1
|
Kispert A. Ureter development and associated congenital anomalies. Nat Rev Nephrol 2025; 21:366-382. [PMID: 40164775 DOI: 10.1038/s41581-025-00951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Malformations of the ureter are among the most common birth defects in humans. Although some of these anomalies are asymptomatic, others are clinically relevant, causing perinatal lethality or progressing to kidney failure in childhood. The genetic causes and developmental aetiology of ureteral anomalies are difficult to study in humans; however, embryological and genetic analyses in the mouse have provided insights into the complex developmental programmes that govern ureter formation from simple tissue primordia, and the pathological consequences that result from disruption of these programmes. Abnormalities in the formation of the nephric duct and ureteric bud lead to changes in the number of ureters (and kidneys), whereas the formation of ectopic ureteric buds, failure of the nephric duct to target the cloaca or failure of the distal ureter to mature underlie vesicoureteral reflux, ureter ectopia, ureterocoele and subsequent hydroureter. Alterations in ureter specification, early growth or cyto-differentiation programmes have now also been associated with various forms of perinatal hydroureter and hydronephrosis as a consequence of functional obstruction. The characterization of cellular processes and molecular drivers of ureterogenesis in the mouse may not only aid understanding of the aetiology of human ureteral anomalies, improve prognostication and benefit the development of therapeutic strategies, but may also prove important for efforts to generate a bioartificial organ.
Collapse
Affiliation(s)
- Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
El-Harakeh M, Rodriguez-Tirado F, Hardman AJ, Miehls A, Camara O, Grounds KM, Tocaj G, Kercsmar M, Li B, Wang X, Becknell B, Jackson AR. PPARγ promotes urothelial remodeling during urinary tract obstruction. Exp Mol Med 2025:10.1038/s12276-025-01441-0. [PMID: 40307567 DOI: 10.1038/s12276-025-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 05/02/2025] Open
Abstract
Urinary tract obstruction (UTO) is a common cause of kidney injury that can result in chronic kidney disease and end-stage renal disease. Heterogeneity in the extent of obstructive renal damage in humans with UTO implies the existence of unknown mechanisms that protect against or accelerate kidney injury. Prior studies show that congenital and acquired UTO initiate a conserved, protective program of renal urothelium remodeling that culminates in expansion of uroplakin (UPK)+ cells to promote renal structural integrity. However, the cellular and molecular mechanisms that regulate UPK expression in the renal urothelium are unknown. Peroxisome proliferator-activated receptor γ (PPARγ) drives urothelial differentiation and UPK expression in other tissues but has not been investigated in the renal urothelium. Here we demonstrate that activation of PPARγ in UPK+ cells is critical for UTO-induced renal urothelium remodeling. Conditional deletion of Pparg perturbs UPK expression and accelerates parenchymal thinning during UTO, while conditional activation of PPARγ increases UPK expression and results in parenchymal preservation. This study underscores the significance of renal urothelium during UTO and shows that UTO-induced renal urothelial remodeling is achieved through activation of PPARγ. These findings form the foundation for future studies that will determine the therapeutic utility of PPARγ agonists during congenital and acquired UTO.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Felipe Rodriguez-Tirado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew J Hardman
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alexa Miehls
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Oumoulkhairy Camara
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelly M Grounds
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Glenis Tocaj
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Birong Li
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Xin Wang
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Brian Becknell
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ashley R Jackson
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Rudat C, Straube P, Hegermann J, Trowe MO, Thiesler H, Hildebrandt H, Witt L, Kispert A. PPARG contributes to urothelial integrity in the murine ureter by activating the expression of Shh and superficial cell-specific genes. Development 2025; 152:dev204324. [PMID: 40167323 PMCID: PMC12045629 DOI: 10.1242/dev.204324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
The urothelium is a stratified epithelium with an important barrier function in the urinary drainage system. The differentiation and maintenance of the three major urothelial cell types (basal, intermediate and superficial cells) is incompletely understood. Here, we show that mice with a conditional deletion of the transcription factor gene peroxisome proliferator activated receptor gamma (Pparg) in the ureteric epithelium have a dilated ureter at postnatal stages with a urothelium consisting of a layer of undifferentiated luminal cells and a layer of proliferating basal cells. Molecular analysis of fetal stages revealed that the expression of a large number of genes is not activated in superficial cells and that of a few genes, including Shh, is not activated in intermediate and basal cells. Pharmacological activation of SHH signaling in explant cultures of perinatal Pparg-deficient ureters reduced ureteral width and urothelial cell number to normal levels, increased the number of intermediate cells and slightly reduced basal cell proliferation. Our data suggest that PPARG independently activates the expression of structural genes in superficial cells and of Shh in basal and intermediate cells, and that both functions contribute to urothelial integrity.
