1
|
Jamalzadeh S, Pujari AN, Cullen PJ. A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast. Sci Rep 2020; 10:22184. [PMID: 33335117 PMCID: PMC7746766 DOI: 10.1038/s41598-020-78470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
MAPK pathways regulate different responses yet can share common components. Although core regulators of MAPK pathways are well known, new pathway regulators continue to be identified. Overexpression screens can uncover new roles for genes in biological processes and are well suited to identify essential genes that cannot be evaluated by gene deletion analysis. In this study, a genome-wide screen was performed to identify genes that, when overexpressed, induce a reporter (FUS1-HIS3) that responds to ERK-type pathways (Mating and filamentous growth or fMAPK) but not p38-type pathways (HOG) in yeast. Approximately 4500 plasmids overexpressing individual yeast genes were introduced into strains containing the reporter by high-throughput transformation. Candidate genes were identified by measuring growth as a readout of reporter activity. Fourteen genes were identified and validated by re-testing: two were metabolic controls (HIS3, ATR1), five had established roles in regulating ERK-type pathways (STE4, STE7, BMH1, BMH2, MIG2) and seven represent potentially new regulators of MAPK signaling (RRN6, CIN5, MRS6, KAR2, TFA1, RSC3, RGT2). MRS6 encodes a Rab escort protein and effector of the TOR pathway that plays a role in nutrient signaling. MRS6 overexpression stimulated invasive growth and phosphorylation of the ERK-type fMAPK, Kss1. Overexpression of MRS6 reduced the osmotolerance of cells and phosphorylation of the p38/HOG MAPK, Hog1. Mrs6 interacted with the PAK kinase Ste20 and MAPKK Ste7 by two-hybrid analysis. Based on these results, Mrs6 may selectively propagate an ERK-dependent signal. Identifying new regulators of MAPK pathways may provide new insights into signal integration among core cellular processes and the execution of pathway-specific responses.
Collapse
Affiliation(s)
- Sheida Jamalzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA.
| |
Collapse
|
2
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Lepore D, Spassibojko O, Pinto G, Collins RN. Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. J Cell Biol 2017; 214:691-703. [PMID: 27621363 PMCID: PMC5021095 DOI: 10.1083/jcb.201602038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
The GTPase Sec4p is a critical regulator of polarized membrane traffic. Lepore et al. show that the polo-like kinase Cdc5p phosphorylates Sec4p, which promotes coordinated membrane deposition during cytokinesis. Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle–dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis.
Collapse
Affiliation(s)
- Dante Lepore
- Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY 14853 Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Olya Spassibojko
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Gabrielle Pinto
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Ruth N Collins
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Mukkamala K, Gentile RC, Willner J, Tsang S. Choroideremia in a woman with ectodermal dysplasia and complex translocations involving chromosomes X, 1, and 3. Ophthalmic Genet 2011; 31:178-82. [PMID: 21067479 DOI: 10.3109/13816810.2010.497529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Choroideremia is an X-linked recessive disorder characterized by vision loss with progressive atrophy of the retinal photoreceptors, retinal pigment epithelium (RPE), and choriocapillaris. Ectodermal dysplasia is a heterogeneous group of disorders characterized by a deficiency of two or more ectodermal derivatives. We report on the phenotypic and genetic characteristics of a 29-year-old woman with both choroideremia and ectodermal dysplasia. MATERIALS AND METHODS Observational case report with physical and ophthalmic examination, fluorescein angiography (FA), visual field testing, electroretinography, and cytogenetic analysis. This study adhered to the tenets of the Declaration of Helsinki and The New York Eye and Ear Infirmary Institutional Review Board guidelines. RESULTS Physical and ocular examination revealed hypotrichosis, hypohidrosis, full dentures, meibomian gland hypoplasia, and a decrease in corneal tear film. Visual acuity was hand motions in the right eye and 20/50 in the left eye. Fundus examination and fluorescein angiography were consistent with advanced choroideremia and revealed diffuse bilateral RPE and chorioretinal atrophy with sparing of the fovea. Visual field testing had less than 10-degree central islands in both eyes. Scotopic electroretinogram (ERG) was flat with a small flicker response. Cytogenetic analysis showed a complex translocation involving chromosomes X, 1, and 3: 46,X,t(X;1;3)(q13;q24;q21),inv(9)(p11q13). Selective inactivation of the normal X chromosome was present in blood and skin. Chromosomal analyses of the proband's family (mother and two brothers) were normal. CONCLUSION An X-autosome chromosomal translocation combined with non-random inactivation of the normal X-chromosome in a woman resulted in the phenotypic findings of choroideremia and ectodermal dysplasia.
Collapse
Affiliation(s)
- Krishna Mukkamala
- Department of Ophthalmology, The New York Eye and Ear Infirmary, New York, New York 10003, USA
| | | | | | | |
Collapse
|
5
|
Tamborindeguy C, Monsion B, Brault V, Hunnicutt L, Ju HJ, Nakabachi A, Van Fleet E. A genomic analysis of transcytosis in the pea aphid, Acyrthosiphon pisum, a mechanism involved in virus transmission. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:259-72. [PMID: 20482656 DOI: 10.1111/j.1365-2583.2009.00956.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aphids are the primary vectors of plant viruses. Transmission can occur via attachment to the cuticle lining of the insect (non-circulative transmission) or after internalization in the insect cells with or without replication (circulative transmission). In this paper, we have focused on the circulative and non-propagative mode during which virions enter the cell following receptor-mediated endocytosis, are transported across the cell in vesicles and released by exocytosis without replicating. The correct uptake, transport and delivery of the vesicles cargo relies on the participation of proteins from different families which have been identified in the Acyrthosiphon pisum genome. Assemblage of this annotated dataset provides a useful basis to improve our understanding of the molecules and mechanisms involved in virus transmission by A. pisum and other aphid species.
