1
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
2
|
Das S, Hilman MC, Yang F, Mourkioti F, Yang W, Cullen DK. Motor neurons and endothelial cells additively promote development and fusion of human iPSC-derived skeletal myocytes. Skelet Muscle 2024; 14:5. [PMID: 38454511 PMCID: PMC10921694 DOI: 10.1186/s13395-024-00336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endothelial cells interact with skeletal myocytes independently, there is limited knowledge about the combined effect of neural and vascular cells on muscle maturation and development. METHODS Here, we report a triculture system comprising human-induced pluripotent stem cell (iPSC)-derived skeletal myocytes, human iPSC-derived motor neurons, and primary human endothelial cells maintained under controlled media conditions. Briefly, iPSCs were differentiated to generate skeletal muscle progenitor cells (SMPCs). These SMPCs were seeded at a density of 5 × 104 cells/well in 12-well plates and allowed to differentiate for 7 days before adding iPSC-derived motor neurons at a concentration of 0.5 × 104 cells/well. The neuromuscular coculture was maintained for another 7 days in coculture media before addition of primary human umbilical vein endothelial cells (HUVEC) also at 0.5 × 104 cells/well. The triculture was maintained for another 7 days in triculture media comprising equal portions of muscle differentiation media, coculture media, and vascular media. Extensive morphological, genetic, and molecular characterization was performed to understand the combined and individual effects of neural and vascular cells on skeletal muscle maturation. RESULTS We observed that motor neurons independently promoted myofiber fusion, upregulated neuromuscular junction genes, and maintained a molecular niche supportive of muscle maturation. Endothelial cells independently did not support myofiber fusion and downregulated expression of LRP4 but did promote expression of type II specific myosin isoforms. However, neurovascular cells in combination exhibited additive increases in myofiber fusion and length, enhanced production of Agrin, along with upregulation of several key genes like MUSK, RAPSYN, DOK-7, and SLC2A4. Interestingly, more divergent effects were observed in expression of genes like MYH8, MYH1, MYH2, MYH4, and LRP4 and secretion of key molecular factors like amphiregulin and IGFBP-4. CONCLUSIONS Neurovascular cells when cultured in combination with skeletal myocytes promoted myocyte fusion with concomitant increase in expression of various neuromuscular genes. This triculture system may be used to gain a deeper understanding of the effects of the neurovascular niche on skeletal muscle biology and pathophysiology.
Collapse
Affiliation(s)
- Suradip Das
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
| | - Melanie C Hilman
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Feikun Yang
- Department of Medicine, Penn Institute for Regenerative Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Musculoskeletal Program, Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenli Yang
- Department of Medicine, Penn Institute for Regenerative Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Musculoskeletal Program, Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Zhang H, Liang J, Lu T, Li M, Shan G, Bi G, Zhao M, Jin X, Wang Q, Chen Z, Zhan C. AGRN promotes lung adenocarcinoma progression by activating Notch signaling pathway and acts as a therapeutic target. Pharmacol Res 2023; 194:106819. [PMID: 37321467 DOI: 10.1016/j.phrs.2023.106819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China; Division of Thoracic Surgery, Sichuan Cancer Hospital & Research Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, People's Republic of China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengcong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China; Department of Thoracic Surgery, ShangHai Geriatric Medicine Center, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Bushra S, Lin YN, Joudaki A, Ito M, Ohkawara B, Ohno K, Masuda A. Neural Isoforms of Agrin Are Generated by Reduced PTBP1-RNA Interaction Network Spanning the Neuron-Specific Splicing Regions in AGRN. Int J Mol Sci 2023; 24:ijms24087420. [PMID: 37108583 PMCID: PMC10139058 DOI: 10.3390/ijms24087420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.
Collapse
Affiliation(s)
- Samira Bushra
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Ying-Ni Lin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Atefeh Joudaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| |
Collapse
|
5
|
Monti E, Sarto F, Sartori R, Zanchettin G, Löfler S, Kern H, Narici MV, Zampieri S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: a narrative review. J Cachexia Sarcopenia Muscle 2023; 14:730-744. [PMID: 36772862 PMCID: PMC10067498 DOI: 10.1002/jcsm.13189] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and ImmunologyStanford School of MedicineStanfordCAUSA
| | - Fabio Sarto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Roberta Sartori
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Marco Vincenzo Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
6
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
7
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
8
|
Ye P, Fu Z, Chung JYF, Cao X, Ko H, Tian XY, Tang PMK, Lui KO. Endothelial Agrin Is Dispensable for Normal and Tumor Angiogenesis. Front Cardiovasc Med 2022; 8:810477. [PMID: 35174224 PMCID: PMC8841877 DOI: 10.3389/fcvm.2021.810477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, the extracellular matrix protein agrin has been reported to promote tumor angiogenesis that supports tumorigenesis and metastasis; however, there is a lack of in vivo genetic evidence to prove whether agrin derived from the tumors or endothelial cells (ECs) systemically should be the therapeutic target. To date, the physiological role of endothelial agrin has also not been investigated. In the EC-specific agrin knockout mice, we observed normal endothelial and haematopoietic cell development during embryogenesis. Moreover, these mice develop normal vascular barrier integrity and vasoreactivity at the adult stage. Importantly, the growth of localized or metastatic cancer cells was not affected after implantation into endothelial agrin depleted mice. Mechanistically, agrin did not regulate endothelial ERK1/2, YAP or p53 activation in vivo that is central to support endothelial proliferation, survival and invasion. Cumulatively, our findings may suggest that agrin could play a redundant role in endothelial development during physiological and tumor angiogenesis. Targeting the endothelial derived agrin might not be effective in inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Peng Ye