Collapse
Affiliation(s)
- Carsten Rudat
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp Straube
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Lisa Witt
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Ten Hoor MAC, Becknell B, Hohenstein P, Mulder J. The etiology of congenital obstructive uropathy: developmental and genetic perspectives. Curr Top Dev Biol 2024; 163:322-363. [PMID: 40254348 DOI: 10.1016/bs.ctdb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital obstructive uropathy (COU) encompasses a heterogeneous group of anomalies arising during critical stages of fetal development, which are characterized by functional or structural obstruction of the urinary tract. This obstruction hampers normal urine flow, and the resulting urinary pressure build-up can damage the developing kidneys and bladder. COU pathogenesis is complex and its clinical outcomes are highly variable, ranging from asymptomatic ultrasonographic abnormalities to end-stage kidney disease. This review examines the developmental and genetic mechanisms underlying COU and the associated organ damage, with a focus on intrinsic, isolated forms. Although genetic studies have improved our understanding of the molecular pathways involved in urinary tract maldevelopment, most patients lack a genetic diagnosis. Hence, multiple etiologic factors appear at play, including (epi)genetic and environmental. Closing gaps in our knowledge of kidney and urinary tract development and their interdependency for normal function is essential for developing personalized care to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Brian Becknell
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, United States
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands; Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Suda K, Arii R, Ma H, Suzuki T, Shibuya S, Koga H, Lane GJ, Yamataka A. Mitochondrial viability in neurogenic bladder urothelium after sigmoidocolocystoplasty. Implications for persistent vesicoureteral reflux. Pediatr Surg Int 2024; 40:222. [PMID: 39136794 DOI: 10.1007/s00383-024-05803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE We investigated whether inflammatory cell infiltration (ICI), fibrosis, and mitochondrial viability of the neurogenic bladder urothelium are involved in the mechanism of persistent vesicoureteral reflux (VUR) after sigmoidocolocystoplasty (SCP). METHODS Bladder biopsies obtained 1994-2023 from 62 neurogenic bladder patients were examined by hematoxylin and eosin for ICI, Masson's trichrome for fibrosis, and immunofluorescence for urothelial growth differentiation factor 15 (GDF15; a mitochondrial stress-responsive cytokine) (positive/negative) and heat shock protein 60 (HSP60; a mitochondrial matrix marker) (strong ≥ 50%/weak≤ 50%) expression. GDF15 + /weak HSP60 indicated compromised mitochondrial viability. Cystometry measured neobladder compliance/capacity. RESULTS Mean ages (years) at SCP and bladder biopsies were 9.4 ± 4.6 and 14.2 ± 7.1, respectively. VUR was present in 38/62 patients (51 ureters) at SCP and resolved with SCP alone in 4/38 patients, with SCP and ureteroneocystostomy in 17/38, and persisted in 17/38. Fibrosis was significantly denser in GDF15 + (n = 24)/weak HSP60 (n = 31) compared with GDF15- (n = 38)/strong HSP60 (n = 31) (p < 0.001 and p < 0.01, respectively). Differences in ICI were significant for GDF15 + vs. GDF15- (p < 0.05) but not for HSP60. Patients with VUR after SCP had higher incidence of GDF15 + /weak HSP60 compared with cases without VUR (p < 0.05 and p < 0.001, respectively). CONCLUSION Viability of mitochondria appears to be compromised with possible etiologic implications for VUR persisting after SCP.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Rumi Arii
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hongzhao Ma
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takamasa Suzuki
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Soichi Shibuya
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Clearman KR, Timpratoom N, Patel D, Rains AB, Haycraft CJ, Croyle MJ, Reiter JF, Yoder BK. Rab35 Is Required for Embryonic Development and Kidney and Ureter Homeostasis through Regulation of Epithelial Cell Junctions. J Am Soc Nephrol 2024; 35:719-732. [PMID: 38530365 PMCID: PMC11164122 DOI: 10.1681/asn.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Key Points Loss of Rab35 leads to nonobstructive hydronephrosis because of loss of ureter epithelium. Rab35 regulates kidney and ureter epithelial cell adhesion and polarity. Rab35 is required for embryonic development. Background Rab35 is a member of a GTPase family of endocytic trafficking proteins. Studies in cell lines have indicated that Rab35 participates in cell adhesion, polarity, cytokinesis, and primary cilia length and composition. In addition, sea urchin Rab35 regulates actin organization and is required for gastrulation. In mice, loss of Rab35 in the central nervous system disrupts hippocampal development and neuronal organization. Outside of the central nervous system, the functions of mammalian Rab35 in vivo are unknown. Methods We generated and analyzed the consequences of both congenital and conditional null Rab35 mutations in mice. Using a LacZ reporter allele, we assessed Rab35 expression during development and postnatally. We assessed Rab35 loss in the kidney and ureter using histology, immunofluorescence microscopy, and western blotting. Results Congenital Rab35 loss of function caused embryonic lethality: homozygous mutants arrested at E7.5 with cardiac edema. Conditional loss of Rab35, either during gestation or postnatally, caused hydronephrosis. The kidney and ureter phenotype were associated with disrupted actin cytoskeletal architecture, altered Arf6 epithelial polarity, reduced adherens junctions, loss of tight junction formation, defects in epithelial growth factor receptor expression and localization, disrupted cell differentiation, and shortened primary cilia. Conclusions Rab35 may be essential for mammalian development and the maintenance of kidney and ureter architecture. Loss of Rab35 leads to nonobstructive hydronephrosis, making the Rab35 mutant mouse a novel mammalian model to study mechanisms underlying this disease.
Collapse
Affiliation(s)
- Kelsey R. Clearman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Napassawon Timpratoom
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dharti Patel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Addison B. Rains
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Courtney J. Haycraft
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J. Croyle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Sivakumaar K, Griffin J, Schofield E, Catto JWF, Jubber I. Gene of the month: the uroplakins. J Clin Pathol 2024; 77:291-296. [PMID: 38418202 DOI: 10.1136/jcp-2024-209388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Uroplakins are a family of membrane-spanning proteins highly specific to the urothelium. There are four uroplakin proteins in humans. These are encoded by the following UPK genes: UPK1A, UPK1B, UPK2 and UPK3 Uroplakin proteins span the apical membrane of umbrella cells of the urothelium, where they associate into urothelial plaques. This provides a barrier function to prevent passage of urine across the urothelium in the renal pelvis, ureters, and bladder. Uroplakins are also involved in developmental processes such as nephrogenesis. The specific localisation of uroplakins within the urothelium means that they are often expressed in primary and metastatic urothelial cell carcinoma and may be used as an immunohistochemical marker of urothelial malignancy.
