1
|
Fukui S, Fukui S, Van Bruggen S, Shi L, Sheehy CE, Chu L, Wagner DD. NLRP3 inflammasome activation in neutrophils directs early inflammatory response in murine peritonitis. Sci Rep 2022; 12:21313. [PMID: 36494392 PMCID: PMC9734191 DOI: 10.1038/s41598-022-25176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) inflammasome mediates caspase-1-dependent processing of inflammatory cytokines such as IL-1β, an essential endothelial activator, and contributes to the pathology of inflammatory diseases. To evaluate the role of NLRP3 in neutrophils in endothelial activation, which is still elusive, we used the thioglycollate-induced peritonitis model characterized by an early neutrophil influx, on Nlrp3-/- and Nlrp3+/+ mice. Nlrp3-/- mice recruited fewer neutrophils than Nlrp3+/+ into the peritoneum and showed lower IL-1β in peritoneal lavage fluid. The higher production of IL-1β in Nlrp3+/+ was neutrophil-dependent as neutrophil depletion prevented the IL-1β production. The Nlrp3+/+ neutrophils collected from the peritoneal fluid formed significantly more filaments (specks) than Nlrp3-/- neutrophils of ASC (apoptosis-associated speck-like protein containing a caspase activating and recruitment domain), a readout for inflammasome activation. Intravital microscopy revealed that leukocytes rolled significantly slower in Nlrp3+/+ venules than in Nlrp3-/-. Nlrp3-/- endothelial cells isolated from mesenteric vessels demonstrated a lower percentage of P-selectin-positive cells with lower intensity of surface P-selectin expression than the Nlrp3+/+ endothelial cells evaluated by flow cytometry. We conclude that neutrophils orchestrate acute thioglycollate-induced peritonitis by producing IL-1β in an NLRP3-dependent manner. This increases endothelial P-selectin expression and leukocyte transmigration.
Collapse
Affiliation(s)
- Saeko Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Stijn Van Bruggen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Lai Shi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Casey E Sheehy
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
3
|
Constantinescu CA, Fuior EV, Rebleanu D, Deleanu M, Simion V, Voicu G, Escriou V, Manduteanu I, Simionescu M, Calin M. Targeted Transfection Using PEGylated Cationic Liposomes Directed Towards P-Selectin Increases siRNA Delivery into Activated Endothelial Cells. Pharmaceutics 2019; 11:E47. [PMID: 30669699 PMCID: PMC6359248 DOI: 10.3390/pharmaceutics11010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
: The progress in small-interfering RNA (siRNA) therapeutics depends on the development of suitable nanocarriers to perform specific and effective delivery to dysfunctional cells. In this paper, we questioned whether P-selectin, a cell adhesion molecule specifically expressed on the surface of activated endothelial cells (EC) could be employed as a target for nanotherapeutic intervention. To this purpose, we developed and characterized P-selectin targeted PEGylated cationic liposomes able to efficiently pack siRNA and to function as efficient vectors for siRNA delivery to tumour necrosis factor-α (TNF-α) activated EC. Targeted cationic liposomes were obtained by coupling a peptide with high affinity for P-selectin to a functionalized PEGylated phospholipid inserted in the liposomes' bilayer (Psel-lipo). As control, scrambled peptide coupled cationic liposomes (Scr-lipo) were used. The lipoplexes obtained by complexation of Psel-lipo with siRNA (Psel-lipo/siRNA) were taken up specifically and at a higher extent by TNF-α activated b.End3 endothelial cells as compared to non-targeted Scr-lipo/siRNA. The Psel-lipo/siRNA delivered with high efficiency siRNA into the cells. The lipoplexes were functional as demonstrated by the down-regulation of the selected gene (GAPDH). The results demonstrate an effective targeted delivery of siRNA into cultured activated endothelial cells using P-selectin directed PEGylated cationic liposomes, which subsequently knock-down the desired gene.
Collapse
Affiliation(s)
- Cristina Ana Constantinescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
- University of Agronomic Sciences and Veterinary Medicine (UASVM), Faculty of Veterinary Medicine, 050097 Bucharest, Romania.
| | - Elena Valeria Fuior
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Daniela Rebleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Mariana Deleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
- University of Agronomic Sciences and Veterinary Medicine (UASVM), Faculty of Biotechnologies, 011464 Bucharest, Romania.
| | - Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Geanina Voicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Virginie Escriou
- Centre National de la Recherche Scientifique (CNRS), Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) U 1022, 75006 Paris, France.
