process becomes restricted in the postnatal stage and in CNS and therefore could provide therapeutic targets for developing strategy to improve axon regeneration in adult CNS. In this review, we first discuss the general view about nerve regeneration and the advantages of using C. elegans as a model system to study axon regeneration. We then compare the conserved regeneration patterns and molecular mechanisms between C. elegans and vertebrates. Lastly, we discuss the power of femtosecond laser technology and its application in axon regeneration research.
Collapse
Affiliation(s)
- Hui Chiu
- Division of Developmental Biology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH, USA
| | | | | | | |
Collapse
|
31
|
β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis. J Neurosci 2012; 31:16581-90. [PMID: 22090485 DOI: 10.1523/jneurosci.3332-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the gene encoding β-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length β-III spectrin (β-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking β-III spectrin, reveal a critical role for β-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from β-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old β-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old β-III⁻/⁻ mice. These findings highlight a critical role of β-III spectrin in dendritic biology and are consistent with an early developmental defect in β-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis.
Collapse
|
32
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
33
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
34
|
Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 2011; 6:e26594. [PMID: 22073173 PMCID: PMC3206800 DOI: 10.1371/journal.pone.0026594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/29/2011] [Indexed: 01/30/2023] Open
Abstract
We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83 C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.
Collapse
|
35
|
Rogers AN, Chen D, McColl G, Czerwieniec G, Felkey K, Gibson BW, Hubbard A, Melov S, Lithgow GJ, Kapahi P. Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab 2011; 14:55-66. [PMID: 21723504 PMCID: PMC3220185 DOI: 10.1016/j.cmet.2011.05.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 01/10/2011] [Accepted: 05/12/2011] [Indexed: 01/26/2023]
Abstract
Reducing protein synthesis slows growth and development but can increase adult life span. We demonstrate that knockdown of eukaryotic translation initiation factor 4G (eIF4G), which is downregulated during starvation and dauer state, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for life span extension when IFG-1 is inhibited. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results suggest that IFG-1 mediates the antagonistic effects on growth and somatic maintenance by regulating mRNA translation of particular mRNAs based, in part, on transcript length.
Collapse
Affiliation(s)
- Aric N Rogers
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inter-subunit interactions in erythroid and non-erythroid spectrins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:420-7. [DOI: 10.1016/j.bbapap.2010.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/09/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022]
|
37
|
Abstract
The dystrophin protein complex, an important regulator of muscle membrane integrity, also maintains neural organization through interactions with the L1CAM family member SAX-7. The dystrophin protein complex (DPC), composed of dystrophin and associated proteins, is essential for maintaining muscle membrane integrity. The link between mutations in dystrophin and the devastating muscle failure of Duchenne’s muscular dystrophy (DMD) has been well established. Less well appreciated are the accompanying cognitive impairment and neuropsychiatric disorders also presented in many DMD patients, which suggest a wider role for dystrophin in membrane–cytoskeleton function. This study provides genetic evidence of a novel role for DYS-1/dystrophin in maintaining neural organization in Caenorhabditis elegans. This neuronal function is distinct from the established role of DYS-1/dystrophin in maintaining muscle integrity and regulating locomotion. SAX-7, an L1 cell adhesion molecule (CAM) homologue, and STN-2/γ-syntrophin also function to maintain neural integrity in C. elegans. This study provides biochemical data that show that SAX-7 associates with DYS-1 in an STN-2/γ-syntrophin–dependent manner. These results reveal a recruitment of L1CAMs to the DPC to ensure neural integrity is maintained.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
38
|
Cilia M, Tamborindeguy C, Rolland M, Howe K, Thannhauser TW, Gray S. Tangible benefits of the aphid Acyrthosiphon pisum genome sequencing for aphid proteomics: Enhancements in protein identification and data validation for homology-based proteomics. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:179-190. [PMID: 21070785 DOI: 10.1016/j.jinsphys.2010.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
Homology-driven proteomics promises to reveal functional biology in insects with sparse genome sequence information. A proteomics study comparing plant virus transmission competent and refractive genotypes of the aphid Schizaphis graminum isolated numerous candidate proteins involved in virus transmission, but limited genome sequence information hampered their identification. The complete genome of the pea aphid, Acyrthosiphon pisum, released in 2008, enabled us to double the number of protein identifications beyond what was possible using available EST libraries and other insect sequences. This was concomitant with a dramatic increase of the number of MS and MS/MS peptide spectra matching the genome-derived protein sequence. LC-MS/MS proved to be the most robust method of peptide detection. Cross-matching spectral data to multiple EST sequences and error tolerant searching to identify amino acid substitutions enhanced the percent coverage of the Schizaphis graminum proteins. 2-D electrophoresis provided the protein pI and MW which enabled the refinement of the candidate protein selection and provided a measure of protein abundance when coupled to the spectral data. Thus, the homology-based proteomics pipeline for insects should include efforts to maximize the number of peptide matches to the protein to increase certainty in protein identification and relative protein abundance.