Collapse
Affiliation(s)
- Krithicck Sivakumaar
- Magdalene College, University of Cambridge, Cambridge, UK
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Jon Griffin
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ella Schofield
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James W F Catto
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ibrahim Jubber
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
8
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Cryo-EM elucidates the uroplakin complex structure within liquid-crystalline lipids in the porcine urothelial membrane. Commun Biol 2023; 6:1018. [PMID: 37805589 PMCID: PMC10560298 DOI: 10.1038/s42003-023-05393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Fan G, Jiang C, Huang Z, Tian M, Pan H, Cao Y, Lei T, Luo Q, Yuan J. 3D autofluorescence imaging of hydronephrosis and renal anatomical structure using cryo-micro-optical sectioning tomography. Theranostics 2023; 13:4885-4904. [PMID: 37771780 PMCID: PMC10526660 DOI: 10.7150/thno.86695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Rationale: Mesoscopic visualization of the main anatomical structures of the whole kidney in vivo plays an important role in the pathological diagnosis and exploration of the etiology of hydronephrosis. However, traditional imaging methods cannot achieve whole-kidney imaging with micron resolution under conditions representing in vivo perfusion. Methods: We used in vivo cryofixation (IVCF) to fix acute obstructive hydronephrosis (unilateral ureteral obstruction, UUO), chronic spontaneous hydronephrosis (db/db mice), and their control mouse kidneys for cryo-micro-optical sectioning tomography (cryo-MOST) autofluorescence imaging. We quantitatively assessed the kidney-wide pathological changes in the main anatomical structures, including hydronephrosis, renal subregions, arteries, veins, glomeruli, renal tubules, and peritubular functional capillaries. Results: By comparison with microcomputed tomography imaging, we confirmed that IVCF can maintain the status of the kidney in vivo. Cryo-MOST autofluorescence imaging can display the main renal anatomical structures with a cellular resolution without contrast agents. The hydronephrosis volume reached 26.11 ± 6.00 mm3 and 13.01 ± 3.74 mm3 in 3 days after UUO and in 15-week-old db/db mouse kidneys, respectively. The volume of the cortex and inner stripe of the outer medulla (ISOM) increased while that of the inner medulla (IM) decreased in UUO mouse kidneys. Db/db mice also showed an increase in the volume of the cortex and ISOM volume but no atrophy in the IM. The diameter of the proximal convoluted tubule and proximal straight tubule increased in both UUO and db/db mouse kidneys, indicating that proximal tubules were damaged. However, some renal tubules showed abnormal central bulge highlighting in the UUO mice, but the morphology of renal tubules was normal in the db/db mice, suggesting differences in the pathology and severity of hydronephrosis between the two models. UUO mouse kidneys also showed vascular damage, including segmental artery and vein atrophy and arcuate vein dilation, and the density of peritubular functional capillaries in the cortex and IM was reduced by 37.2% and 49.5%, respectively, suggesting renal hypoxia. In contrast, db/db mouse kidneys showed a normal vascular morphology and peritubular functional capillary density. Finally, we found that the db/db mice displayed vesicoureteral reflux and bladder overactivity, which may be the cause of hydronephrosis formation. Conclusions: We observed and compared main renal structural changes in hydronephrosis under conditions representing in vivo perfusion in UUO, db/db, and control mice through cryo-MOST autofluorescence imaging. The results indicate that cryo-MOST with IVCF can serve as a simple and powerful tool to quantitatively evaluate the in vivo pathological changes in three dimensions, especially the distribution of body fluids in the whole kidney. This method is potentially applicable to the three-dimensional visualization of other tissues, organs, and even the whole body, which may provide new insights into pathological changes in diseases.
Collapse
Affiliation(s)
- Guoqing Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyu Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuoyao Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijuan Pan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaru Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Lei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215123, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215123, China
| |
Collapse
|
10
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542358. [PMID: 37398191 PMCID: PMC10312457 DOI: 10.1101/2023.05.29.542358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Oda T, Yanagisawa H, Kikkawa M, Kita Y. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. RESEARCH SQUARE 2023:rs.3.rs-3080731. [PMID: 37503277 PMCID: PMC10371089 DOI: 10.21203/rs.3.rs-3080731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this investigation, we employed cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex embedded within the porcine AUM at a resolution of 3.5 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
|
12
|
Munipalli SB, Yenugu S. Uroplakin 1a Knockout Mice Display Marginal Reduction in Fecundity, Decreased Bacterial Clearance Capacity, and Drastic Changes in the Testicular Transcriptome. Reprod Sci 2023; 30:914-927. [PMID: 36042152 DOI: 10.1007/s43032-022-01057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/02/2022] [Indexed: 10/14/2022]
Abstract
Uroplakins (UPKs) form physical and chemical barriers in the bladder and other urinary tract tissues. We previously reported the identification and localization of UPKs in the male reproductive tract of rat. In this study, we characterized Upk1a knockout mice and report a marginal reduction in fecundity associated with significant decrease in sperm count. Upk1a mice had lower bacterial clearance capacity when challenged with uropathogenic Escherichia coli for 1 to 5 days. High-throughput analyses of testicular transcriptome indicated that 1128 genes that are expressed in testis of wild-type mice were completely absent in the knockout, while 2330 genes were found to be expressed only in the testis of knockout mice. Furthermore, differential regulation of 148 (67 upregulated and 81 downregulated) was observed. Gene ontology analyses indicated that processes related to integral components of membrane (plasma membrane), G-protein receptor activity and signaling, olfactory receptor activity and perception of smell, organization of extracellular space/region, immune and inflammatory responses to pathogens, spermatid development, meiotic cell cycle, and formation of synaptonemal complex were affected. Results of this study provide evidence on the possible multi-functional role of Upk1a in male reproductive tract and in other tissues as well.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Pathophysiology and Clinical Biomarkers in Interstitial Cystitis. Urol Clin North Am 2023; 50:39-52. [DOI: 10.1016/j.ucl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Resnik N, Baraga D, Glažar P, Jokhadar Zemljič Š, Derganc J, Sepčić K, Veranič P, Kreft ME. Molecular, morphological and functional properties of tunnelling nanotubes between normal and cancer urothelial cells: New insights from the in vitro model mimicking the situation after surgical removal of the urothelial tumor. Front Cell Dev Biol 2022; 10:934684. [PMID: 36601539 PMCID: PMC9806176 DOI: 10.3389/fcell.2022.934684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Tunnelling nanotubes (TNTs) are membranous connections that represent a unique type of intercellular communication in different cell types. They are associated with cell physiology and cancer pathology. The possible existence of tunnelling nanotubes communication between urothelial cancer and normal cells has not yet been elucidated. Therefore, we analyzed TNTs formed by T24 cells (human invasive cancer urothelial cells) and normal porcine urothelial (NPU) cells, which serve as surrogate models for healthy human urothelial cells. Monocultures and cocultures of NPU and T24 cells were established and analyzed using live-cell imaging, optical tweezers, fluorescence microscopy, and scanning electron microscopy. TNTs of NPU cells differed significantly from tunnelling nanotubes of T24 cells in number, length, diameter, lipid composition, and elastic properties. Membrane domains enriched in cholesterol/sphingomyelin were present in tunnelling nanotubes of T24 cells but not in NPU cells. The tunnelling nanotubes in T24 cells were also easier to bend than the tunnelling nanotubes in NPU cells. The tunnelling nanotubes of both cell types were predominantly tricytoskeletal, and contained actin filaments, intermediate filaments, and microtubules, as well as the motor proteins myosin Va, dynein, and kinesin 5B. Mitochondria were transported within tunnelling nanotubes in living cells, and were colocalized with microtubules and the microtubule-associated protein dynamin 2. In cocultures, heterocellular tunnelling nanotubes were formed between NPU cells and T24 cells and vice versa. The presence of connexin 43 at the end of urothelial tunnelling nanotubes suggests a junctional connection and the involvement of tunnelling nanotube in signal transduction. In this study, we established a novel urothelial cancer-normal coculture model and showed cells in the minority tend to form tunnelling nanotubes with cells in the majority. The condition with cancer cells in the minority is an attractive model to mimic the situation after surgical resection with remaining cancer cells and may help to understand cancer progression and recurrence. Our results shed light on the biological activity of tunnelling nanotubes and have the potential to advance the search for anticancer drugs that target tunnelling nanotubes.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Baraga