- Université Paris Descartes, Sorbonne-Paris-Cité University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France.
- Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France.
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| |
Collapse
|
4
|
Brenner JS, Kiseleva RY, Glassman PM, Parhiz H, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752329. [PMID: 29261028 PMCID: PMC5768280 DOI: 10.1177/2045893217752329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk–benefit ratio and safety—parameters one should keep in mind when developing a translational therapeutic.
Collapse
Affiliation(s)
- Jacob S Brenner
- 1 14640 Pulmonary, Allergy, & Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Yu Kiseleva
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth D Hood
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation. Mediators Inflamm 2016; 2016:1625149. [PMID: 27703301 PMCID: PMC5039295 DOI: 10.1155/2016/1625149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/04/2022] Open
Abstract
Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation.
Collapse
|
6
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
7
|
Brenner JS, Greineder C, Shuvaev V, Muzykantov V. Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opin Drug Deliv 2014; 12:239-61. [PMID: 25394760 DOI: 10.1517/17425247.2015.961418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Even though pulmonary diseases are among the leading causes of morbidity and mortality in the world, exceedingly few life-prolonging therapies have been developed for these maladies. Relief may finally come from nanomedicine and targeted drug delivery. AREAS COVERED Here, we focus on four conditions for which the pulmonary endothelium plays a pivotal role: acute respiratory distress syndrome, primary graft dysfunction occurring immediately after lung transplantation, pulmonary arterial hypertension and pulmonary embolism. For each of these diseases, we first evaluate the targeted drug delivery approaches that have been tested in animals. Then we suggest a 'need specification' for each disease: a list of criteria (e.g., macroscale delivery method, stability, etc.) that nanomedicine agents must meet in order to warrant human clinical trials and investment from industry. EXPERT OPINION For the diseases profiled here, numerous nanomedicine agents have shown promise in animal models. However, to maximize the chances of creating products that reach patients, nanomedicine engineers and clinicians must work together and use each disease's need specification to guide the design of practical and effective nanomedicine agents.
Collapse
Affiliation(s)
- Jacob S Brenner
- University of Pennsylvania, Perelman School of Medicine, Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine , TRC10-125, 3600 Civic Center Boulevard, Philadelphia, PA 19104 , USA +1 215 898 9823 ; +1 215 573 9135 ;
| | | | | | | |
Collapse
|
8
|
The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors. J Neurosci 2014; 34:6924-37. [PMID: 24828646 DOI: 10.1523/jneurosci.0694-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.
Collapse
|
9
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Abstract
Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site.
Collapse
Affiliation(s)
- Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL ; Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Karunyna Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
12
|
Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol 2012; 32:1178-85. [PMID: 22328778 PMCID: PMC3331944 DOI: 10.1161/atvbaha.111.244186] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by ICAM-1-targeted carriers induces cell adhesion molecule-mediated endocytosis, providing intraendothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na(+)/H(+) exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work. METHODS AND RESULTS We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture, and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na(+)/H(+) exchange might provide an acidic microenvironment for ASM at the plasmalemma. CONCLUSIONS These findings are consistent with the ability of endothelial cells to internalize relatively large ICAM- 1--targeted drug carriers and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.