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zelong Fu
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeff Yat-Fai Chung
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyun Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ko
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Kathy O. Lui
| |
Collapse
|
9
|
He M, Cheng C, Tu J, Ji SS, Lou D, Bai B. Agrin expression is correlated with tumor development and poor prognosis in cholangiocarcinoma. J Int Med Res 2021; 49:3000605211009722. [PMID: 34018826 PMCID: PMC8150497 DOI: 10.1177/03000605211009722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study examined the role of agrin in the development of cholangiocarcinoma (CCA). Methods Western blotting was performed to detect the expression of target genes. The correlation between agrin expression and prognosis was analyzed using the Kaplan–Meier method. Proliferation, migration, invasion, and tumorigenesis were examined in CCA cells and tissues using the Cell Counting Kit-8 assay, cell cycle analysis, transwell migration assay, and nude mouse tumorigenicity assay in vivo, respectively. Results Agrin expression was significantly upregulated in CCA tissues compared with that in adjacent non-tumor tissues, and agrin expression was correlated with poorer tumor characteristics such as portal vein tumor thrombus, intrahepatic metastasis, and worse survival. Forced agrin expression in CCA cells apparently promoted proliferation, colony formation, migration, invasion, and cell cycle progression, but agrin depletion had the opposite effects. Furthermore, agrin-depleted CCA cells developed fewer and smaller tumors than control cells in vivo. Mechanistic analyses indicated that agrin activated the Hippo signaling pathway and induced the translocation of YAP to the nucleus. Conclusions Agrin promoted CCA progression by activating the Hippo signaling pathway, suggesting its promise as a target for CCA therapy.
Collapse
Affiliation(s)
- Meimei He
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Junxue Tu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Sha-Sha Ji
- Department of Pharmacy, Shaoxing Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China
| | - Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Binglong Bai
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
10
|
Sun X, Malandraki-Miller S, Kennedy T, Bassat E, Klaourakis K, Zhao J, Gamen E, Vieira JM, Tzahor E, Riley PR. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development 2021; 148:261801. [PMID: 33969874 PMCID: PMC8172119 DOI: 10.1242/dev.197525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing β-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.
Collapse
Affiliation(s)
- Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Sophia Malandraki-Miller
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Tahnee Kennedy
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Jia Zhao
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elisabetta Gamen
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
11
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
12
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
13
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
14
|
Bigotti MG, Skeffington KL, Jones FP, Caputo M, Brancaccio A. Agrin-Mediated Cardiac Regeneration: Some Open Questions. Front Bioeng Biotechnol 2020; 8:594. [PMID: 32612983 PMCID: PMC7308530 DOI: 10.3389/fbioe.2020.00594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023] Open
Abstract
After cardiac injury, the mammalian adult heart has a very limited capacity to regenerate, due to the inability of fully differentiated cardiomyocytes (CMs) to efficiently proliferate. This has been directly linked to the extracellular matrix (ECM) surrounding and connecting cardiomyocytes, as its increasing rigidity during heart maturation has a crucial impact over the proliferative capacity of CMs. Very recent studies using mouse models have demonstrated how the ECM protein agrin might promote heart regeneration through CMs de-differentiation and proliferation. In maturing CMs, this proteoglycan would act as an inducer of a specific molecular pathway involving ECM receptor(s) within the transmembrane dystrophin-glycoprotein complex (DGC) as well as intracellular Yap, an effector of the Hippo pathway involved in the replication/regeneration program of CMs. According to the mechanism proposed, during mice heart development agrin gets progressively downregulated and ultimately replaced by other ECM proteins eventually leading to loss of proliferation/ regenerative capacity in mature CMs. Although the role played by the agrin-DGC-YAP axis during human heart development remains still largely to be defined, this scenario opens up fascinating and promising therapeutic avenues. Herein, we discuss the currently available relevant information on this system, with a view to explore how the fundamental understanding of the regenerative potential of this cellular program can be translated into therapeutic treatment of injured human hearts.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Katie L Skeffington
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Ffion P Jones
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| |
Collapse
|
15
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
16
|
Wang A, Xiao Y, Huang P, Liu L, Xiong J, Li J, Mao D, Liu L. Novel NtA and LG1 Mutations in Agrin in a Single Patient Causes Congenital Myasthenic Syndrome. Front Neurol 2020; 11:239. [PMID: 32328026 PMCID: PMC7160337 DOI: 10.3389/fneur.2020.00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) is a group of genetic disorders of neuromuscular transmission that is characterized by muscle weakness. A mutation in the gene encoding agrin (AGRN) is a rare cause of CMS, and only a few families or isolated cases have been reported. We reported a pediatric proband exhibiting muscle weakness in the trunk and limbs with skeletal malformation and intellectual disability and performed whole-exome sequencing (WES) of the proband parent-offspring trio. Results revealed a new compound heterozygous mutation in AGRN: c.125A>C (p.Glu42Ala) in the N-terminal agrin domain (NtA) and c.4516G>A (p.Ala1506Thr) in the laminin G1 domain (LG1). Bioinformatic analysis predicted the mutation as possibly pathogenic. The new compound heterozygous mutation in AGRN may disrupt agrin's known function of bridging laminin and α-dystroglycan and undermine the formation and maintenance of the neuromuscular junction (NMJ) via both muscular and neural agrin pathways. It may also induce secondary peripheral neuropathy and skeletal malformation.