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Glažar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Jokhadar Zemljič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
15
|
Differential expression of glycans in the urothelial layers of horse urinary bladder. Ann Anat 2022; 244:151988. [PMID: 35987426 DOI: 10.1016/j.aanat.2022.151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Urothelium is a multilayer epithelium covering the inner surface of the urinary bladder that acts as a blood-urine barrier and is involved in maintaining the wellbeing of the whole organism. Glycans serve in the maturation and differentiation of cells and thus play a key role in the morphology and function of the multilayered epithelium. The aim of the present study was to examine the glycoprotein pattern of the horse urinary bladder urothelium by lectin histochemistry. METHODS The study involved urinary bladders from four horse stallions. Tissue sections were stained with a panel of eleven lectins, in combination with saponification and sialidase digestion (Ks). RESULTS Basal cells displayed high-mannose N-glycans (Con A), α2,6-linked sialic acid (SNA), and O-linked sialoglycans with sialic acids linked to Galβl,3GalNAc (T antigen) (KsPNA) and terminal N-acetylgalactosamine (Tn antigen) (KsSBA). The young intermediate cells expressed terminal N-acetylglucosamine (GlcNAc) (GSA II), galactose (GSA I-B4), T- and Tn antigens (PNA, SBA). The mature intermediate cells showed additional high-mannose N-glycans, O-linked sialoglycans (sialyl-T antigen, sialyl-Tn antigen), α2,6- and α2,3-linked sialic acid (MAL II), α1,2-linked fucose (UEA I), and GlcNAc (KsWGA). The latter residue marked the boundary with the overlying surface layer. Few Con A positive intermediate cells were seen to cross the entire urothelium thickness. The surface cells showed additional glycans such as T antigen and sialic acids linked to GalNAc binding DBA (KsDBA). Few surface cells contained α1,3-linked fucose (LTA), whereas some other cells displayed intraluminal secretion of mucin-type glycans terminating with GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 (DBA). The luminal surface expressed the most complex glycan pattern in the urothelium because only α1,3-linked fucose lacked among the demonstrated glycans. CONCLUSIONS This study showed that the glycan pattern becomes more complex from the basal to surface layer of the urothelium and that surface cells could modify the composition of urine via the secretion of glycoproteins.
Collapse
|
16
|
Clayton DB, Tong CMC, Li B, Taylor AS, De S, Mason MD, Dudley AG, Davidoff O, Kobayashi H, Haase VH. Inhibition of hypoxia-inducible factor-prolyl hydroxylation protects from cyclophosphamide-induced bladder injury and urinary dysfunction. Am J Physiol Renal Physiol 2022; 323:F81-F91. [PMID: 35499237 PMCID: PMC9236868 DOI: 10.1152/ajprenal.00344.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of the blood-urine barrier can result in acute or chronic inflammatory bladder injury. Activation of the oxygen-regulated hypoxia-inducible factor (HIF) pathway has been shown to protect mucosal membranes by increasing the expression of cytoprotective genes and by suppressing inflammation. The activity of HIF is controlled by prolyl hydroxylase domain (PHD) dioxygenases, which have been exploited as therapeutic targets for the treatment of anemia of chronic kidney disease. Here, we established a mouse model of acute cyclophosphamide (CYP)-induced blood-urine barrier disruption associated with inflammation and severe urinary dysfunction to investigate the HIF-PHD axis in inflammatory bladder injury. We found that systemic administration of dimethyloxalylglycine or molidustat, two small-molecule inhibitors of HIF-prolyl hydroxylases, profoundly mitigated CYP-induced bladder injury and inflammation as assessed by morphological analysis of transmural edema and urothelial integrity and by measuring tissue cytokine expression. Void spot analysis to examine bladder function quantitatively demonstrated that HIF-prolyl hydroxylase inhibitor administration normalized micturition patterns and protected against CYP-induced alteration of urinary frequency and micturition patterns. Our study highlights the therapeutic potential of HIF-activating small-molecule compounds for the prevention or therapy of bladder injury and urinary dysfunction due to blood-urine barrier disruption.NEW & NOTEWORTHY Disruption of the blood-urine barrier can result in acute or chronic inflammatory bladder injury. Here, we demonstrate that pharmacological inhibition of hypoxia-inducible factor (HIF)-prolyl hydroxylation prevented bladder injury and protected from urinary dysfunction in a mouse model of cyclophosphamide-induced disruption of the blood-urine barrier. Our study highlights a potential role for HIF-activating small-molecule compounds in the prevention or therapy of bladder injury and urinary dysfunction and provides a rationale for future clinical studies.
Collapse
Affiliation(s)
- Douglass B Clayton
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ching Man Carmen Tong
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Belinda Li
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abby S Taylor
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shuvro De
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew D Mason
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne G Dudley
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Olena Davidoff
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Hanako Kobayashi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Volker H Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
17
|
The Golgi complex: An organelle that determines urothelial cell biology in health and disease. Histochem Cell Biol 2022; 158:229-240. [PMID: 35773494 PMCID: PMC9399047 DOI: 10.1007/s00418-022-02121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
The Golgi complex undergoes considerable structural remodeling during differentiation of urothelial cells in vivo and in vitro. It is known that in a healthy bladder the differentiation from the basal to the superficial cell layer leads to the formation of the tightest barrier in our body, i.e., the blood–urine barrier. In this process, urothelial cells start expressing tight junctional proteins, apical membrane lipids, surface glycans, and integral membrane proteins, the uroplakins (UPs). The latter are the most abundant membrane proteins in the apical plasma membrane of differentiated superficial urothelial cells (UCs) and, in addition to well-developed tight junctions, contribute to the permeability barrier by their structural organization and by hindering endocytosis from the apical plasma membrane. By studying the transport of UPs, we were able to demonstrate their differentiation-dependent effect on the Golgi architecture. Although fragmentation of the Golgi complex is known to be associated with mitosis and apoptosis, we found that the process of Golgi fragmentation is required for delivery of certain specific urothelial differentiation cargoes to the plasma membrane as well as for cell–cell communication. In this review, we will discuss the currently known contribution of the Golgi complex to the formation of the blood–urine barrier in normal UCs and how it may be involved in the loss of the blood–urine barrier in cancer. Some open questions related to the Golgi complex in the urothelium will be highlighted.