Collapse
Affiliation(s)
- C Tamborindeguy
- USDA-ARS, Robert W. Holley Center for Agriculture and Health Department of Plant Pathology and Plant-Microbe Biology, Cornell University, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Strunnikova NV, Barb J, Sergeev YV, Thiagarajasubramanian A, Silvin C, Munson PJ, Macdonald IM. Loss-of-function mutations in Rab escort protein 1 (REP-1) affect intracellular transport in fibroblasts and monocytes of choroideremia patients. PLoS One 2009; 4:e8402. [PMID: 20027300 PMCID: PMC2793004 DOI: 10.1371/journal.pone.0008402] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Choroideremia (CHM) is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1), an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients. Methodology/Principal Findings To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction) and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo™ BioParticles® conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ™ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1), pigment epithelial derived factor (PEDF), tumor necrosis factor (TNF) alpha, fibroblast growth factor (FGF) beta and interleukin (lL)-8. Conclusions/Significance We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different mutations in the REP-1 gene on mechanism of CHM development in human population.
Collapse
Affiliation(s)
- Natalia V Strunnikova
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
An Evolutionary Perspective on Eukaryotic Membrane Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:73-83. [DOI: 10.1007/978-0-387-74021-8_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Rasteiro R, Pereira-Leal JB. Multiple domain insertions and losses in the evolution of the Rab prenylation complex. BMC Evol Biol 2007; 7:140. [PMID: 17705859 PMCID: PMC1994686 DOI: 10.1186/1471-2148-7-140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/17/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab proteins are regulators of vesicular trafficking, requiring a lipid modification for proper function, prenylation of C-terminal cysteines. This is catalysed by a complex of a catalytic heterodimer (Rab Geranylgeranyl Transferase - RabGGTase) and an accessory protein (Rab Escort Protein. REP). Components of this complex display domain insertions relative to paralogous proteins. The function of these inserted domains is unclear. RESULTS We profiled the domain architecture of the components of the Rab prenylation complex in evolution. We identified the orthologues of the components of the Rab prenylation machinery in 43 organisms, representing the crown eukaryotic groups. We characterize in detail the domain structure of all these components and the phylogenetic relationships between the individual domains. CONCLUSION We found different domain insertions in different taxa, in alpha-subunits of RGGTase and REP. Our results suggest that there were multiple insertions, expansions and contractions in the evolution of this prenylation complex.
Collapse
Affiliation(s)
- Rita Rasteiro
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras Portugal
| | | |
Collapse
|
9
|
Abstract
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.
Collapse
Affiliation(s)
| | - William E. Balch
- Departments of *Cell Biology and
- Molecular Biology and
- The Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
10
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
11
|
Hála M, Eliás M, Zárský V. A Specific Feature of the Angiosperm Rab Escort Protein (REP) and Evolution of the REP/GDI Superfamily. J Mol Biol 2005; 348:1299-313. [PMID: 15854662 DOI: 10.1016/j.jmb.2005.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/14/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
Rab GTPases participating in the regulation of vesicle trafficking in eukaryotes are geranylgeranylated by the Rab geranylgeranyl transferase (RabGGTase) in complex with the Rab escort protein (REP). Here, we describe basic properties of the Arabidopsis thaliana REP (AthREP), first REP outside yeasts or metazoans to be characterized. GFP-tagged AthREP, as well as the geranylgeranylation activity, were localized predominantly to the cytoplasm. Recombinant AthREP interacted with yeast 6His-Ypt1, tobacco 6His-RabA1a, and Arabidopsis RabA2a in vitro preferring the GDP-bound form of the latter. Recombinant AthREP with C-terminal but not N-terminal tags stimulated geranylgeranylation of various Rab GTPases in Arabidopsis extracts in vitro. Neither recombinant AthREP protein exhibited activity in yeast extracts, while recombinant yeast REP (6His-SceMrs6) stimulated Rab geranylgeranylation in all extracts tested. We found that a conserved arginine residue, R195, known to be crucial for yeast REP function, is substituted by an asparagine or threonine residue in angiosperm REPs. A point mutant allele of AthREP with arginine at this position complemented the yeast REP mutation, while wild-type AthREP did not. Based on phylogenetic analysis of REP and GDP dissociation inhibitor (GDI) sequences from a broad range of eukaryotic lineages, we propose a new view on evolution of the REP/GDI superfamily with a bi-functional REP/GDI protein as a direct ancestor.
Collapse
Affiliation(s)
- Michal Hála
- Institute of Experimental Botany, Rozvojová 135, Praha 6-Lysolaje, 165 02, Czech Republic
| | | | | |
Collapse
|
12
|
Wu M, Wang T, Loh E, Hong W, Song H. Structural basis for recruitment of RILP by small GTPase Rab7. EMBO J 2005; 24:1491-501. [PMID: 15933719 PMCID: PMC1142575 DOI: 10.1038/sj.emboj.7600643] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 03/09/2005] [Indexed: 11/09/2022] Open
Abstract
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tuanlao Wang
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Eva Loh
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Wanjin Hong
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9606; Fax: +65 6779 1117; E-mail:
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9700; Fax: +65 6779 1117; E-mail:
| |
Collapse
|
13
|
Chen GC, Turano B, Ruest PJ, Hagel M, Settleman J, Thomas SM. Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development. Mol Cell Biol 2005; 25:979-87. [PMID: 15657426 PMCID: PMC544021 DOI: 10.1128/mcb.25.3.979-987.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paxillin is a prominent focal adhesion docking protein that regulates cell adhesion and migration. Although numerous paxillin-binding proteins have been identified and paxillin is required for normal embryogenesis, the precise mechanism by which paxillin functions in vivo has not yet been determined. We identified an ortholog of mammalian paxillin in Drosophila (Dpax) and have undertaken a genetic analysis of paxillin function during development. Overexpression of Dpax disrupted leg and wing development, suggesting a role for paxillin in imaginal disc morphogenesis. These defects may reflect a function for paxillin in regulation of Rho family GTPase signaling as paxillin interacts genetically with Rac and Rho in the developing eye. Moreover, a gain-of-function suppressor screen identified a genetic interaction between Dpax and cdi in wing development. cdi belongs to the cofilin kinase family, which includes the downstream Rho target, LIM kinase (LIMK). Significantly, strong genetic interactions were detected between Dpax and Dlimk, as well as downstream effectors of Dlimk. Supporting these genetic data, biochemical studies indicate that paxillin regulates Rac and Rho activity, positively regulating Rac and negatively regulating Rho. Taken together, these data indicate the importance of paxillin modulation of Rho family GTPases during development and identify the LIMK pathway as a critical target of paxillin-mediated Rho regulation.