Collapse
Affiliation(s)
- M Cilia
- Robert W. Holley Center for Agriculture and Health, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chi YH, Ahn JE, Yun DJ, Lee SY, Liu TX, Zhu-Salzman K. Changes in oxygen and carbon dioxide environment alter gene expression of cowpea bruchids. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:220-230. [PMID: 21078326 DOI: 10.1016/j.jinsphys.2010.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Hermetic storage is a widely adopted technique for preventing stored grain from being damaged by storage insect pests. In the air-tight container, insects consume oxygen through metabolism while concomitantly raising carbon dioxide concentrations through respiration. Previous studies on the impact of hypoxia and hypercapnia on feeding behavior of cowpea bruchids have shown that feeding activity gradually decreases in proportion to the changing gas concentrations and virtually ceases at approximately 3-6% (v/v) oxygen and 15-18% carbon dioxide. Further, a number of bruchid larvae are able to recover their feeding activity after days of low oxygen and high carbon dioxide, although extended exposure tends to reduce survival. In the current study, to gain insight into the molecular mechanism underpinning the hypoxia-coping response, we profiled transcriptomic responses to hypoxia/hypercapnia (3% oxygen, 17% carbon dioxide for 4 and 24h) using cDNA microarrays, followed by quantitative RT-PCR verification of selected gene expression changes. A total of 1046 hypoxia-responsive cDNAs were sequenced; these clustered into 765 contigs, of which 645 were singletons. Many (392) did not show homology with known genes, or had homology only with genes of unknown function in a BLAST search. The identified differentially-regulated sequences encoded proteins presumptively involved in nutrient transport and metabolism, cellular signaling and structure, development, and stress responses. Gene expression profiles suggested that insects compensate for lack of oxygen by coordinately reducing energy demand, shifting to anaerobic metabolism, and strengthening cellular structure and muscular contraction.
Collapse
Affiliation(s)
- Yong Hun Chi
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
40
|
The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 2010; 11:144-50. [PMID: 21055481 DOI: 10.1016/j.gep.2010.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 11/22/2022]
Abstract
The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes. Based on reporter gene analysis, we find that nrx-1 is exclusively expressed in most if not all cells of the nervous system and localizes to presynaptic specializations. itx-1 and nrx-1 reporter genes are expressed in non-overlapping patterns within and outside the nervous system. ITX-1 protein co-localizes with β-G-spectrin to a subapical domain within intestinal cells. These studies provide a starting point for further functional analysis of this family of proteins.
Collapse
|
41
|
Westphal D, Sytnyk V, Schachner M, Leshchyns'ka I. Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem 2010; 285:42046-57. [PMID: 20961848 DOI: 10.1074/jbc.m110.177147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in neuronal morphology underlying neuronal differentiation depend on rapid and sustained cytoskeleton rearrangements in the growing neurites. Whereas cell adhesion molecules are well established as regulators of neuronal differentiation, less is known about the signaling mechanisms by which they influence the cytoskeleton. Here we show that the neural cell adhesion molecule (NCAM) associates with the active form of caspase-8 and that clustering of NCAM at the neuronal cell surface leads to activation of caspase-8 and -3 followed by the cleavage of the sub-membranous brain spectrin meshwork, but not of the actin or tubulin cytoskeleton. Inhibitors of caspase-8 and -3 specifically block the NCAM-dependent spectrin cleavage and abolish NCAM-dependent neurite outgrowth. NCAM-dependent rearrangements of the membrane associated spectrin meshwork via caspase-8 dependent caspase-3 activation are thus indispensable for NCAM-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Doreen Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
42
|
Baines A. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
|
43
|
Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken) 2010; 67:477-86. [PMID: 20540086 PMCID: PMC2906656 DOI: 10.1002/cm.20461] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/13/2022]
Abstract
The cortex is the outermost region of the cell, comprising all of the elements from the plasma membrane to the cortical actin cytoskeleton that cooperate to maintain the cell's shape and topology. In eukaryotes without cell walls, this cortex governs the contact between their plasma membranes and the environment and thereby influences cell shape, motility, and signaling. It is therefore of considerable interest to understand how cells control their cortices, both globally and with respect to small subdomains. Here we review the current understanding of this control, including the regulation of cell shape by balances of outward hydrostatic pressure and cortical tension. The actomyosin cytoskeleton is the canonical regulator of cortical rigidity and indeed many would consider the cortex to comprise the actin cortex nearly exclusively. However, this actomyosin array is intimately linked to the membrane, for example via ERM and PIP2 proteins. Additionally, the lipid membrane likely undergoes rigidification by other players, such as Bin-Amphiphysin-Rvs proteins. Recent data also indicates that the septin cytoskeleton may play a formidable and more direct role in stabilization of membranes, particularly in contexts where cells receive limited external stabilization from their environments. Here, we review how septins may play this role, drawing on their physical form, their ability to directly bind and modify membranes and actomyosin, and their interactions with vesicular machinery. Deficiencies and alterations in the nature of the septin cytoskeleton may thus be relevant in multiple disease settings.