Collapse
Affiliation(s)
- Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Tridib Bhowmick
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Rishi Chadha
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Carmen Garnacho
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
13
|
Affiliation(s)
- Gregory M. Lanza
- From the Washington University Medical School, Department of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
14
|
Kowalski PS, Leus NGJ, Scherphof GL, Ruiters MHJ, Kamps JAAM, Molema G. Targeted siRNA delivery to diseased microvascular endothelial cells-Cellular and molecular concepts. IUBMB Life 2011; 63:648-58. [DOI: 10.1002/iub.487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 12/11/2022]
|
15
|
Carnemolla R, Shuvaev VV, Muzykantov VR. Targeting antioxidant and antithrombotic biotherapeutics to endothelium. Semin Thromb Hemost 2010; 36:332-42. [PMID: 20490983 DOI: 10.1055/s-0030-1253455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The endothelium is one of the key targets for pharmacological interventions in oxidative stress and thrombosis, two conditions that are notoriously difficult to treat due to limited efficacy and precision of action of current drugs. Design of molecular and nano-devices that deliver potent antioxidant and antithrombotic therapeutic enzymes to the endothelium holds promise to improve the potency, localization, timing, specificity, safety, and mechanistic precision of these interventions. In particular, cell adhesion molecules expressed on the surface of resting and pathologically altered endothelial cells can be used for drug delivery to the endothelial surface (preferable for thrombolytics) and into intracellular compartments (preferable for antioxidants). Drug delivery platforms including protein conjugates, recombinant fusion constructs, and stealth polymer carriers designed to target these drugs to endothelium are reviewed in this article.
Collapse
Affiliation(s)
- Ronald Carnemolla
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6068, USA
| | | | | |
Collapse
|
16
|
Schlüter T, Knauth P, Wald S, Boland S, Bohnensack R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem Biophys Res Commun 2009; 379:909-13. [PMID: 19138666 DOI: 10.1016/j.bbrc.2008.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.
Collapse
Affiliation(s)
- Thomas Schlüter
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
Collapse
Affiliation(s)
- Ludger Johannes
- CNRS UMR144, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
18
|
Simone E, Ding BS, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res 2008; 335:283-300. [PMID: 18815813 DOI: 10.1007/s00441-008-0676-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/18/2008] [Indexed: 12/27/2022]
Abstract
The endothelium is a target for therapeutic and diagnostic interventions in a plethora of human disease conditions including ischemia, inflammation, edema, oxidative stress, thrombosis and hemorrhage, and metabolic and oncological diseases. Unfortunately, drugs have no affinity to the endothelium, thereby limiting the localization, timing, specificity, safety, and effectiveness of therapeutic interventions. Molecular determinants on the surface of resting and pathologically altered endothelial cells, including cell adhesion molecules, peptidases, and receptors involved in endocytosis, can be used for drug delivery to the endothelial surface and into intracellular compartments. Drug delivery platforms such as protein conjugates, recombinant fusion constructs, targeted liposomes, and stealth polymer carriers have been designed to target drugs and imaging agents to these determinants. We review endothelial target determinants and drug delivery systems, describe parameters that control the binding of drug carriers to the endothelium, and provide examples of the endothelial targeting of therapeutic enzymes designed for the treatment of acute vascular disorders including ischemia, oxidative stress, inflammation, and thrombosis.
Collapse
Affiliation(s)
- Eric Simone
- Department of Bioengineering, Program in Targeted Therapeutics of Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | | | | |
Collapse
|
19
|
Tran THT, Zeng Q, Hong W. VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes. J Cell Sci 2007; 120:1028-41. [PMID: 17327277 DOI: 10.1242/jcs.03387] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VAMP4 is enriched in the trans-Golgi network (TGN) and functions in traffic from the early and recycling endosomes to the TGN, but its trafficking itinerary is unknown. Cells stably expressing TGN-enriched VAMP4 C-terminally-tagged with EGFP (VAMP4-EGFP) are able to internalize and transport EGFP antibody efficiently to the TGN, suggesting that VAMP4-EGFP cycles between the cell surface and the TGN. The N-terminal extension of VAMP4 endows a chimeric VAMP5 with the ability to cycle from the surface to the TGN. Detailed time-course analysis of EGFP antibody transport to the TGN as well as pharmacological and thermal perturbation experiments suggest that VAMP4-EGFP is endocytosed by clathrin-dependent pathways and is delivered to the sorting and then recycling endosomes. This is followed by a direct transport to the TGN, without going through the late endosome. The di-Leu motif of the TGN-targeting signal is important for internalization, whereas the acidic cluster is crucial for efficient delivery of internalized antibody from the endosome to the TGN. These results suggest that the TGN-targeting signal of VAMP4 mediates the efficient recycling of VAMP4 from the cell surface to the TGN via the sorting and recycling endosomes, thus conferring steady-state enrichment of VAMP4 at the TGN.