Collapse
Affiliation(s)
- Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ding'an Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Affiliation(s)
- Minkyung Kang
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| | - Yao Yao
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| |
Collapse
|
18
|
Geremek M, Dudarewicz L, Obersztyn E, Paczkowska M, Smyk M, Sobecka K, Nowakowska B. Null variants in AGRN cause lethal fetal akinesia deformation sequence. Clin Genet 2019; 97:634-638. [PMID: 31730230 DOI: 10.1111/cge.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/19/2023]
Abstract
We present a case of lethal fetal akinesia deformation sequence (FADS) caused by a frameshift variant in trans with a 148 kbp deletion encompassing 3-36 exons of AGRN. Pathogenic variants in AGRN have been described in families with a form of congenital myasthenic syndrome (CMS), manifesting in the early childhood with variable fatigable muscle weakness. To the best of our knowledge, this is the first case of FADS caused by defects in AGRN gene. FADS has been reported to be caused by pathogenic variants in genes previously associated with CMS including these involved in endplate development and maintenance: MuSK, DOK7, and RAPSN. FADS seems to be the most severe form of CMS. None of the reported in the literature CMS cases associated with AGRN had two null variants, like the case presented herein. This indicates a strong genotype-phenotype correlation.
Collapse
Affiliation(s)
- Maciej Geremek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Lech Dudarewicz
- Department of Medical Genetics, Polish Mother's Memorial Hospital, Łódź, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Katarzyna Sobecka
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
19
|
Swenarchuk LE. Nerve, Muscle, and Synaptogenesis. Cells 2019; 8:cells8111448. [PMID: 31744142 PMCID: PMC6912269 DOI: 10.3390/cells8111448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skeletal neuromuscular junction (NMJ) has long served as a model system for studying synapse structure, function, and development. Over the last several decades, a neuron-specific isoform of agrin, a heparan sulfate proteoglycan, has been identified as playing a central role in synapse formation at all vertebrate skeletal neuromuscular synapses. While agrin was initially postulated to be the inductive molecule that initiates synaptogenesis, this model has been modified in response to work showing that postsynaptic differentiation can develop in the absence of innervation, and that synapses can form in transgenic mice in which the agrin gene is ablated. In place of a unitary mechanism for neuromuscular synapse formation, studies in both mice and zebrafish have led to the proposal that two mechanisms mediate synaptogenesis, with some synapses being induced by nerve contact while others involve the incorporation of prepatterned postsynaptic structures. Moreover, the current model also proposes that agrin can serve two functions, to induce synaptogenesis and to stabilize new synapses, once these are formed. This review examines the evidence for these propositions, and concludes that it remains possible that a single molecular mechanism mediates synaptogenesis at all NMJs, and that agrin acts as a stabilizer, while its role as inducer is open to question. Moreover, if agrin does not act to initiate synaptogenesis, it follows that as yet uncharacterized molecular interactions are required to play this essential inductive role. Several alternatives to agrin for this function are suggested, including focal pericellular proteolysis and integrin signaling, but all require experimental validation.
Collapse
|
20
|
Handara G, Kröger S. Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons. Neuroscience 2019; 419:60-71. [PMID: 31672640 DOI: 10.1016/j.neuroscience.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/26/2023]
Abstract
Agrin is a multi-domain protein best known for its essential function during formation of the neuromuscular junction. Alternative mRNA splicing at sites named y and z in the C-terminal part of agrin regulates its interaction with a receptor complex consisting of the agrin-binding low-density lipoprotein receptor-related protein 4 (Lrp4) and the muscle-specific kinase (MuSK). Isoforms with inserts at both splice sites bind to Lrp4, activate MuSK and are synaptogenic at the neuromuscular junction. Agrin is also expressed as a transmembrane protein in the central nervous system (CNS) but its function during interneuronal synapse formation is unclear. Recently we demonstrated that transfection of a full-length cDNA coding for transmembrane agrin (TM-agrin) in cultured embryonic cortical neurons induced an Lrp4-dependent but MuSK-independent increase in dendritic glutamatergic synapses and an Lrp4- and MuSK-independent reduction of inhibitory synapses. Here we show that presynaptic specializations were similarly affected by TM-agrin overexpression. In addition, we mapped the regions within TM-agrin responsible for TM-agrin's effects on dendritic aggregates of synapse-associated proteins. We show that the presence of a four amino acid insert at splice site y is essential for the increase in the density of puncta containing the postsynaptic density protein 95 kDa. This effect was independent of splice site z. The reduction of the gephyrin puncta density was independent of the entire extracellular part of TM-agrin but required a highly conserved serine residue in the intracellular domain of TM-agrin. These results provide further evidence for a function of TM-agrin during CNS synaptogenesis and demonstrate that different domains and alternative splicing of TM-agrin differentially affect excitatory and inhibitory synapse formation in cultured embryonic CNS neurons.