Collapse
Affiliation(s)
- Guang-Chao Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Molecular scaffold or adaptor proteins facilitate precise spatiotemporal regulation and integration of multiple signaling pathways to effect the optimal cellular response to changes in the immediate environment. Paxillin is a multidomain adaptor that recruits both structural and signaling molecules to focal adhesions, sites of integrin engagement with the extracellular matrix, where it performs a critical role in transducing adhesion and growth factor signals to elicit changes in cell migration and gene expression.
Collapse
Affiliation(s)
- Michael C Brown
- Dept. of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
15
|
Rak A, Pylypenko O, Niculae A, Pyatkov K, Goody RS, Alexandrov K. Structure of the Rab7:REP-1 Complex. Cell 2004; 117:749-60. [PMID: 15186776 DOI: 10.1016/j.cell.2004.05.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 04/12/2004] [Accepted: 04/13/2004] [Indexed: 11/22/2022]
Abstract
Members of the RabGDI/REP family serve as multifunctional regulators of the Rab family of GTP binding proteins. Mutations in members of this family, such as REP-1, lead to abnormalities, including progressive retinal degradation (choroideremia) in humans. The crystal structures of the REP-1 protein in complex with monoprenylated or C-terminally truncated Rab7 proteins revealed that Rab7 interacts with the Rab binding platform of REP-1 via an extended interface involving the Switch 1 and 2 regions. The C terminus of the REP-1 molecule functions as a mobile lid covering a conserved hydrophobic patch on the surface of REP-1 that in the complex coordinates the C terminus of Rab proteins. Using semisynthetic fluorescent Rab27A, we demonstrate that although Rab27A can be prenylated by REP-2, this reaction can be effectively inhibited by other Rab proteins, providing a possible explanation for the accumulation of unprenylated Rab27A in choroideremia.
Collapse
Affiliation(s)
- Alexey Rak
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Bucior I, Scheuring S, Engel A, Burger MM. Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. J Cell Biol 2004; 165:529-37. [PMID: 15148309 PMCID: PMC2172358 DOI: 10.1083/jcb.200309005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 03/17/2004] [Indexed: 01/19/2023] Open
Abstract
The adhesion force and specificity in the first experimental evidence for cell-cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell-cell recognition could be assigned to a direct carbohydrate-carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190-310 piconewtons) as between proteins in antibody-antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.
Collapse
Affiliation(s)
- Iwona Bucior
- Friedrich Miescher Institute, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
17
|
Starr CJ, Kappler JA, Chan DK, Kollmar R, Hudspeth AJ. Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells. Proc Natl Acad Sci U S A 2004; 101:2572-7. [PMID: 14983050 PMCID: PMC356991 DOI: 10.1073/pnas.0308474100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify genes important for hair-cell function, we conducted a mutagenic screen in zebrafish. Larvae from one mutant line, ru848, were unresponsive to acoustic stimuli and unable to balance. The mutation results in a 90% reduction in hair-cell number and partial retinal degeneration by 5 days postfertilization. We localized the recessive ru848 mutation by positional cloning to the zebrafish homolog of the human Choroideremia gene, which encodes Rab escort protein 1. This protein is essential for the normal prenylation of Rabs. Mutations in the human gene induce choroideremia, a disease marked by slow-onset degeneration of rod photoreceptors and retinal pigment epithelial cells. The degenerative phenotype resulting from a null mutation in the zebrafish gene indicates that hair cells and retinal cells require Rab escort protein 1 for survival.
Collapse
Affiliation(s)
- Catherine J Starr
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
18
|
Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell 2003; 14:3857-67. [PMID: 12972569 PMCID: PMC196578 DOI: 10.1091/e03-04-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.
Collapse
Affiliation(s)
- Christelle Alory
- Departments of Cell and Molecular Biology and The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92130, USA.
| | | |
Collapse
|
19
|
Maurer-Stroh S, Washietl S, Eisenhaber F. Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol Chem 2003; 384:977-89. [PMID: 12956414 DOI: 10.1515/bc.2003.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipid modification of eukaryotic proteins by protein prenyltransferases is required for critical signaling pathways, cell cycle progression, cytoskeleton remodeling, induction of apoptosis and vesicular trafficking. This review analyzes the influence of distinct states of sequential posttranslational processing that can be obtained after single or double prenylation, reversible palmitoylation, proteolytic cleavage of the C-terminus and possible reversible carboxymethylation. This series of modifications, as well as the exact length of the prenyl anchor, are determinants in protein-membrane and specific protein-protein interactions of protein prenyltransferase substrates. Furthermore, the occurrence and distribution of pseudogenes of protein prenyltransferase subunits are discussed. Besides being developed as anti-cancer agents, prenyltransferase inhibitors are effective against an increasing number of parasitic diseases. Extensive screens for protein prenyltransferases in genomic data of fungal and protozoan pathogens unveil a series of new pharmacologic targets for prenyltransferase inhibition, including the parasites Brugia malayi, Onchocerca volvulus, Aspergillus nidulans, Pneumocystis carinii, Entamoeba histolytica, Strongyloides stercoralis, Trichinella spiralis and Cryptosporidium parvum.