Collapse
Affiliation(s)
- Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | | | | |
Collapse
|
20
|
Abstract
Drug targeting to selected subcellular compartments of the pulmonary endothelium may optimise treatment of many diseases. This paper describes endothelial determinants that are potentially useful for such targeting, including endothelial ectopeptidases, cell adhesion molecules and novel candidates identified by high-throughput methods, as well as the means to achieve optimal subcellular targeting of drugs in the endothelium that have been explored in cell culture and animal studies. Criteria for determining the applicability for targeting include accessibility, specificity, safety and subcellular precision. The effects of endothelial delivery of therapeutic agents, including the effects mediated by the intervention in the function of the target determinants, must be characterised in the context of given pathological conditions.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania, Institute for Environmental Medicine and Department of Pharmacology, Philadelphia, 19104-6068, USA.
| |
Collapse
|
21
|
Knauth P, Schlüter T, Czubayko M, Kirsch C, Florian V, Schreckenberger S, Hahn H, Bohnensack R. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J Mol Biol 2005; 347:813-25. [PMID: 15769472 DOI: 10.1016/j.jmb.2005.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 01/16/2023]
Abstract
SNX17 is a member of the sorting nexin family (SNX), a group of hydrophilic proteins whose common characteristic property is a phox homology (PX) domain. The PX domain directs SNXs to phosphatidylinositides containing membranes of the endosomal compartment, where the SNXs are involved in the sorting of transmembrane proteins. SNX17 is known to interact with P-selectin and the LDL receptor family. Here, we report that the PX domain of SNX17 specifically binds to phosphatidylinositol 3-phosphate-containing membranes. The functional part of SNX17 that binds P-selectin or Patched (PTCH) consists of a truncated FERM domain and a unique C terminus together (FC-unit). In a yeast two-hybrid analysis a putative recognition motif for the FC-unit was revealed within P-selectin as FxNaa(F/Y). When HepG2 cells overexpress P-selectin together with SNX17, SNX17 changes its distribution from early endosomes to lysobisphosphatidic acid-containing late endosomes. Furthermore, overexpressed SNX17 restrains P-selectin in the outer membrane of the late endosomal compartment, thus preventing the normal lysosomal accumulation of P-selectin. These results suggest that the PX domain is necessary for the intracellular localisation, while the FC-unit is required for cargo recognition. We hypothesise that the expression level of SNX17 may regulate the lysosomal degradation, at least for P-selectin, by suppressing its entry into the inner vesicles of the multi-vesicular bodies (MVBs).
Collapse
Affiliation(s)
- Peter Knauth
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas 800, 44270 Guadalajara, México.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu L, Tai G, Hong W. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 2004; 15:4426-43. [PMID: 15269279 PMCID: PMC519138 DOI: 10.1091/mbc.e03-12-0872] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The precise cellular function of Arl1 and its effectors, the GRIP domain Golgins, is not resolved, despite our recent understanding that Arl1 regulates the membrane recruitment of these Golgins. In this report, we describe our functional study of Golgin-97. Using a Shiga toxin B fragment (STxB)-based in vitro transport assay, we demonstrated that Golgin-97 plays a role in transport from the endosome to the trans-Golgi network (TGN). The recombinant GRIP domain of Golgin-97 as well as antibodies against Golgin-97 inhibited the transport of STxB in vitro. Membrane-associated Golgin-97, but not its cytosolic pool, was required in the in vitro transport assay. The kinetic characterization of inhibition by anti-Golgin-97 antibody in comparison with anti-Syntaxin 16 antibody established that Golgin-97 acts before Syntaxin 16 in endosome-to-TGN transport. Knock down of Golgin-97 or Arl1 by their respective small interference RNAs (siRNAs) also significantly inhibited the transport of STxB to the Golgi in vivo. In siRNA-treated cells with reduced levels of Arl1, internalized STxB was instead distributed peripherally. Microinjection of Golgin-97 antibody led to the fragmentation of Golgi apparatus and the arrested transport to the Golgi of internalized Cholera toxin B fragment. We suggest that Golgin-97 may function as a tethering molecule in endosome-to-TGN retrograde traffic.