Collapse
|
18
|
Wiessner GB, Plumber SA, Xiang T, Mendelsohn CL. Development, regeneration and tumorigenesis of the urothelium. Development 2022; 149:dev198184. [PMID: 35521701 PMCID: PMC10656457 DOI: 10.1242/dev.198184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Gregory B. Wiessner
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Sakina A. Plumber
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Tina Xiang
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Cathy L. Mendelsohn
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
19
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
20
|
Szymańska B, Matuszewski M, Dembowski J, Piwowar A. Initial Evaluation of Uroplakins UPIIIa and UPII in Selected Benign Urological Diseases. Biomolecules 2021; 11:1816. [PMID: 34944460 PMCID: PMC8698914 DOI: 10.3390/biom11121816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uroplakins (UPs) are glycoproteins that play a specific role in the structure and function of the urothelium. Disorders which affect the normal expression of UPs are associated with the pathogenesis of infections and neoplasms of the urinary tract, primary vesicoureteral reflux, hydronephrosis and renal dysfunction. The appearance of uroplakins in the urine and/or plasma may be of potential importance in the detection of urinary tract dysfunction. The aim of the present study was to investigate uroplakin IIIa (UPIIIa) and uroplakin II (UPII) expression in patients with selected urological diseases. METHODS Plasma and urine from patients with benign prostatic hyperplasia (BPH), urethral stricture (US), urinary tract infection (UTI) and urolithiasis were compared to healthy people without urological disorders. UPs concentrations were measured by the immunoenzymatic method. RESULTS In patients with BPH and UTI, concentrations of UPIIIa in urine and plasma, as well as UPII in urine, were statistically significantly higher than in the control groups. In the US group, only the plasma UPIIIa concentration differed significantly from the control. CONCLUSION The conducted research shows that benign urological diseases may affect the state of the urothelium, as manifested by increased concentrations of both UPs in patients' urine and plasma, especially in BPH and UTI.
Collapse
Affiliation(s)
- Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Michał Matuszewski
- Department of Urology and Oncological Urology, Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.M.); (J.D.)
| | - Janusz Dembowski
- Department of Urology and Oncological Urology, Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.M.); (J.D.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
21
|
Hanczar M, Moazen M, Day R. The Significance of Biomechanics and Scaffold Structure for Bladder Tissue Engineering. Int J Mol Sci 2021; 22:ijms222312657. [PMID: 34884464 PMCID: PMC8657955 DOI: 10.3390/ijms222312657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current approaches for bladder reconstruction surgery are associated with many morbidities. Tissue engineering is considered an ideal approach to create constructs capable of restoring the function of the bladder wall. However, many constructs to date have failed to create a sufficient improvement in bladder capacity due to insufficient neobladder compliance. This review evaluates the biomechanical properties of the bladder wall and how the current reconstructive materials aim to meet this need. To date, limited data from mechanical testing and tissue anisotropy make it challenging to reach a consensus on the native properties of the bladder wall. Many of the materials whose mechanical properties have been quantified do not fall within the range of mechanical properties measured for native bladder wall tissue. Many promising new materials have yet to be mechanically quantified, which makes it difficult to ascertain their likely effectiveness. The impact of scaffold structures and the long-term effect of implanting these materials on their inherent mechanical properties are areas yet to be widely investigated that could provide important insight into the likely longevity of the neobladder construct. In conclusion, there are many opportunities for further investigation into novel materials for bladder reconstruction. Currently, the field would benefit from a consensus on the target values of key mechanical parameters for bladder wall scaffolds.
Collapse
Affiliation(s)
- Marta Hanczar
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
| | - Mehran Moazen
- UCL Department of Mechanical Engineering, University College London, London WC1E 7JE, UK;
| | - Richard Day
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
- Correspondence: ; Tel.: +44-203-108-2183
| |
Collapse
|
22
|
Lopes FM, Woolf AS, Roberts NA. Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. J Pediatr Urol 2021; 17:610-620. [PMID: 34312114 DOI: 10.1016/j.jpurol.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| |
Collapse
|
23
|
Rubenwolf P, Eder F, Götz S, Promm M, Rösch WH. Persistent urothelial differentiation changes in the reconstructed exstrophic bladder: Congenital or acquired dysfunction of the epithelial barrier? J Pediatr Urol 2021; 17:632.e1-632.e7. [PMID: 34373207 DOI: 10.1016/j.jpurol.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/26/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND We have previously characterised the urothelium from infants with classic bladder exstrophy (CBE) for the expression of urothelial differentiation-associated markers. We found abnormal expression patterns of uroplakin 3a, cytokeratin 13, cytokeratin 20 and claudin 4 in the majority of bladder biopsies taken at the time of primary bladder closure. Abnormal urothelial differentiation results in a compromised urothelial barrier with potential implications on bladder development and the success of reconstructive surgery. OBJECTIVE To investigate whether the urothelial differentiation changes observed in the unclosed exstrophic bladder persist after successful primary exstrophy repair. DESIGN, SETTING AND PARTICIPANTS From 2005 to 2018 bladder biopsies from 115 children with CBE obtained at the time of primary bladder closure (n = 67, median age: 8.1 weeks) and during secondary procedures aimed at achieving continence (n = 48, median age: 6.8 years) were prospectively collected. Following histological assessment immunohistochemistry was used to investigate the expression of uroplakin 3a, cytokeratin 13 and 20 and claudin 4, well-characterized markers associated with the terminally-differentiated, fully functional urothelial phenotype. The urothelium from 16 children with VUR and with non-refluxing disorders of the urinary tract served as controls. RESULTS Tissue specimen from 100 children were included in the analysis. Only 32% of bladder specimens from children having undergone successful primary bladder closure in early infancy displayed a fully differentiated urothelial phenotype with regular expression of all 4 markers. The remaining bladders revealed irregular or absent marker expression suggesting abnormal urothelial differentiation. 86% of the samples had inflammatory, proliferative or metaplastic histological changes. CONCLUSION Our results suggest persisting urothelial differentiation changes in two-thirds of exstrophic bladders following successful bladder closure in early infancy. Despite some limitations, the findings provide a platform for translational studies into the role of the urothelium for the developmental potential of the exstrophic bladder and the success of reconstructive surgery.