Collapse
|
20
|
Abstract
Signals from integrins are now known to play critical roles in virtually every aspect of the behavior of epithelial cells, including survival, proliferation, maintenance of polarity, secretory differentiation, and malignant transformation. The cells that line the conducting airways and alveoli of the lung, like most surface epithelia, simultaneously express multiple members of the integrin family, including several with broadly overlapping ligand binding specificities. Although multiple integrins on airway epithelial cells may support adhesion to the same ligands, the functional roles of each integrin that has been examined in detail are quite distinct. Findings from mice expressing null mutations of some of these integrins have identified roles for epithelial cells and epithelial integrins in lung development and in the regulation of lung inflammation, macrophage protease expression, pulmonary fibrosis, and the pulmonary edema that follows acute lung injury. Epithelial integrins are thus attractive targets for intervention in a number of common lung disorders.
Collapse
Affiliation(s)
- Dean Sheppard
- University of California, San Francisco, Box 0854, San Francisco, CA 94143-0854, USA.
| |
Collapse
|
21
|
Murakami M, Masuda S, Kudo I. Arachidonate release and prostaglandin production by group IVC phospholipase A2 (cytosolic phospholipase A2gamma). Biochem J 2003; 372:695-702. [PMID: 12611587 PMCID: PMC1223431 DOI: 10.1042/bj20030061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 02/26/2003] [Accepted: 03/03/2003] [Indexed: 11/17/2022]
Abstract
While the role of the group IVA Ca(2+)-dependent cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in arachidonic acid (AA) metabolism has been well documented, that of its paralogue, Ca(2+)-independent group IVC PLA(2) (cPLA(2)gamma), has remained uncertain. Here we show, using a transfection strategy, that cPLA(2)gamma has the ability to increase the spontaneous and stimulus-induced release of cellular fatty acids. The AA released by cPLA(2)gamma was metabolized further to prostaglandin E(2) via cyclo-oxygenase-1 (COX-1) in the immediate response, and via COX-2 in the delayed response. Mutation of the putative catalytic-centre residue Ser(82) abrogated the AA-releasing function of cPLA(2)gamma both in vitro and in vivo. Confocal microscopy revealed that cPLA(2)gamma was distributed in the perinuclear endoplasmic reticulum membranes. Mutating the C-terminal prenylation site of cPLA(2)gamma abrogated its intracellular membrane localization and cellular AA-releasing function, without reducing its enzyme activity in vitro. Our results indicate that cPLA(2)gamma is the second cPLA(2) enzyme that contributes to cellular AA metabolism and phospholipid remodelling under appropriate conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | |
Collapse
|
22
|
Enouf V, Chwetzoff S, Trugnan G, Cohen J. Interactions of rotavirus VP4 spike protein with the endosomal protein Rab5 and the prenylated Rab acceptor PRA1. J Virol 2003; 77:7041-7. [PMID: 12768023 PMCID: PMC156175 DOI: 10.1128/jvi.77.12.7041-7047.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus spike protein VP4 is implicated in several important functions, such as cell attachment, penetration, hemagglutination, neutralization, virulence, and host range. It is present at the plasma membrane and colocalizes with the cytoskeleton in infected cells. We looked for cellular partners responsible for the localization of VP4 by two-hybrid screening of a monkey CV1 cell cDNA library. In the screen we isolated repeatedly three cDNAs encoding either two isoforms (a and c) of Rab5 protein or the prenylated Rab acceptor (PRA1). The small GTPase Rab5 is a molecule regulating the vesicular traffic and the motility of early endosomes along microtubules. Rab5 interacts with a large number of effectors, in particular with PRA1. Interactions of VP4 with both partners, Rab5 and PRA1, were confirmed by coimmunoprecipitation from infected- or transfected-cell lysates. Interaction of Rab5 and PRA1 was restricted to free VP4, since neither triple-layered particles nor NSP4-VP4-VP7 heterotrimeric complexes could be coprecipitated. Site-directed and deletion mutants of VP4 were used to map a VP4 domain(s) interacting with Rab5 or PRA1. Of the 10 mutants tested, 2 interacted exclusively with a single partner. In contrast, the domain extending from amino acids 560 to 722 of VP4 is essential for both interactions. These results suggest that Rab5 and PRA1 may be involved in the localization and trafficking of VP4 in infected cells.
Collapse
Affiliation(s)
- Vincent Enouf
- Virologie Moléculaire et Structurale, UMR CNRS-INRA 2472, F-91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
23
|
Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell 2003. [PMID: 12972569 DOI: 10.1091/mbc.e03-04-0227] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.