Collapse
Affiliation(s)
- Gerry Handara
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152 Planegg-Martinsried, Germany; Institute for Stem Cell Research, German Research Center for Environmental Health, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
21
|
The role of agrin, Lrp4 and MuSK during dendritic arborization and synaptogenesis in cultured embryonic CNS neurons. Dev Biol 2019; 445:54-67. [DOI: 10.1016/j.ydbio.2018.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
|
22
|
Alavi Naini SM, Soussi-Yanicostas N. Heparan Sulfate as a Therapeutic Target in Tauopathies: Insights From Zebrafish. Front Cell Dev Biol 2018; 6:163. [PMID: 30619849 PMCID: PMC6306439 DOI: 10.3389/fcell.2018.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule-associated protein tau (MAPT) hyperphosphorylation and aggregation, are two hallmarks of a family of neurodegenerative disorders collectively referred to as tauopathies. In many tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and Pick's disease, tau aggregates are found associated with highly sulfated polysaccharides known as heparan sulfates (HSs). In AD, amyloid beta (Aβ) peptide aggregates associated with HS are also characteristic of disease. Heparin, an HS analog, promotes misfolding, hyperphosphorylation and aggregation of tau protein in vitro. HS also provides cell surface receptors for attachment and uptake of tau seeds, enabling their propagation. These findings point to HS-tau interactions as potential therapeutic targets in tauopathies. The zebrafish genome contains genes paralogous to MAPT, genes orthologous to HS biosynthetic and chain modifier enzymes, and other genes implicated in AD. The nervous system in the zebrafish bears anatomical and chemical similarities to that in humans. These homologies, together with numerous technical advantages, make zebrafish a valuable model for investigating basic mechanisms in tauopathies and identifying therapeutic targets. Here, we comprehensively review current knowledge on the role of HSs in tau pathology and HS-targeting therapeutic approaches. We also discuss novel insights from zebrafish suggesting a role for HS 3-O-sulfated motifs in tau pathology and establishing HS antagonists as potential preventive agents or therapies for tauopathies.
Collapse
Affiliation(s)
- Seyedeh Maryam Alavi Naini
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, Paris, France
| | | |
Collapse
|
23
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
24
|
Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol 2018; 89:136-146. [PMID: 30076963 DOI: 10.1016/j.semcdb.2018.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
An extracellular matrix (ECM) is a prerequisite for multicellular life. It is adapted to tissues and constantly undergoes changes to preserve microenvironmental homeostasis. The ECM acts as a structural scaffold that establishes tissue architecture and provides tensile strength. It has cell-instructive functions by serving as a reservoir and presenter of soluble agents, being directly signaling, integrating transmission of mechanical and biological cues, or serving as a co-factor potentiating signaling. The skin contains a highly developed, mechanically tough, but yet flexible ECM. The tissue-specific features of this ECM are largely attributed by minor ECM components. A large number of genetic and acquired ECM diseases with skin manifestations, provide an illustrative testament to the importance of correct assembly of the ECM for dermal homeostasis. Here, we will present the composition and features of the skin ECM during homeostasis and regeneration. We will discuss genetic and acquired ECM diseases affecting skin, and provide a short outlook to therapeutic strategies for them.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Zhang Y, Dai Y, Han JN, Chen ZH, Ling L, Pu CQ, Cui LY, Huang XS. A Novel AGRN Mutation Leads to Congenital Myasthenic Syndrome Only Affecting Limb-girdle Muscle. Chin Med J (Engl) 2018; 130:2279-2282. [PMID: 28937031 PMCID: PMC5634075 DOI: 10.4103/0366-6999.215332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMSs) are a group of clinically and genetically heterogeneous disorders caused by impaired neuromuscular transmission. The defect of AGRN was one of the causes of CMS through influencing the development and maintenance of neuromuscular transmission. However, CMS reports about this gene mutation were rare. Here, we report a novel homozygous missense mutation (c.5302G>C) of AGRN in a Chinese CMS pedigree. METHODS We performed a detailed clinical assessment of a Chinese family with three affected members. We screened for pathogenic mutations using a disease-related gene panel containing 519 genes associated with genetic myopathy (including 17 CMS genes). RESULTS In the family, the proband showed limb-girdle pattern of weakness with sparing of ocular, facial, bulbar, and respiratory muscles. Repetitive nerve stimulation showed a clear decrement of the compound muscle action potentials at 3 Hz only. Pathological analysis of the left tibialis anterior muscle showed predominance of type I fiber and the presence of scattered small angular fibers. The proband's two elder sisters shared a similar but more severe phenotype. By gene analysis, the same novel homozygous mutation (c.5302G>C, p. A1768P) of AGRN was identified in all three affected members, whereas the same heterozygous mutation was found in both parents, revealing an autosomal recessive transmission pattern. All patients showed beneficial responses to adrenergic agonists. CONCLUSIONS This study reports a Chinese pedigree in which all three children carried the same novel AGRN mutation have CMS only affecting limb-girdle muscle. These findings might expand the spectrum of mutation in AGRN and enrich the phenotype of CMS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853; Cadre Ward Two, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100843, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jing-Na Han
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao-Hui Chen
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Ling
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chuan-Qiang Pu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xu-Sheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
27
|
MacDonald R, Barbat-Artigas S, Cho C, Peng H, Shang J, Moustaine A, Carbonetto S, Robitaille R, Chalifour LE, Paudel H. A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction. Front Aging Neurosci 2017; 9:258. [PMID: 28824419 PMCID: PMC5541023 DOI: 10.3389/fnagi.2017.00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission requires intricate coordination of the components involved in processing of incoming signals, formation and stabilization of synaptic machinery, neurotransmission and in all related signaling pathways. Changes to any of these components cause synaptic imbalance and disruption of neuronal circuitry. Extensive studies at the neuromuscular junction (NMJ) have greatly aided in the current understanding of synapses and served to elucidate the underlying physiology as well as associated adaptive and homeostatic processes. The heparan sulfate proteoglycan agrin is a vital component of the NMJ, mediating synaptic formation and maintenance in both brain and muscle, but very little is known about direct control of its expression. Here, we investigated the relationship between agrin and transcription factor early growth response-1 (Egr-1), as Egr-1 regulates the expression of many genes involved in synaptic homeostasis and plasticity. Using chromatin immunoprecipitation (ChIP), cell culture with cell lines derived from brain and muscle, and animal models, we show that Egr-1 binds to the AGRN gene locus and suppresses its expression. When compared with wild type (WT), mice deficient in Egr-1 (Egr-1−/−) display a marked increase in AGRN mRNA and agrin full-length and cleavage fragment protein levels, including the 22 kDa, C-terminal fragment in brain and muscle tissue homogenate. Because agrin is a crucial component of the NMJ, we explored possible physiological implications of the Egr-1-agrin relationship. In the diaphragm, Egr-1−/− mice display increased NMJ motor endplate density, individual area and area of innervation. In addition to increased density, soleus NMJs also display an increase in fragmented and faint endplates in Egr-1−/− vs. WT mice. Moreover, the soleus NMJ electrophysiology of Egr-1−/− mice revealed increased quantal content and motor testing showed decreased movement and limb muscle strength compared with WT. This study provides evidence for the potential involvement of a novel Egr-1-agrin pathway in synaptic homeostatic and compensatory mechanisms at the NMJ. Synaptic homeostasis is greatly affected by the process of aging. These and other data suggest that changes in Egr-1 expression may directly or indirectly promote age-related pathologies.