Collapse
Affiliation(s)
- Peter Rubenwolf
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany; Department of Urology, University Medical Center Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.
| | - Fabian Eder
- Institute for Pathology, Dechbettener Strasse 5, Regensburg, 93049, Germany.
| | - Stefanie Götz
- Department of Urology, University Medical Center Regensburg, Franz-Josef Strauß-Allee 11, Forschungsbau H4/Raum 82, Regensburg, 93053, Germany.
| | - Martin Promm
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany.
| | - Wolfgang H Rösch
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany.
| |
Collapse
|
24
|
López-Cortés R, Gómez BB, Vázquez-Estévez S, Pérez-Fentes D, Núñez C. Blood-based protein biomarkers in bladder urothelial tumors. J Proteomics 2021; 247:104329. [PMID: 34298186 DOI: 10.1016/j.jprot.2021.104329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Bladder cancer (BC) is the fifth most common cancer with a high prevalence rate. It is classically classified in two groups, namely non-muscle invasive (NMIBC) and muscle invasive (MIBC). NMIBC accounts for 75% of cases and has a better prognosis than MIBC. However, 30-50% of the NMIBC patients will show recurrences throughout their lives, and about 10-20% of them will progress to MIBC, with frequent metastasis and a reduced survival rate. The diagnosis of bladder cancer is confirmed by direct visualization of the tumour and other mucosal abnormalities with endoscopic excision using cystoscopy and transurethral resection of the bladder (TURBT). An adequate TURBT requires complete resection of all visible tumour with appropriate sampling of the bladder to assess the depth of invasion. However, for many years, researchers have attempted to identify and utilise urinary markers for bladder cancer detection. Voided urine cytology has been the mainstay of urine-based diagnosis of bladder cancer since originally described by Papanicolau and Marshall. Nonetheless, urine cytology has several drawbacks, including a poor sensitivity for low-grade/stage tumours, a lack of interobserver consistency and a variable range of readings (e.g., atypical, atypical-suspicious, non-diagnostic). These shortcomings have inspired the search for more sensitive bladder cancer biomarkers. To bring precision medicine to genitourinary oncology, the analysis of the plasma/serum wide genome and proteome offers promising possibilities.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Benito Blanco Gómez
- Urology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002, Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Daniel Pérez-Fentes
- Urology Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), ES15706 Santiago de Compostela, Spain
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain.
| |
Collapse
|
25
|
Xie X, Liang J, Huang R, Luo C, Yang J, Xing H, Zhou L, Qiao H, Ergu E, Chen H. Molecular pathways underlying tissue injuries in the bladder with ketamine cystitis. FASEB J 2021; 35:e21703. [PMID: 34105799 DOI: 10.1096/fj.202100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Ketamine cystitis (KC) is a chronic bladder inflammation leading to urinary urgency, frequency, and pain. The pathogenesis of KC is complicated and involves multiple tissue injuries in the bladder. Recent studies indicated that urothelium disruption, lamina propria fibrosis and inflammation, microvascular injury, neuropathological alterations, and bladder smooth muscle (BSM) abnormalities all contribute to the pathogenesis of KC. Ketamine has been shown to induce these tissue injuries by regulating different signaling pathways. Ketamine can stimulate antiproliferative factor, adenosine triphosphate, and oxidative stress to disrupt urothelium. Lamina propria fibrosis and inflammation are associated with the activation of cyclooxygenase-2, nitric oxide synthase, immunoglobulin E, and transforming growth factor β1. Ketamine contributes to microvascular injury via the N-methyl-D aspartic receptor (NMDAR), and multiple inflammatory and angiogenic factors such as tumor necrosis factor α and vascular endothelial growth factor. For BSM abnormalities, ketamine can depress the protein kinase B, extracellular signal-regulated kinase, Cav1.2, and muscarinic receptor signaling. Elevated purinergic signaling also plays a role in BSM abnormalities. In addition, ketamine affects neuropathological alterations in the bladder by regulating NMDAR- and brain-derived neurotrophic factor-dependent signaling. Inflammatory cells also contribute to neuropathological changes via the secretion of chemical mediators. Clarifying the role and function of these signaling underlying tissue injuries in the bladder with KC can contribute to a better understanding of the pathophysiology of this disease and to the design of effective treatments for KC.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Le Zhou
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Han Qiao
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Erti Ergu
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
28
|
Cho KJ, Lee KS, Choi JB, Koh JS, Kim JC. Changes in uroplakin expression in the urothelium of patients with ulcerative interstitial cystitis/bladder pain syndrome. Investig Clin Urol 2020; 61:304-309. [PMID: 32377607 PMCID: PMC7189107 DOI: 10.4111/icu.2020.61.3.304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose We evaluated changes in the expression of uroplakin (UP) in the urothelium of patients with ulcerative interstitial cystitis/bladder pain syndrome (IC/BPS). Materials and Methods Bladder samples were collected from 19 patients with ulcerative IC/BPS who were treated with augmentation ileocystoplasty and from 5 control patients. Frequency-volume charts, the pain visual analogue scale (VAS), and the O'Leary-Sant interstitial cystitis symptom index (ICSI) and problem index (ICPI) were used to evaluate the patients' symptoms preoperatively. The expression levels of UP-Ib and UP-III in the urothelium were compared between the IC/BPS patients and control patients. Results Sixteen women and three men with IC/BPS were evaluated. Their values for preoperative mean voiding frequency, number of nocturia episodes, and functional bladder capacity as recorded in frequency-volume charts were 21.1±12.8, 5.9±4.2, and 151.1±62.7 mL, respectively. The mean pain VAS, ICSI, and ICPI scores were 8.4±1.3, 17.7±2.2, and 14.7±1.8, respectively. Immunofluorescence staining showed that UP-Ib and UP-III were localized in the urothelium. Upon Western blot analysis, the expression of UP-III was significantly increased in the IC/BPS group compared with the control group. However, expression of UP-Ib did not differ significantly between the IC/BPS and control groups. Conclusions UP-III was significantly upregulated in patients with ulcerative IC/BPS. UP-III is a potential biomarker for the diagnosis of ulcerative IC/BPS.