Collapse
Affiliation(s)
- Christelle Alory
- Departments of Cell and Molecular Biology and The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92130, USA.
| | | |
Collapse
|
24
|
Roman-Gomez J, Castillejo JA, Jimenez A, Cervantes F, Boque C, Hermosin L, Leon A, Grañena A, Colomer D, Heiniger A, Torres A. Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol 2003; 21:1472-9. [PMID: 12697869 DOI: 10.1200/jco.2003.08.166] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Cadherin-13 (CDH13) is a newly characterized cadherin molecule responsible for selective cell recognition and adhesion, the expression of which is decreased by methylation in a variety of human cancers, indicating that the CDH13 gene functions as a tumor suppressor gene. Although defective progenitor-stromal adhesion is a well-recognized feature of chronic myeloid leukemia (CML), the role of CDH13 abnormalities has not been evaluated in this disease. PATIENTS AND METHODS We examined the methylation status of the CDH13 promoter in 179 chronic phase (CP)-CML patients and in 52 advanced-phase samples and correlated it with mRNA expression using methylation-specific polymerase chain reaction (PCR) and reverse transcriptase PCR. RESULTS Aberrant de novo methylation of the CDH13 promoter region was observed in 99 (55%) of 179 of CP-CML patients, and 90 of the patients failed to express CDH13 mRNA (P <.0001). Advanced-stage samples (n = 52) showed concordant methylation results with their corresponding CP tumors, indicating that CDH13 methylation was not acquired during the course of the disease. Nevertheless, absence of CDH13 expression was more frequently observed among Sokal high-risk patients (P =.01) and was also independently associated with a shorter median progression-free survival time (P =.03) and poor cytogenetic response to interferon alfa treatment (P =.0001). CONCLUSION Our data indicate that the silencing of CDH13 expression by aberrant promoter methylation occurs at an early stage in CML pathogenesis and probably influences the clinical behavior of the disease.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Cadherins/genetics
- Cadherins/metabolism
- Calcium/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing/drug effects
- Genes, Tumor Suppressor
- Humans
- Interferon-alpha/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Methylation/drug effects
- Middle Aged
- Multivariate Analysis
- Polymerase Chain Reaction
- Predictive Value of Tests
- Prognosis
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA, Messenger/metabolism
- Risk Factors
- Survival Analysis
Collapse
Affiliation(s)
- Jose Roman-Gomez
- Hematology Department, Reina Sofia Hospital, Avda, Menendez Pidal s/n, 14004 Cordoba, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, Greenberg PD, Rohrschneider LR. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol 2003; 23:2415-24. [PMID: 12640125 PMCID: PMC150735 DOI: 10.1128/mcb.23.7.2415-2424.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.
Collapse
Affiliation(s)
- Martina Seiffert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
An Y, Shao Y, Alory C, Matteson J, Sakisaka T, Chen W, Gibbs RA, Wilson IA, Balch WE. Geranylgeranyl switching regulates GDI-Rab GTPase recycling. Structure 2003; 11:347-57. [PMID: 12623022 DOI: 10.1016/s0969-2126(03)00034-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rab GTPases, key regulators of membrane targeting and fusion, require the covalent attachment of geranylgeranyl lipids to their C terminus for function. To elucidate the role of lipid in Rab recycling, we have determined the crystal structure of Rab guanine nucleotide dissociation inhibitor (alphaGDI) in complex with a geranylgeranyl (GG) ligand (H(2)N-Cys-(S-GG)-OMe). The lipid is bound beneath the Rab binding platform in a shallow hydrophobic groove. Mutation of the binding pocket in the brain-specific alphaGDI leads to mental retardation. Strikingly, lipid binding acts through a conserved allosteric switching mechanism to promote release of the GDI-Rab[GDP] complex from the membrane.
Collapse
Affiliation(s)
- Yu An
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pylypenko O, Rak A, Reents R, Niculae A, Sidorovitch V, Cioaca MD, Bessolitsyna E, Thomä NH, Waldmann H, Schlichting I, Goody RS, Alexandrov K. Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol Cell 2003; 11:483-94. [PMID: 12620235 DOI: 10.1016/s1097-2765(03)00044-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). The crystal structure of isoprenoid-bound RabGGTase complexed to REP-1 has been solved to 2.7 A resolution. The complex interface buries a surprisingly small surface area of ca. 680 A and is unexpectedly formed by helices 8, 10, and 12 of the RabGGTase alpha subunit and helices D and E of REP-1. We demonstrate that the affinity of RabGGTase for REP-1 is allosterically regulated by phosphoisoprenoid via a long-range trans-domain signal transduction event. Comparing the structure of REP-1 with the closely related RabGDI, we conclude that the specificity of the REP:RabGGTase interaction is defined by differently positioned phenylalanine residues conserved in the REP and GDI subfamilies.
Collapse
Affiliation(s)
- Olena Pylypenko
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pereira-Leal JB, Strom M, Godfrey RF, Seabra MC. Structural determinants of Rab and Rab Escort Protein interaction: Rab family motifs define a conserved binding surface. Biochem Biophys Res Commun 2003; 301:92-7. [PMID: 12535645 DOI: 10.1016/s0006-291x(02)02963-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rab proteins are a large family of monomeric GTPases with 60 members identified in the human genome. Rab GTPases require an isoprenyl modification to their C-terminus for membrane association and function in the regulation of vesicular trafficking pathways. This reaction is catalysed by Rab geranylgeranyl transferase, which recognises as protein substrate any given Rab in a 1:1 complex with Rab Escort Protein (REP). REP is therefore able to bind many distinct Rab proteins but the molecular basis for this activity is still unclear. We recently identified conserved motifs in Rabs termed RabF motifs, which we proposed to mediate a conserved mode of interaction between Rabs and REPs. Here, we tested this hypothesis. We first used REP1 as a bait in the yeast two-hybrid system and isolated strictly full-length Rabs, suggesting that REP recognises multiple regions within and properly folded Rabs. We introduced point mutations in Rab3a as a model Rab and assessed the ability of the mutants to interact with REP using the yeast two-hybrid system and an in vitro prenylation assay. We identified several residues that affect REP:Rab binding in the RabF1, RabF3, and RabF4 regions (which include parts of the switch I and II regions), but not other RabF regions. These results support the hypothesis that Rabs bind REP via conserved RabF motifs and provide a molecular explanation for the preferential recognition of the GDP-bound conformation of Rab by REP.