Collapse
Affiliation(s)
- Ryen MacDonald
- Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada.,Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | | | - Chulmin Cho
- Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada.,Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Huashan Peng
- Center for Research in NeuroscienceMontreal, QC, Canada
| | - Jijun Shang
- Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada
| | - Ayman Moustaine
- Département de neurosciences, Université de MontréalMontreal, QC, Canada
| | - Salvatore Carbonetto
- Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada.,Center for Research in NeuroscienceMontreal, QC, Canada.,Department of Medicine, McGill UniversityMontreal, QC, Canada
| | - Richard Robitaille
- Département de neurosciences, Université de MontréalMontreal, QC, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada.,Department of Medicine, McGill UniversityMontreal, QC, Canada
| | - Hemant Paudel
- Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada.,Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada.,Department of Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
28
|
Landi F, Calvani R, Lorenzi M, Martone AM, Tosato M, Drey M, D'Angelo E, Capoluongo E, Russo A, Bernabei R, Onder G, Marzetti E. Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older multimorbid community-dwellers: Results from the ilSIRENTE study. Exp Gerontol 2016; 79:31-6. [PMID: 27015736 DOI: 10.1016/j.exger.2016.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The C-terminal agrin fragment (CAF), a circulating byproduct of neuromuscular junction disassembly, has been proposed as a possible biomarker for sarcopenia. However, its validity in "real-world", multimorbid older persons is currently unknown. The present study was undertaken to verify if serum CAF levels were associated with sarcopenia in a population of old and very old persons living in the community. METHODS Data were from the ilSIRENTE Aging and Longevity Study, a prospective cohort study conducted in all persons aged 80years and older residing in the Sirente geographic area (Italy; n=332). The identification of sarcopenia was based on the criteria elaborated by the European Working Group on Sarcopenia in Older People (EWGSOP). Serum levels of CAF were determined using a commercial ELISA kit. RESULTS Sarcopenia was identified in 101 participants (30.8%). Serum levels of CAF were significantly higher in older adults with sarcopenia compared with non-sarcopenic participants (96.99±5.40pmol/L vs. 76.54±2.15pmol/L; p<0.001). The association remained significant in both genders after adjustment for several possible confounding factors, including age, cognition, disability status, body mass index, congestive heart failure, lung diseases, diabetes, renal failure, and plasma levels of C-reactive protein and interleukin 6. CONCLUSIONS Our results obtained from a fairly large sample of old and very old, multimorbid community-dwellers show that elevated serum CAF levels are associated with sarcopenia, independent of age, gender and several clinical, functional, anthropometric, and biochemical variables. The determination of serum CAF concentration may therefore be proposed as a simple screening test for sarcopenia in the community.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy.
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Lorenzi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Maria Martone
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Tosato
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Michael Drey
- Medizinische Klinik und Poliklinik IV, Schwerpunkt Akutgeriatrie, Klinikum der Universitat Munchen, Munich, Germany
| | - Emanuela D'Angelo
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Ettore Capoluongo
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Rome, Italy
| | - Andrea Russo
- Teaching Nursing Home "Opera Santa Maria della Pace", Fontecchio-Celano, L'Aquila, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Graziano Onder
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
29
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
30
|
The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. CURRENT TOPICS IN MEMBRANES 2015; 76:255-303. [PMID: 26610917 DOI: 10.1016/bs.ctm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.