Collapse
Affiliation(s)
- Julia Gilden
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA
| | | |
Collapse
|
44
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
45
|
Ramser EM, Buck F, Schachner M, Tilling T. Binding of alphaII spectrin to 14-3-3beta is involved in NCAM-dependent neurite outgrowth. Mol Cell Neurosci 2010; 45:66-74. [PMID: 20598904 DOI: 10.1016/j.mcn.2010.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022] Open
Abstract
Members of the 14-3-3 protein family have been implicated in neuronal migration, synaptic plasticity and learning. Using affinity chromatography followed by mass spectrometry analysis, we show here that the cytoskeletal protein alphaII spectrin is a novel ligand of 14-3-3beta. We found that 14-3-3beta interacts with alphaII spectrin via the mode 2 14-3-3 binding motif RLIQS(1302)HP. Binding required phosphorylation of Ser(1302) by casein kinase II and was enhanced in the presence of calmodulin. Co-immunoprecipitation of alphaII spectrin and 14-3-3beta with the neural cell adhesion molecule NCAM suggested that the 14-3-3-spectrin-interaction affects NCAM function. Indeed, disruption of the 14-3-3beta/alphaII spectrin interaction by mutating Ser(1302) to Ala enhanced NCAM-dependent neurite outgrowth. Our results indicate that the phosphorylation-dependent interaction between 14-3-3beta and alphaII spectrin acts as a switch between positive and negative regulation of neurite outgrowth stimulated by NCAM, representing a novel and acute mechanism preventing uncontrolled elongation of neuronal processes.
Collapse
Affiliation(s)
- Elisa M Ramser
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
46
|
Zhang Y, Resneck WG, Lee PC, Randall WR, Bloch RJ, Ursitti JA. Characterization and expression of a heart-selective alternatively spliced variant of alpha II-spectrin, cardi+, during development in the rat. J Mol Cell Cardiol 2010; 48:1050-9. [PMID: 20114050 DOI: 10.1016/j.yjmcc.2010.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Spectrin is a large, flexible protein that stabilizes membranes and organizes proteins and lipids into microdomains in intracellular organelles and at the plasma membrane. Alternative splicing occurs in spectrins, but it is not yet clear if these small variations in structure alter spectrin's functions. Three alternative splice sites have been identified previously for alpha II-spectrin. Here we describe a new alternative splice site, a 21-amino acid sequence in the 21st spectrin repeat that is only expressed in significant amounts in cardiac muscle (GenBank GQ502182). The insert, which we term alpha II-cardi+, results in an insertion within the high affinity nucleation site for binding of alpha-spectrins to beta-spectrins. To assess the developmental regulation of the alpha II-cardi+ isoform, we used qRT-PCR and quantitative immunoblotting methods to measure the levels of this form and the alpha II-cardi- form in the cardiac muscles of rats, from embryonic day 16 (E16) through adulthood. The alpha II-cardi+ isoform constituted approximately 26% of the total alpha II-spectrin in E16 hearts but decreased to approximately 6% of the total after 3 weeks of age. We used long-range RT-PCR and Southern blot hybridization to examine possible linkage of the alpha II-cardi+ alternatively spliced sequence with alternatively spliced sequences of alpha II-spectrin that had been previously reported. We identified two new isoforms of alpha II-spectrin containing the cardi+ insert. These were named alpha II Sigma 9 and alpha II Sigma 10 in accordance with the spectrin naming conventions. In vitro studies of recombinant alpha II-spectrin polypeptides representing the two splice variants of alpha II-spectrin, alpha II-cardi+ and alpha II-cardi-, revealed that the alpha II-cardi+ subunit has lower affinity for the complementary site in repeats 1-4 of betaII-spectrin, with a K(D) value of approximately 1 nM, as measured by surface plasmon resonance (SPR). In addition, the alpha II-cardi+ form showed 1.8-fold lower levels of binding to its site on beta II-spectrin than the