Collapse
Affiliation(s)
- José B Pereira-Leal
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
29
|
Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22:887-93. [PMID: 12067894 DOI: 10.1161/01.atv.0000017728.55907.a9] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of angiogenesis plays an important role in many physiological and pathological conditions. Inhibition of endothelial cell (EC) apoptosis providing EC survival is thought to be an essential mechanism during angiogenesis. Many of the angiogenic growth factors inhibit EC apoptosis. In addition, the adhesion of ECs to the extracellular matrix or intercellular adhesion promotes EC survival. In contrast, increasing evidence suggests that the induction of EC apoptosis may counteract angiogenesis. In this review, we focus on the regulation of EC survival and apoptosis during angiogenesis and especially on the effects and intracellular signaling promoted by angiogenic growth factors, endogenous angiogenic inhibitors (such as angiostatin, endostatin, and thrombospondin-1), and the adhesion to the extracellular matrix. Furthermore, we discuss the effects of cross talk between adhesion molecules and growth factors. Understanding the molecular mechanisms involved in the regulation of EC survival and apoptosis may provide new targets for the development of new therapies to enhance angiogenesis in the case of tissue-ischemia (eg, the neovascularization of myocardium) or to inhibit angiogenesis in the case of neovascularization-dependent disease (eg, tumor, diabetic retinopathy).
Collapse
Affiliation(s)
- Emmanouil Chavakis
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
30
|
Dursina B, Thomä NH, Sidorovitch V, Niculae A, Iakovenko A, Rak A, Albert S, Ceacareanu AC, Kölling R, Herrmann C, Goody RS, Alexandrov K. Interaction of yeast Rab geranylgeranyl transferase with its protein and lipid substrates. Biochemistry 2002; 41:6805-16. [PMID: 12022885 DOI: 10.1021/bi016067w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small GTPases from the Rab/Ypt family regulate events of vesicular traffic in eukaryotic cells. For their activity, Rab proteins require a posttranslational modification that is conferred by Rab geranylgeranyltransferase (RabGGTase), which attaches geranylgeranyl moieties onto two cysteines of their C terminus. RabGGTase is present in both lower and higher eukaryotes in the form of heterodimers composed of alpha and beta subunits. However, the alpha subunits of RabGGTases from lower eukaryotes, including Saccharomyces cerevisiae (yRabGGTase), are half the size of the corresponding subunit of the mammalian enzyme. This difference is due to the presence of additional immunoglobulin (Ig)-like and leucine rich (LRR) domains in the mammalian transferase. To understand the possible evolutionary implications and functional consequences of structural differences between RabGGTases of higher and lower eukaryotes, we have investigated the interactions of yeast RabGGTase with its lipid and protein substrate. We have demonstrated that geranylgeranyl pyrophosphate binds to the enzyme with an affinity of ca. 40 nM, while binding of farnesyl pyrophosphate is much weaker, with a K(d) value of ca. 750 nM. This finding suggests that despite the structural difference, yRabGGTase selects its lipid substrate in a fashion similar to mammalian RabGGTase. However, unlike the mammalian enzyme, yRabGGTase binds prenylated and unprenylated Ypt1p:Mrs6p complexes with similar affinities (K(d) ca. 200 nM). Moreover, in contrast to the mammalian enzyme, phosphoisoprenoids do not influence the affinity of Mrs6p for yRabGGTase. Using an in vitro prenylation assay, we have demonstrated that yRabGGTase can prenylate Rab proteins in complex with mammalian REP-1, thus indicating that neither the LRR nor the Ig-like domains, nor the recently discovered alternative pathway of catalytic complex assembly, are essential for the catalytic activity of RabGGTase. Despite the ability to function in concert with yRabGGTase in vitro, expression of mammalian REP-1 could not complement deletion of MRS6 gene in S. cerevisiae in vivo. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Beatrice Dursina
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheung AY, Chen CYH, Glaven RH, de Graaf BHJ, Vidali L, Hepler PK, Wu HM. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. THE PLANT CELL 2002; 14:945-62. [PMID: 11971147 PMCID: PMC150694 DOI: 10.1105/tpc.000836] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 02/06/2002] [Indexed: 05/17/2023]
Abstract
Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein-NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein-NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Weskamp G, Cai H, Brodie TA, Higashyama S, Manova K, Ludwig T, Blobel CP. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol 2002; 22:1537-44. [PMID: 11839819 PMCID: PMC134708 DOI: 10.1128/mcb.22.5.1537-1544.2002] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MDC9 (ADAM9/meltrin gamma) is a widely expressed and catalytically active metalloprotease-disintegrin protein that has been implicated in the ectodomain cleavage of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and as an alpha secretase for the amyloid precursor protein. In this study, we evaluated the expression of MDC9 during development and generated mice lacking MDC9 (mdc9(-/-) mice) to learn more about the function of this protein during development and in adults. During mouse development, MDC9 mRNA is ubiquitously expressed, with particularly high expression levels in the developing mesenchyme, heart and brain. Despite the ubiquitous expression of MDC9, mdc9(-/-) mice appear to develop normally, are viable and fertile, and do not have any major pathological phenotypes compared to wild-type mice. Constitutive and stimulated ectodomain shedding of HB-EGF is comparable in embryonic fibroblasts isolated from mdc9(-/-) and wild-type mice, arguing against an essential role of MDC9 in HB-EGF shedding in these cells. Furthermore, there were no differences in the production of the APP alpha and gamma secretase cleavage product (p3) and of beta- and gamma-secretase cleavage product (A beta) in cultured hippocampal neurons from mdc9(-/-) or wild-type mice, arguing against an essential major role of MDC9 as an alpha-secretase in mice. Further studies, including functional challenges and an evaluation of potential compensation by, or redundancy with, other members of the ADAM family or perhaps even with other molecules will be necessary to uncover physiologically relevant functions for MDC9 in mice.