Collapse
Affiliation(s)
- Lei Lu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | |
Collapse
|
23
|
Bauer RA, Overlease RL, Lieber JL, Angleson JK. Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells. J Cell Sci 2004; 117:2193-202. [PMID: 15126621 DOI: 10.1242/jcs.01093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used fluorescence imaging of individual exocytic events in combination with immunogold electron microscopy and FM1-43 photoconversion to study the stimulus-dependent recycling of dense core vesicle content in isolated rat pituitary lactotrophs. Secretory stimulation with high external [K+] resulted in 100 exocytic sites per cell that were labeled by extracellular antibodies against the peptide hormone prolactin. Morphological analysis demonstrated that the prolactin was retained and internalized in intact dense cores. Vesicles containing non-secreted, internalized prolactin did not colocalize with DiI-LDL that had been chased into lysosomes but did transiently colocalize with internalized transferrin. The recycling vesicles also trafficked through a syntaxin 6-positive compartment but not the TGN38-positive trans-Golgi. Recycling vesicles, which returned to the cell surface in a slow basal manner, could also be stimulated to undergo exocytosis with a high release probability during subsequent exocytic stimulation with external K+. These studies suggest a functional role for recycling vesicles that retain prolactin.
Collapse
Affiliation(s)
- Roslyn A Bauer
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | | | | |
Collapse
|
24
|
Williams R, Schlüter T, Roberts MS, Knauth P, Bohnensack R, Cutler DF. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol Biol Cell 2004; 15:3095-105. [PMID: 15121882 PMCID: PMC452567 DOI: 10.1091/mbc.e04-02-0143] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transient appearance of P-selectin on the surface of endothelial cells helps recruit leukocytes into sites of inflammation. The tight control of cell surface P-selectin on these cells depends on regulated exocytosis of Weibel-Palade bodies where the protein is stored and on its rapid endocytosis. After endocytosis, P-selectin is either sorted via endosomes and the Golgi apparatus for storage in Weibel-Palade bodies or targeted to lysosomes for degradation. A potential player in this complex endocytic itinerary is SNX17, a member of the sorting nexin family, which has been shown in a yeast two-hybrid assay to bind P-selectin. Here, we show that overexpression of SNX17 in mammalian cells can influence two key steps in the endocytic trafficking of P-selectin. First, it promotes the endocytosis of P-selectin from the plasma membrane. Second, it inhibits the movement of P-selectin into lysosomes, thereby reducing its degradation.
Collapse
Affiliation(s)
- Ross Williams
- MRC Laboratory for Molecular Cell Biology, Cell Biology Unit and Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Arnaoutova I, Jackson CL, Al-Awar OS, Donaldson JG, Loh YP. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 2003; 14:4448-57. [PMID: 12960436 PMCID: PMC266764 DOI: 10.1091/mbc.e02-11-0758] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about the molecular mechanism of recycling of intracellular receptors and lipid raft-associated proteins. Here, we have investigated the recycling pathway and internalization mechanism of a transmembrane, lipid raft-associated intracellular prohormone sorting receptor, carboxypeptidase E (CPE). CPE is found in the trans-Golgi network (TGN) and secretory granules of (neuro)endocrine cells. An extracellular domain of the IL2 receptor alpha-subunit (Tac) fused to the transmembrane domain and cytoplasmic tail of CPE (Tac-CPE25) was used as a marker to track recycling of CPE. We show in (neuro)endocrine cells, that upon stimulated secretory granule exocytosis, raft-associated Tac-CPE25 was rapidly internalized from the plasma membrane in a clathrin-independent manner into early endosomes and then transported through the endocytic recycling compartment to the TGN. A yeast two-hybrid screen and in vitro binding assay identified the CPE cytoplasmic tail sequence S472ETLNF477 as an interactor with active small GTPase ADP-ribosylation factor (ARF) 6, but not ARF1. Expression of a dominant negative, inactive ARF6 mutant blocked this recycling. Mutation of residues S472 or E473 to A in the cytoplasmic tail of CPE obliterated its binding to ARF6, and internalization from the plasma membrane of Tac-CPE25 mutated at S472 or E473 was significantly reduced. Thus, CPE recycles back to the TGN by a novel mechanism requiring ARF6 interaction and activity.