Collapse
Affiliation(s)
- Kang Jun Cho
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyu-Sung Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Bong Choi
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Sung Koh
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon Chul Kim
- Department of Urology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Towner RA, Smith N, Saunders D, Lerner M, Greenwood-Van Meerveld B, Hurst RE. Assessing bladder hyper-permeability biomarkers in vivo using molecularly-targeted MRI. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:57-65. [PMID: 32211219 PMCID: PMC7076299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The objective was to investigate if some of the key molecular players associated with bladder hyper-permeability in interstitial cystitis/bladder pain syndrome (IC/BPS) could be visualized with molecularly-targeted magnetic resonance imaging (mt-MRI) in vivo. IC/BPS is a chronic, painful condition of the bladder that affects primarily women. It has been demonstrated over the past several decades that permeability plays a substantial role in IC/BPS. There are several key molecular markers that have been associated with permeability, including glycolsaminoglycan (GAG), biglycan, chondroitin sulfate, decorin, E-cadherin, keratin 20, uroplakin, vascular endothelial growth factor receptor 1 (VEGF-R1), claudin-2 and zonula occludens-1 (ZO-1). We used in vivo molecularly-targeted MRI (mt-MRI) to assess specific urothelial biomarkers (decorin, VEGF-R1, and claudin-2) associated with bladder hyper-permeability in a protamine sulfate (PS)-induced rat model. The mt-MRI probes consisted of an antibody against either VEGF-R1, decorin or claudin-2 conjugated to albumin that had also Gd-DTPA (gadolinium diethylene triamine penta acetic acid) and biotin attached. mt-MRI- and histologically-detectable levels of decorin and VEGF-R1 were both found to decrease following PS-induced bladder urothelial hyper-permeability, whereas claudin-2, was found to increase in the rat PS model. Verification of the presence of the mt-MRI probes were done by targeting the biotin moiety for each respective probe with streptavidin-hose radish peroxidase (HRP). Levels of protein expression for VEGF-R1, decorin and claudin-2 were confirmed with immunohistochemistry. In vivo molecularly-targeted MRI (mt-MRI) was found to successfully detect alterations in the expression of decorin, VEGFR1 and claudin-2 in a PS-induced rat bladder permeability model. This in vivo molecularly-targeted imaging approach has the potential to provide invaluable information to enhance our understanding of bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Megan Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | | | - Robert E Hurst
- Department of Urology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| |
Collapse
|
30
|
Liao Y, Tham DKL, Liang FX, Chang J, Wei Y, Sudhir PR, Sall J, Ren SJ, Chicote JU, Arnold LL, Hu CCA, Romih R, Andrade LR, Rindler MJ, Cohen SM, DeSalle R, Garcia-España A, Ding M, Wu XR, Sun TT. Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes. Mol Biol Cell 2019; 30:2969-2984. [PMID: 31577526 PMCID: PMC6857570 DOI: 10.1091/mbc.e19-05-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due to its coverage by urothelial plaques consisting of 2D crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Because mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Daniel K L Tham
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jennifer Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Putty-Reddy Sudhir
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Joseph Sall
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Sarah J Ren
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Javier U Chicote
- Research Unit, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Chih-Chi Andrew Hu
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Antonio Garcia-España
- Research Unit, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Mingxiao Ding
- College of Life Sciences, Peking University, Dachengfang, Haidian, Beijing 100871, China
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY10016.,Department of Pathology, New York University School of Medicine, New York, NY10016.,Veterans Affairs Medical Center, New York, NY 10010
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY10016.,Department of Urology, New York University School of Medicine, New York, NY10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016.,Department of Dermatology, New York University School of Medicine, New York, NY10016
| |
Collapse
|
31
|
Babu Munipalli S, Yenugu S. Uroplakin expression in the male reproductive tract of rat. Gen Comp Endocrinol 2019; 281:153-163. [PMID: 31181195 DOI: 10.1016/j.ygcen.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Uroplakins (UPKs) play an important role in the normal and pathophysiology of the urothelium. They protect the urothelium and play a crucial role during urothelial infections by Uropathogenic E. coli. However, their functions beyond this organ system remain unexplored. A wide variety of proteins secreted in the male reproductive tract tissues contribute to spermatogenesis, sperm maturation, fertilization and innate immunity. However, the presence of UPKs and their possible contribution to the male reproductive tract physiology is not yet reported. Hence, in this study, we characterized UPKs in the male reproductive tract of rats. To the best of our knowledge, for the first time, we report the expression of UPKs in the male reproductive system. Upk1a, Upk1b, Upk2 and Upk3b mRNA and their corresponding proteins were abundantly expressed in the caput, cauda, testis, seminal vesicles and the prostate. Their expression was not developmentally regulated. UPK protein expression was also localized on the spermatozoa, suggesting a role for these proteins in sperm function. To study the role of UPKs in innate immunity, Upk mRNA expression in response to endotoxin challenge was evaluated in vitro and in vivo. In the rat testicular and epididymal cell lines, Upk mRNA levels increased in response to lipopolysaccharide challenge. However, in the caput, cauda, testes, seminal vesicle and prostate obtained from LPS treated rats, Upk mRNA expression was significantly reduced. Results of this study indicate a role for UPKs in male reproductive physiology and innate immune responses.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
32
|
Nagai T, Imamura T, Ogawa T, Minagawa T, Domen T, Suzuki T, Ueno M, Ishizuka O. Nicotine‐induced hypoxia in rat urothelium deteriorates bladder storage functions. Neurourol Urodyn 2019; 38:1560-1570. [DOI: 10.1002/nau.24050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Takashi Nagai
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Tetsuya Imamura
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Teruyuki Ogawa
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Tomonori Minagawa
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Takahisa Domen
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Toshiro Suzuki
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Manabu Ueno
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| | - Osamu Ishizuka
- Department of UrologyShinshu University School of MedicineMatsumoto Japan
| |
Collapse
|
33
|
Jain S, Chen F. Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J 2018; 12:382-399. [PMID: 31198539 PMCID: PMC6543978 DOI: 10.1093/ckj/sfy112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Congenital anomalies of the kidneys or lower urinary tract (CAKUT) are the most common causes of renal failure in children and account for 25% of end-stage renal disease in adults. The spectrum of anomalies includes renal agenesis; hypoplasia; dysplasia; supernumerary, ectopic or fused kidneys; duplication; ureteropelvic junction obstruction; primary megaureter or ureterovesical junction obstruction; vesicoureteral reflux; ureterocele; and posterior urethral valves. CAKUT originates from developmental defects and can occur in isolation or as part of other syndromes. In recent decades, along with better understanding of the pathological features of the human congenital urinary tract defects, researchers using animal models have provided valuable insights into the pathogenesis of these diseases. However, the genetic causes and etiology of many CAKUT cases remain unknown, presenting challenges in finding effective treatment. Here we provide an overview of the critical steps of normal development of the urinary system, followed by a description of the pathological features of major types of CAKUT with respect to developmental mechanisms of their etiology.