Collapse
Affiliation(s)
- Gisela Weskamp
- Cellular Biochemistry and Biophysics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Duncan JL, Aleman TS, Gardner LM, De Castro E, Marks DA, Emmons JM, Bieber ML, Steinberg JD, Bennett J, Stone EM, MacDonald IM, Cideciyan AV, Maguire MG, Jacobson SG. Macular pigment and lutein supplementation in choroideremia. Exp Eye Res 2002; 74:371-81. [PMID: 12014918 DOI: 10.1006/exer.2001.1126] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Choroideremia is an incurable X-linked retinal degeneration caused by mutations in the gene encoding Rab escort protein-1. A group of clinically defined and genotyped patients were studied to determine: (1) the degree of rod and cone dysfunction and structural abnormality in the central retina and the level of macular pigment; and (2) the response of macular pigment and foveal vision to a 6 month trial of supplementation with oral lutein (at 20 mg per day). Rod and cone-mediated function was measured with dark-adapted static perimetry; in vivo retinal structure was determined with optical coherence tomography; and macular pigment optical density was measured with heterochromatic flicker photometry. In this cohort of patients (ages 15-65 years), both rod- and cone-mediated central function declined with age as did central retinal thickness. Macular pigment levels did not differ between patients and male control subjects. Supplementation of oral lutein in a subset of patients led to an increase in serum lutein and macular pigment levels; absolute foveal sensitivity did not change. It is concluded that macular pigment density can be augmented by oral intake of lutein in patients with choroideremia. There was no short-term change in the central vision of the patients on the supplement, but long-term influences of lutein supplementation on disease natural history warrant further study.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 2002; 22:69-75. [PMID: 11788463 DOI: 10.1161/hq0102.101518] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cell (EC) migration is required for angiogenesis, neovascularization, and reendothelialization. Integrins, known as alphabeta-heterodimeric cell-surface receptors, regulate cell migration and are essential for mechanotransduction of hemodynamic forces. Therefore, we investigated the effect of shear stress on EC migration and the contribution of the integrins and integrin-dependent signaling pathways in a scratched-wound assay. Laminar shear stress-induced EC migration was significantly reduced by integrin-receptor blocking with RGD peptides or with neutralizing antibodies against integrin subunits alpha(5) and beta(1), whereas antibodies against alpha(v)beta(3) or alpha(2)beta(1) had no effect. Cell-surface levels of the integrin alpha(5) and beta(1) were specifically upregulated in migrating ECs at the wound edges. Consistent with the important role of integrins for shear stress-increased cell migration, blockade of the integrin-associated adapter protein Shc by overexpression of dominant negative construct inhibited shear stress-stimulated EC migration. Moreover, pharmacological inhibition of the integrin downstream effector signaling molecules ERK1/2 or phosphatidyl-inositol-3-kinase prevented shear stress-induced EC migration. In contrast, inhibition of the NO synthase had no effect. Taken together, our results indicate that laminar shear stress enhances EC migration via the fibronectin receptor subunits alpha(5) and beta(1), which serve as central mechanotransducers in ECs. Shear stress-induced enhancement of EC migration might contribute importantly to accelerated reendothelialization of denuded arteries.
Collapse
Affiliation(s)
- Carmen Urbich
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Thomä NH, Iakovenko A, Goody RS, Alexandrov K. Phosphoisoprenoids modulate association of Rab geranylgeranyltransferase with REP-1. J Biol Chem 2001; 276:48637-43. [PMID: 11675392 DOI: 10.1074/jbc.m108241200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab geranylgeranyltransferase (RabGGTase or GGTase-II) catalyzes the post-translational prenylation of Rab proteins. Rab proteins are recognized as substrates only when they are complexed to Rab Escort Protein (REP). The classical model of prenylation complex assembly assumes initial formation of the Rab.REP binary complex, which subsequently binds to RabGGTase loaded with the isoprenoid donor geranylgeranyl pyrophosphate (GGpp). We demonstrate here that REP-1 can also associate with RabGGTase in the absence of Rab protein and that this interaction is dramatically strengthened by the presence of phosphoisoprenoids such as GGpp. The GGpp-dependent interaction between RabGGTase and REP-1 was observed using affinity precipitations and gel filtration and was quantitated on the basis of fluorescence assays. In the presence of GGpp, REP-1 binds to RabGGTase with a K(d) value of approximately 10 nm, while in its absence the affinity between the two proteins is in the micromolar range. We further demonstrate that binding of Rab7 to the RabGGTase.GGpp.REP-1 complex occurs without prior dissociation of REP-1. Analysis of binding and prenylation rate constants indicate that the RabGGTase.GGpp.REP-1 complex can function as a kinetically competent intermediate of the prenylation reaction. We conclude that, depending on the prevailing concentrations, binding of REP-1 to RabGGTase in the presence of GGpp may serve as an alternative pathway for the assembly of the prenylation machinery in vivo. Implications of these findings for the role of REP-1 in the prenylation reaction are discussed.
Collapse
Affiliation(s)
- N H Thomä
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
36
|
Sidhu RS, Bhullar RP. Rab3B in human platelet is membrane bound and interacts with Ca(2+)/calmodulin. Biochem Biophys Res Commun 2001; 289:1039-43. [PMID: 11741295 DOI: 10.1006/bbrc.2001.6113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subcellular distribution of Rab3B in fresh and aged platelets was determined and majority of the protein was localized with the particulate fraction with only a minor amount detected in the cytosol. Rab3B was pulled out from platelet particulate fraction with GST-RabGDI-alpha fusion protein. Using GST-Rab3B in in vitro pull-down experiments, the binding of calmodulin from platelet cytosol to Rab3B was demonstrated. In the reverse experiment, binding of Rab3B from platelet particulate and cytosolic fractions to Sepharose-CaM beads was also observed. The interaction between Rab3B and calmodulin was Ca(2+)-dependent but independent of the guanine nucleotide status of Rab3B. These findings provide evidence that Rab3B is primarily localized with the particulate fraction and that Ca(2+)/calmodulin could regulate function of this GTPase in the platelet.