Collapse
Affiliation(s)
- Irina Arnaoutova
- Section of Cellular Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Retroviral resistance mediated by the murine Fv1 gene is believed to result from a direct interaction between the Fv1 gene product and the viral capsid protein. To study the mechanism of Fv1 action, the expression and intracellular localisation of the Fv1 protein were examined. Only very low levels of protein expression seem necessary for virus restriction but the site of expression appears crucial. Active Fv1 was found in association with tubules of the trans-Golgi network, whereas an inactive form was localised in the endoplasmic reticulum. We hypothesize that Fv1 is compartmentalised in the cell on the pathway taken by virus en route to the nucleus, suggesting that incoming virus must pass the trans-Golgi network during its transit to the nucleus.
Collapse
Affiliation(s)
- Melvyn W Yap
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | |
Collapse
|
27
|
Abstract
Sorting nexins are a diverse group of cellular trafficking proteins that are unified by the presence of a phospholipid-binding motif - the PX domain. The ability of these proteins to bind specific phospholipids, as well as their propensity to form protein-protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. It will be interesting to determine whether the various sorting nexins have specialized or generalized roles in protein trafficking.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
28
|
Watkins S, Geng X, Li L, Papworth G, Robbins PD, Drain P. Imaging secretory vesicles by fluorescent protein insertion in propeptide rather than mature secreted peptide. Traffic 2002; 3:461-71. [PMID: 12047554 DOI: 10.1034/j.1600-0854.2002.30703.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides.
Collapse
Affiliation(s)
- Simon Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
29
|
Daugherty BL, Green SA. Endosomal sorting of amyloid precursor protein-P-selectin chimeras influences secretase processing. Traffic 2001; 2:908-16. [PMID: 11737828 DOI: 10.1034/j.1600-0854.2001.21206.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid beta protein, the major component of the senile plaques in Alzheimer's disease, is generated by secretory and endocytic processing of amyloid precursor protein. Internalized amyloid precursor protein either recycles to the plasma membrane, where alpha-secretase resides, or moves to acidic compartment(s) for beta-secretase exposure. While the trans-Golgi network contains beta-secretase activity, recent examination of the subcellular distribution of this proteinase, called BACE, has led to the suggestion that beta-secretase activity might also reside at the plasma membrane and in endosomes. To examine the role of endocytic compartments in beta-secretase processing of amyloid precursor protein, the wild-type and endosomal sorting mutant P-selectin cytoplasmic domains were used to control movement of amyloid precursor protein through endosomes. Amyloid precursor protein/P-selectin, which is sorted from early to late endosomes, undergoes significantly less alpha-secretase cleavage, and more beta-secretase cleavage, than amyloid precursor protein/P-selectin768A, a mutant that recycles more efficiently to the cell surface. Our results demonstrate that endosomal sorting influences relative exposure of the amyloid precursor protein/P-selectin chimeras to alpha- and beta-secretase activities, and suggest that, because delivery to late endocytic compartments favors beta-secretase processing of amyloid precursor protein, there is likely limited beta-secretase activity in early endosomes or at the cell surface. We propose that the trans-Golgi network may be involved in both secretory and endocytic generation of amyloid beta protein.
Collapse
Affiliation(s)
- B L Daugherty
- Department of Cell Biology, University of Virginia Health System, School of Medicine, PO Box 800732, Charlottesville, VA 22908-0732, USA
| | | |
Collapse
|
30
|
Iversen TG, Skretting G, Llorente A, Nicoziani P, van Deurs B, Sandvig K. Endosome to Golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases. Mol Biol Cell 2001; 12:2099-107. [PMID: 11452006 PMCID: PMC55659 DOI: 10.1091/mbc.12.7.2099] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The plant toxin ricin is transported to the Golgi and the endoplasmic reticulum before translocation to the cytosol where it inhibits protein synthesis. The toxin can therefore be used to investigate pathways leading to the Golgi apparatus. Except for the Rab9-mediated transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network (TGN), transport routes between endosomes and the Golgi apparatus are still poorly characterized. To investigate endosome to Golgi transport, we have used here a modified ricin molecule containing a tyrosine sulfation site and quantified incorporation of radioactive sulfate, a TGN modification. A tetracycline-inducible mutant Rab9S21N HeLa cell line was constructed and characterized to study whether Rab9 was involved in transport of ricin to the TGN and, if not, to further investigate the route used by ricin. Induced expression of Rab9S21N inhibited Golgi transport of mannose 6-phosphate receptors but did not affect the sulfation of ricin, suggesting that ricin is transported to the TGN via a Rab9-independent pathway. Moreover, because Rab11 is present in the endosomal recycling compartment and the TGN, studies of transient transfections with mutant Rab11 were performed. The results indicated that routing of ricin from endosomes to the TGN occurs by a Rab11-independent pathway. Finally, because clathrin has been implicated in early endosome to TGN transport, ricin transport was investigated in cells with inducible expression of antisense to clathrin heavy chain. Importantly, endosome to TGN transport (sulfation of endocytosed ricin) was unchanged when clathrin function was abolished. In conclusion, ricin is transported from endosomes to the Golgi apparatus by a Rab9-, Rab11-, and clathrin-independent pathway.