alpha II-cardi- form, both by SPR and blot overlay. This suggests that the 21-amino acid insert prevented some of the alpha II-cardi+ form from interacting with beta II-spectrin. Fusion proteins expressing the alpha II-cardi+ sequence within the two terminal spectrin repeats of alpha II-spectrin were insoluble in solution and aggregated in neonatal myocytes, consistent with the possibility that this insert removes a significant portion of the protein from the population that can bind beta subunits. Neonatal rat cardiomyocytes infected with adenovirus encoding GFP-fusion proteins of repeats 18-21 of alpha II-spectrin with the cardi+ insert formed many new processes. These processes were only rarely seen in myocytes expressing the fusion protein lacking the insert or in controls expressing only GFP. Our results suggest that the embryonic mammalian heart expresses a significant amount of alpha II-spectrin with a reduced avidity for beta-spectrin and the ability to promote myocyte growth.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Physiology, University of Maryland, School of Medicine, 655 W Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
47
|
DCVs Exocytosis is Damaged in The Dominant Allele of β-G Spectrin Mutant in <I>C. elegans</I>*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons. NANO LETTERS 2009; 9:4115-4121. [PMID: 19694460 DOI: 10.1021/nl9023325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The density/spacing of plasma membrane proteins is thought to be crucial for their function; clear-cut experimental evidence, however, is still rare. We examined nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP with respect to their impact on neuron attachment and neurite growth. Data analysis/modeling revealed that these cellular responses improve with increasing DM-GRASP density, with the exception of one spacing which does not allow for the anchorage of a cytoskeletal protein (spectrin) to three DM-GRASP molecules.
Collapse
Affiliation(s)
- Steffen Jaehrling
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
Spectrin is a cytoskeletal protein thought to have descended from an alpha-actinin-like ancestor. It emerged during evolution of animals to promote integration of cells into tissues by assembling signalling and cell adhesion complexes, by enhancing the mechanical stability of membranes and by promoting assembly of specialized membrane domains. Spectrin functions as an (alphabeta([H]))(2) tetramer that cross-links transmembrane proteins, membrane lipids and the actin cytoskeleton, either directly or via adaptor proteins such as ankyrin and 4.1. In the present paper, I review recent findings on the origins and adaptations in this system. (i) The genome of the choanoflagellate Monosiga brevicollis encodes alpha-, beta- and beta(Heavy)-spectrin, indicating that spectrins evolved in the immediate unicellular precursors of animals. (ii) Ankyrin and 4.1 are not encoded in that genome, indicating that spectrin gained function during subsequent animal evolution. (iii) Protein 4.1 gained a spectrin-binding activity in the evolution of vertebrates. (iv) Interaction of chicken or mammal beta-spectrin with PtdInsP(2) can be regulated by differential mRNA splicing, which can eliminate the PH (pleckstrin homology) domain in betaI- or betaII-spectrins; in the case of mammalian betaII-spectrin, the alternative C-terminal region encodes a phosphorylation site that regulates interaction with alpha-spectrin. (v) In mammalian evolution, the single pre-existing alpha-spectrin gene was duplicated, and one of the resulting pair (alphaI) neo-functionalized for rapid make-and-break of tetramers. I hypothesize that the elasticity of mammalian non-nucleated erythrocytes depends on the dynamic rearrangement of spectrin dimers/tetramers under the shearing forces experienced in circulation.
Collapse
|
50
|
Cai Q, Wang W, Gao Y, Yang Y, Zhu Z, Fan Q. Ce-wts-1plays important roles inCaenorhabditis elegansdevelopment. FEBS Lett 2009; 583:3158-64. [DOI: 10.1016/j.febslet.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|