Collapse
Affiliation(s)
- R S Sidhu
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada
| | | |
Collapse
|
37
|
Abstract
Rab proteins are small GTP-binding proteins that form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. Here, we have identified the complete Rab families in the Caenorhabditis elegans (29 members), Drosophila melanogaster (29), Homo sapiens (60) and Arabidopsis thaliana (57), and we defined criteria for annotation of this protein family in each organism. We studied sequence conservation patterns and observed that the RabF motifs and the RabSF regions previously described in mammalian Rabs are conserved across species. This is consistent with conserved recognition mechanisms by general regulators and specific effectors. We used phylogenetic analysis and other approaches to reconstruct the multiplication of the Rab family and observed that this family shows a strict phylogeny of function as opposed to a phylogeny of species. Furthermore, we observed that Rabs co-segregating in phylogenetic trees show a pattern of similar cellular localisation and/or function. Therefore, animal and fungi Rab proteins can be grouped in "Rab functional groups" according to their segregating patterns in phylogenetic trees. These functional groups reflect similarity of sequence, localisation and/or function, and may also represent shared ancestry. Rab functional groups can help the understanding of the functional evolution of the Rab family in particular and vesicular transport in general, and may be used to predict general functions for novel Rab sequences.
Collapse
Affiliation(s)
- J B Pereira-Leal
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
38
|
Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol 2001; 154:549-71. [PMID: 11489916 PMCID: PMC2196425 DOI: 10.1083/jcb.200104057] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
Collapse
Affiliation(s)
- B L Drees
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Choroideremia is an X-chromosome-linked disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium and the photoreceptor layer in the eye. The gene product defective in choroideremia, CHM, is identical to Rab escort protein 1 (REP1). CHM/REP1 is an essential component of the catalytic geranylgeranyltransferase II complex (GGTrII) that delivers newly synthesized small GTPases belonging to the RAB gene family to the catalytic complex for post-translational modification. CHM/REP family members are evolutionarily related to members of the guanine nucleotide dissociation inhibitor (GDI) family, proteins involved in the recycling of Rab proteins required for vesicular membrane trafficking through the exocytic and endocytic pathways, forming the GDI/CHM superfamily. Biochemical and structural analyses have now revealed a striking parallel in the organization and function of these two families allowing us to generate a general model for GDI/CHM superfamily function in health and disease.
Collapse
Affiliation(s)
- C Alory
- Departments of Cell and Molecular Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
40
|
Mukherjee K, Parashuraman S, Raje M, Mukhopadhyay A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 2001; 276:23607-15. [PMID: 11316807 DOI: 10.1074/jbc.m101034200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Rab-GTPase regulates the fusion between two specific vesicles. It is well documented that, for their biological function, Rab proteins need to be prenylated for attachment to the vesicle membrane. In contrast, we showed in the present investigation that SopE, a type III secretory protein of Salmonella, translocates onto Salmonella-containing phagosomes (LSP) and mediates the recruitment of non-prenylated Rab5 (Rab5:DeltaC4) on LSP in GTP form. Simultaneously, SopE present in infected cell cytosol acts as an Rab5-specific exchange factor and converts the inactive Rab-GDP to the GTP form. The non-prenylated Rab5 subsequently promoted efficient fusion of LSP with early endosomes. This is the first demonstration that a prenylation-deficient Rab protein retains biological activity and can promote vesicle fusion, if it is recruited on the membrane by some other method.
Collapse
Affiliation(s)
- K Mukherjee
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067 and the Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
41
|
Pereira-Leal JB, Hume AN, Seabra MC. Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett 2001; 498:197-200. [PMID: 11412856 DOI: 10.1016/s0014-5793(01)02483-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small GTPases of the Rab family regulate membrane transport pathways. More than 50 mammalian Rab proteins are known, many with transport step-specific localisation. Rabs must associate with cellular membranes for activity and membrane attachment is mediated by prenyl (geranylgeranyl) post-translational modification. Mutations in genes encoding proteins essential for the geranylgeranylation reaction, Rab escort protein and Rab geranylgeranyl transferase, underlie genetic diseases. Choroideremia patients have loss of function mutations in REP1 and the murine Hermansky-Pudlak syndrome model gunmetal possesses a splice-site mutation in the alpha-subunit of RGGT. Here we discuss recent insights into Rab prenylation and advances towards our understanding of both diseases.
Collapse
Affiliation(s)
- J B Pereira-Leal
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, Exhibition Road, SW7 2AZ, London, UK
| | | | | |
Collapse
|
42
|
Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, Arkinstall S, Gruenberg J. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell 2001; 7:421-32. [PMID: 11239470 DOI: 10.1016/s1097-2765(01)00189-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early endocytic membrane traffic is regulated by the small GTPase Rab5, which cycles between GTP- and GDP-bound states as well as between membrane and cytosol. The latter cycle depends on GDI, which functions as a Rab vehicle in the aqueous environment of the cytosol. Here, we report that formation of the GDI:Rab5 complex is stimulated by a cytosolic factor that we purified and then identified as p38 MAPK. We find that p38 regulates GDI in the cytosolic cycle of Rab5 and modulates endocytosis in vivo. Our observations reveal the existence of a cross-talk between endocytosis and the p38-dependent stress response, thus providing molecular evidence that endocytosis can be regulated by the environment.
Collapse
Affiliation(s)
- V Cavalli
- Department of Biochemistry, Sciences II, University of Geneva, 30 quai Ernest Ansermet, 1211 4, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|