Collapse
|
31
|
Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta Mol Basis Dis 2015; 1862:472-82. [PMID: 26454208 DOI: 10.1016/j.bbadis.2015.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
32
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
33
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|
34
|
Chakraborty S, Lakshmanan M, Swa HLF, Chen J, Zhang X, Ong YS, Loo LS, Akıncılar SC, Gunaratne J, Tergaonkar V, Hui KM, Hong W. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 2015; 6:6184. [PMID: 25630468 PMCID: PMC4317502 DOI: 10.1038/ncomms7184] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 12/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The identity and role of cell surface molecules driving complex biological events leading to HCC progression are poorly understood, hence representing major lacunae in HCC therapies. Here, combining SILAC quantitative proteomics and biochemical approaches, we uncover a critical oncogenic role of Agrin, which is overexpressed and secreted in HCC. Agrin enhances cellular proliferation, migration and oncogenic signalling. Mechanistically, Agrin’s extracellular matrix sensor activity provides oncogenic cues to regulate Arp2/3-dependent ruffling, invadopodia formation and epithelial–mesenchymal transition through sustained focal adhesion integrity that drives liver tumorigenesis. Furthermore, Agrin signalling through Lrp4-muscle-specific tyrosine kinase (MuSK) forms a critical oncogenic axis. Importantly, antibodies targeting Agrin reduced oncogenic signalling and tumour growth in vivo. Together, we demonstrate that Agrin is frequently upregulated and important for oncogenic property of HCC, and is an attractive target for antibody therapy. The proteoglycan Agrin is known to be expressed in neurons and muscle and to bind ECM protein laminin. Here the authors report that Agrin promotes hepatocellular carcinoma by stimulating proliferation, decreasing focal adhesion, increasing invasiveness and promoting an epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Hannah L F Swa
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jianxiang Chen
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Xiaoqian Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yan Shan Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Semih Can Akıncılar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kam M Hui
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
35
|
Zhang Y, Lin S, Karakatsani A, Rüegg MA, Kröger S. Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles. Eur J Neurosci 2014; 41:69-78. [PMID: 25377642 DOI: 10.1111/ejn.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
Intrafusal fibers of muscle spindles are innervated in the central region by afferent sensory axons and at both polar regions by efferent γ-motoneurons. We previously demonstrated that both neuron-muscle contact sites contain cholinergic synapse-like specialisation, including aggregates of the nicotinic acetylcholine receptor (AChR). In this study we tested the hypothesis that agrin and its receptor complex (consisting of LRP4 and the tyrosine kinase MuSK) are involved in the aggregation of AChRs in muscle spindles, similar to their role at the neuromuscular junction. We show that agrin, MuSK and LRP4 are concentrated at the contact site between the intrafusal fibers and the sensory- and γ-motoneuron, respectively, and that they are expressed in the cell bodies of proprioceptive neurons in dorsal root ganglia. Moreover, agrin and LRP4, but not MuSK, are expressed in γ-motoneuron cell bodies in the ventral horn of the spinal cord. In agrin- and in MuSK-deficient mice, AChR aggregates are absent from the polar regions. In contrast, the subcellular concentration of AChRs in the central region where the sensory neuron contacts the intrafusal muscle fiber is apparently unaffected. Skeletal muscle-specific expression of miniagrin in agrin(-/-) mice in vivo is sufficient to restore the formation of γ-motoneuron endplates. These results show that agrin and MuSK are major determinants during the formation of γ-motoneuron endplates but appear dispensable for the aggregation of AChRs at the central region. Our results therefore suggest different molecular mechanisms for AChR clustering within two domains of intrafusal fibers.
Collapse
Affiliation(s)
- Yina Zhang
- Department of Physiological Genomics, Ludwig-Maximilians-University, Pettenkoferstrasse 12, D-80336, Munich, Germany; Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Nicole S, Chaouch A, Torbergsen T, Bauché S, de Bruyckere E, Fontenille MJ, Horn MA, van Ghelue M, Løseth S, Issop Y, Cox D, Müller JS, Evangelista T, Stålberg E, Ioos C, Barois A, Brochier G, Sternberg D, Fournier E, Hantaï D, Abicht A, Dusl M, Laval SH, Griffin H, Eymard B, Lochmüller H. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain 2014; 137:2429-43. [DOI: 10.1093/brain/awu160] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A, Kröger S, Johnson EB, Hammer RE, Lin W, Herz J. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2013; 2:e00220. [PMID: 23986861 PMCID: PMC3748711 DOI: 10.7554/elife.00220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI:http://dx.doi.org/10.7554/eLife.00220.001 One of the hallmarks of Alzheimer’s disease is the formation of plaques in the brain by a protein called β-amyloid. This protein is generated by the cleavage of a precursor protein, and mutations in the gene that encodes amyloid precursor protein greatly increase the risk of developing a familial, early-onset form of Alzheimer’s disease in middle age. Individuals with a particular variant of a lipoprotein called ApoE (ApoE4) are also more likely to develop Alzheimer’s disease at a younger age than the rest of the population. Due to its prevalence—approximately 20% of the world’s population are carriers of at least one allele—ApoE4 is the single-most important risk factor for the late-onset form of Alzheimer’s disease. Amyloid precursor protein and the receptors for ApoE—in particular one called LRP4—are also essential for the development of the specialized synapse that forms between motor neurons and muscles. However, the mechanisms by which they, individually or together, contribute to the formation of these neuromuscular junctions are incompletely understood. Now, Choi et al. have shown that amyloid precursor protein and LRP4 interact at the developing neuromuscular junction. A protein called agrin, which is produced by motor neurons and which must bind to LRP4 to induce neuromuscular junction formation, also binds directly to amyloid precursor protein. This latter interaction leads to the formation of a complex between LRP4 and amyloid precursor protein that robustly promotes the formation of the neuromuscular junction. Mutations that remove the part of LRP4 that anchors it to the cell membrane weaken this complex and thus reduce the development of neuromuscular junctions in mice, especially if the animals also lack amyloid precursor protein. These three proteins thus seem to influence the development and maintenance of neuromuscular junctions by regulating the activity of a fourth protein, called MuSK, which is present on the surface of muscle cells. Activation of MuSK by agrin bound to LRP4 promotes the clustering of acetylcholine receptors in the membrane, which is a crucial step in the formation of the neuromuscular junction. Intriguingly, Choi et al. have now shown that amyloid precursor protein can, by interacting directly with LRP4, also activate MuSK even in the absence of agrin, albeit only to a small extent. The work of Choi et al. suggests that the complex formed between agrin, amyloid precursor protein and LRP4 helps to focus the activation of MuSK, and thus the clustering of acetylcholine receptors, to the site of the developing neuromuscular junction. Since all four proteins are also found in the central nervous system, similar processes might well be at work during the development and maintenance of synapses in the brain. Further studies of these interactions, both at the neuromuscular junction and in the brain, should shed new light on both normal synapse formation and the synaptic dysfunction that is seen in Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.00220.002
Collapse
Affiliation(s)
- Hong Y Choi
- Department of Molecular Genetics , University of Texas Southwestern Medical Center , Dallas , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bogdanik LP, Sleigh JN, Tian C, Samuels ME, Bedard K, Seburn KL, Burgess RW. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease. Dis Model Mech 2013; 6:780-92. [PMID: 23519028 PMCID: PMC3634660 DOI: 10.1242/dmm.010942] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/06/2013] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.