Collapse
Affiliation(s)
- T G Iversen
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
31
|
Daugherty BL, Straley KS, Sanders JM, Phillips JW, Disdier M, McEver RP, Green SA. AP-3 adaptor functions in targeting P-selectin to secretory granules in endothelial cells. Traffic 2001; 2:406-13. [PMID: 11389768 DOI: 10.1034/j.1600-0854.2001.002006406.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P-selectin, a cell adhesion protein participating in the early stages of inflammation, contains multiple sorting signals that regulate its cell surface expression. Targeting to secretory granules regulates delivery of P-selectin to the cell surface. Internalization followed by sorting from early to late endosomes mediates rapid removal of P-selectin from the surface. We show here that the P-selectin cytoplasmic domain bound AP-2 and AP-3 adaptor complexes in vitro. The amino acid substitution L768A, which abolishes endosomal sorting and impairs granule targeting of P-selectin, reduced binding of AP-3 adaptors but not AP-2 adaptors. Turnover of P-selectin was 2.4-fold faster than turnover of transferrin receptor in AP-3-deficient mocha fibroblasts, similar to turnover of these two proteins in AP-3-competent cells, demonstrating that AP-3 function is not required for endosomal sorting. However, sorting P-selectin to secretory granules was defective in endothelial cells from AP-3-deficient pearl mice, demonstrating a role for AP-3 adaptors in granule assembly in endothelial cells. P-selectin sorting to platelet alpha-granules was normal in pearl mice, consistent with earlier evidence that granule targeting of P-selectin is mechanistically distinct in endothelial cells and platelets. These observations establish that AP-3 adaptor functions in assembly of conventional secretory granules, in addition to lysosomes and the 'lysosome-like' secretory granules of platelets and melanocytes.
Collapse
Affiliation(s)
- B L Daugherty
- Department of Cell Biology, UVa Health System, School of Medicine, PO Box 800732, Charlottesville, VA 22908-0732, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Owen DJ, Setiadi H, Evans PR, McEver RP, Green SA. A third specificity-determining site in mu 2 adaptin for sequences upstream of Yxx phi sorting motifs. Traffic 2001; 2:105-10. [PMID: 11247301 DOI: 10.1034/j.1600-0854.2001.020205.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Internalization signals of the Yxx phi type (phi = bulky hydrophobic side chain) interact with the mu 2 chain of AP-2 adaptors. Internalization activity is intolerant of non-conservative substitution of either the tyrosine or the phi side chains, which bind to hydrophobic pockets in mu 2 adaptin in a conformation described as 'a two pinned plug into a socket'. P-selectin, a type I transmembrane protein, contains the Yxx phi-like sequence YGVF in its cytoplasmic domain, but substitution of either the tyrosine or phenylalanine with alanine in the full-length protein causes only small changes in the rate of endocytosis. It is shown here that the sequence YGVF contained within a peptide corresponding to the 17 COOH-terminal amino acids of P-selectin binds to mu 2 adaptin in the same fashion previously seen for other Yxx phi motifs. In addition, the P-selectin peptide binds to a third hydrophobic pocket in mu 2 adaptin through a leucine at position Y-3 in the peptide. This structure suggests that some sequences can function as a 'three pinned plug', in which internalization activity is not critically dependent on any one of the three interacting side chains.
Collapse
Affiliation(s)
- D J Owen
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|