Collapse
Affiliation(s)
| | - James N. Sleigh
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Mark E. Samuels
- Department of Medicine, Montreal University, Montreal, Quebec, H3T 1C5, Canada
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | - Robert W. Burgess
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
39
|
Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat 2013; 224:29-35. [PMID: 23458718 DOI: 10.1111/joa.12034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 11/28/2022] Open
Abstract
MuSK myasthenia gravis is a rare, severe autoimmune disease of the neuromuscular junction, only identified in 2001, with unclear pathogenic mechanisms. In this review we describe the clinical aspects that distinguish MuSK MG from AChR MG, review what is known about the role of MuSK in the development and function of the neuromuscular junction, and discuss the data that address how the antibodies to MuSK lead to neuromuscular transmission failure.
Collapse
Affiliation(s)
- Inga Koneczny
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
40
|
Patel TR, Butler G, McFarlane A, Xie I, Overall CM, Stetefeld J. Site specific cleavage mediated by MMPs regulates function of agrin. PLoS One 2012; 7:e43669. [PMID: 22984437 PMCID: PMC3439447 DOI: 10.1371/journal.pone.0043669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles in matrix remodeling, degradation and regulation of extracellular signaling networks. PRINCIPAL FINDINGS Site-specific processing of Agrin provides key insight into regulatory effects of Matrix metalloproteinases (MMPs). Here, we present a detailed study of agrin processing by different MMPs together with a molecular understanding of binding and cleavage at both terminal fragments. The data suggest for a regulatory effect of MMP cleavage at particularly important functional sites of agrin. Cleave of agrin abolishes the agrin-laminin complex formation and the Acetylcholine receptor clustering at the neuromuscular junction. CONCLUSION/SIGNIFICANCE Agrin is a target of specific MMP processing resulting in agrin subfragments with different regulatory activities. MMP processing is a powerful tool to regulate extracellular signaling networks.
Collapse
Affiliation(s)
- Trushar R. Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Georgina Butler
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ainsley McFarlane
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Irene Xie
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher M. Overall
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
41
|
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2012; 71:1018-39. [PMID: 21780303 DOI: 10.1002/dneu.20954] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is formed primarily to protect the brain microenvironment from the influx of plasma components, which may disturb neuronal functions. The BBB is a functional unit that consists mainly of specialized endothelial cells (ECs) lining the cerebral blood vessels, astrocytes, and pericytes. The BBB is a dynamic structure that is altered in neurologic diseases, such as stroke. ECs and astrocytes secrete extracellular matrix (ECM) proteins to generate and maintain the basement membranes (BMs). ECM receptors, such as integrins and dystroglycan, are also expressed at the brain microvasculature and mediate the connections between cellular and matrix components in physiology and disease. ECM proteins and receptors elicit diverse molecular signals that allow cell adaptation to environmental changes and regulate growth and cell motility. The composition of the ECM is altered upon BBB disruption and directly affects the progression of neurologic disease. The purpose of this review is to discuss the dynamic changes of ECM composition and integrin receptor expression that control BBB functions in physiology and pathology.
Collapse
Affiliation(s)
- Kim M Baeten
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
42
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
43
|
Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks MJ, Zuber B, Rüegg MA, Sorokin L, Engelhardt B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 2012; 60:1646-59. [DOI: 10.1002/glia.22383] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
|
44
|
Agrin-signaling is necessary for the integration of newly generated neurons in the adult olfactory bulb. J Neurosci 2012; 32:3759-64. [PMID: 22423096 DOI: 10.1523/jneurosci.4906-11.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.
Collapse
|
45
|
Liu Y, Sugiura Y, Wu F, Mi W, Taketo MM, Cannon S, Carroll T, Lin W. β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Dev Biol 2012; 366:255-67. [PMID: 22537499 DOI: 10.1016/j.ydbio.2012.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
β-Catenin, a key component of the Wnt signaling pathway, has been implicated in the development of the neuromuscular junction (NMJ) in mice, but its precise role in this process remains unclear. Here we use a β-catenin gain-of-function mouse model to stabilize β-catenin selectively in either skeletal muscles or motor neurons. We found that β-catenin stabilization in skeletal muscles resulted in increased motor axon number and excessive intramuscular nerve defasciculation and branching. In contrast, β-catenin stabilization in motor neurons had no adverse effect on motor innervation pattern. Furthermore, stabilization of β-catenin, either in skeletal muscles or in motor neurons, had no adverse effect on the formation and function of the NMJ. Our findings demonstrate that β-catenin levels in developing muscles in mice are crucial for proper muscle innervation, rather than specifically affecting synapse formation at the NMJ, and that the regulation of muscle innervation by β-catenin is mediated by a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Miner JH. The glomerular basement membrane. Exp Cell Res 2012; 318:973-8. [PMID: 22410250 DOI: 10.1016/j.yexcr.2012.02.031] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
The kidney's glomerular filtration barrier consists of two cells-podocytes and endothelial cells-and the glomerular basement membrane (GBM), a specialized extracellular matrix that lies between them. Like all basement membranes, the GBM consists mainly of laminin, type IV collagen, nidogen, and heparan sulfate proteoglycan. However, the GBM is unusually thick and contains particular members of these general protein families, including laminin-521, collagen α3α4α5(IV), and agrin. Knockout studies in mice and genetic findings in humans show that the laminin and type IV collagen components are particularly important for GBM structure and function, as laminin or collagen IV gene mutations cause filtration defects and renal disease of varying severities, depending on the nature of the mutations. These studies suggest that the GBM plays a crucial role in establishing and maintaining the glomerular filtration barrier.
Collapse
Affiliation(s)
- Jeffrey H Miner
- Renal Division and Dept. of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem Int 2012; 61:848-53. [PMID: 22414531 DOI: 10.1016/j.neuint.2012.02.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/03/2012] [Accepted: 02/25/2012] [Indexed: 01/13/2023]
Abstract
Development of the neuromuscular junction (NMJ) requires secretion of specific isoforms of the proteoglycan agrin by motor neurons. Secreted agrin is widely expressed in the basal lamina of various tissues, whereas a transmembrane form is highly expressed in the brain. Expression in the brain is greatest during the period of synaptogenesis, but remains high in regions of the adult brain that show extensive synaptic plasticity. The well-established role of agrin in NMJ development and its presence in the brain elicited investigations of its possible role in synaptogenesis in the brain. Initial studies on the embryonic brain and neuronal cultures of agrin-null mice did not reveal any defects in synaptogenesis. However, subsequent studies in culture demonstrated inhibition of synaptogenesis by agrin antisense oligonucleotides or agrin siRNA. More recently, a substantial loss of excitatory synapses was found in the brains of transgenic adult mice that lacked agrin expression everywhere but in motor neurons. The mechanisms by which agrin influences synapse formation, maintenance and plasticity may include enhancement of excitatory synaptic signaling, activation of the "muscle-specific" receptor tyrosine kinase (MuSK) and positive regulation of dendritic filopodia. In this article I will review the evidence that agrin regulates synapse development, plasticity and signaling in the brain and discuss the evidence for the proposed mechanisms.
Collapse
|
48
|
Changes in brain β-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. J Neuropathol Exp Neurol 2012; 70:1124-37. [PMID: 22082664 DOI: 10.1097/nen.0b013e31823b0b12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Conditions that compromise the blood-brain barrier (BBB) have been increasingly implicated in the pathogenesis of Alzheimer disease (AD). AGRIN is a heparan sulfate proteoglycan found abundantly in basement membranes of the cerebral vasculature, where it has been proposed to serve a functional role in the BBB. Furthermore, AGRIN is the major heparan sulfate proteoglycan associated with amyloid plaques in AD brains. To examine the relationship of AGRIN, the BBB, and AD-related pathologies, we generated mice in which the Agrn gene was deleted from either endothelial cells or neurons using gene targeting or was overexpressed using a genomic transgene construct. These mice were combined with a transgenic model of AD that over expresses disease-associated forms of amyloid precursor protein and presenilin 1. In mice lacking endothelial cell expression of Agrn, the BBB remained intact but aquaporin 4 levels were reduced, indicating that the loss of AGRIN affects BBB-associated components. This change in Agrn resulted in an increase in β-amyloid (Aβ) in the brain. Conversely, overexpression of Agrn decreased Aβ deposition, whereas elimination of Agrn from neurons did not change Aβ levels. These results indicate that AGRIN is important for maintaining BBB composition and that changes in Agrn expression (particularly vessel-associated AGRIN) influence Aβ homeostasis in mouse models of AD.
Collapse
|
49
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
50
|
Abstract
Proteoglycans (PGs) impact many aspects of kidney health and disease. Models that permit genetic dissection of PG core protein and glycosaminoglycan (GAG) function have been instrumental to understanding their roles in the kidney. Matrix-associated PGs do not serve critical structural roles in the organ, nor do they contribute significantly to the glomerular barrier under normal conditions, but their abnormal expression influences fibrosis, inflammation, and progression of kidney disease. Most core proteins are dispensable for nephrogenesis (glypican-3 being an exception) and for maintenance of function in adult life, but their loss alters susceptibility to experimental kidney injury. In contrast, kidney development is exquisitely sensitive to GAG expression and fine structure as evidenced by the severe phenotypes of mutants for genes involved in GAG biosynthesis. This article reviews PG expression in normal kidney and the abnormalities caused by their disruption in mice and man.
Collapse
Affiliation(s)
- Scott J Harvey
- INSERM Avenir U983, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|