Collapse
Affiliation(s)
- Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Feng Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
34
|
Abelson B, Sun D, Que L, Nebel RA, Baker D, Popiel P, Amundsen CL, Chai T, Close C, DiSanto M, Fraser MO, Kielb SJ, Kuchel G, Mueller ER, Palmer MH, Parker-Autry C, Wolfe AJ, Damaser MS. Sex differences in lower urinary tract biology and physiology. Biol Sex Differ 2018; 9:45. [PMID: 30343668 PMCID: PMC6196569 DOI: 10.1186/s13293-018-0204-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Females and males differ significantly in gross anatomy and physiology of the lower urinary tract, and these differences are commonly discussed in the medical and scientific literature. However, less attention is dedicated to investigating the varied development, function, and biology between females and males on a cellular level. Recognizing that cell biology is not uniform, especially in the lower urinary tract of females and males, is crucial for providing context and relevance for diverse fields of biomedical investigation. This review serves to characterize the current understanding of biological sex differences between female and male lower urinary tracts, while identifying areas for future research. First, the differences in overall cell populations are discussed in the detrusor smooth muscle, urothelium, and trigone. Second, the urethra is discussed, including anatomic discussions of the female and male urethra followed by discussions of cellular differences in the urothelial and muscular layers. The pelvic floor is then reviewed, followed by an examination of the sex differences in hormonal regulation, the urinary tract microbiome, and the reticuloendothelial system. Understanding the complex and dynamic development, anatomy, and physiology of the lower urinary tract should be contextualized by the sex differences described in this review.
Collapse
Affiliation(s)
- Benjamin Abelson
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Sun
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lauren Que
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Dylan Baker
- UConn Center on Aging, University of Connecticut, 263 Farmington, Farmington, CT, USA
| | - Patrick Popiel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Cindy L Amundsen
- Department of Obstetrics and Gynecology, Division of Urogynecology and Reconstructive Surgery, Duke University, Durham, NC, USA
| | - Toby Chai
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | | | - Michael DiSanto
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Matthew O Fraser
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie J Kielb
- Department of Urology and Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George Kuchel
- UConn Center on Aging, University of Connecticut, 263 Farmington, Farmington, CT, USA
| | - Elizabeth R Mueller
- Department of Urology, Loyola University Chicago, Maywood, IL, USA.,Department of Obstetrics/Gynecology, Loyola University Chicago, Maywood, IL, USA
| | - Mary H Palmer
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Candace Parker-Autry
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Margot S Damaser
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. .,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA. .,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
35
|
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 2018; 29:3128-3143. [PMID: 30303751 PMCID: PMC6340209 DOI: 10.1091/mbc.e18-08-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles (“urothelial plaques”) covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs’ fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Hung-Chi Chang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016.,Department of Obstetrics and Gynecology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | | | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Tuan-Phi Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ge Zhou
- Regeneron, Tarrytown, NY 10591
| | - Sheeva Talebian
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Lewis C Krey
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University, Tainan 701, Taiwan
| | - Javier U Chicote
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - James A Grifo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Robert DeSalle
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Antonio Garcia-España
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| |
Collapse
|
36
|
Jackson AR, Li B, Cohen SH, Ching CB, McHugh KM, Becknell B. The uroplakin plaque promotes renal structural integrity during congenital and acquired urinary tract obstruction. Am J Physiol Renal Physiol 2018; 315:F1019-F1031. [PMID: 29897287 PMCID: PMC6230727 DOI: 10.1152/ajprenal.00173.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Urinary tract obstruction represents a common cause of kidney injury across the human life span, resulting in chronic kidney disease and end-stage renal disease. Yet, the extent of obstructive renal damage can be heterogeneous between individuals, implying the existence of unknown mechanisms that protect against or accelerate kidney injury. In this study, we investigated the role of urothelial remodeling in renal adaptation during congenital and acquired obstruction. In the Megabladder ( Mgb-/-) model of congenital obstruction and unilateral ureteral ligation model of acute obstruction, progressive hydronephrosis is strongly associated with dynamic reorganization of the renal urothelium, which elaborates a continuous uroplakin (Upk) plaque. This led us to postulate that the Upk plaque prevents parenchymal injury during urinary tract obstruction. To test this hypothesis, we interbred Mgb-/- and Upk1b-/- mice, which lack the critical Upk1b subunit for Upk plaque formation. Upk1b-/-; Mgb-/- mice experienced an accelerated onset of bilateral hydronephrosis with severe (>67%) parenchymal loss, leading to renal failure and mortality in adolescence. To investigate the function of the renal Upk plaque during acute obstruction, we destabilized the Upk plaque by Upk1b deletion or genetically depleted Upk+ cells following unilateral ureteral obstruction. Both of these strategies accelerated renal parenchymal loss following ureteral ligation, attesting to a conserved, stabilizing role for Upk plaque deposition in the acutely obstructed kidney. In aggregate, these complementary experiments provide the first evidence that the Upk plaque confers an essential, protective adaptation to preserve renal parenchymal integrity during congenital and acquired urinary tract obstruction.
Collapse
Affiliation(s)
- Ashley R Jackson
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Birong Li
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Shira H Cohen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Christina B Ching
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
- Division of Pediatric Urology, Department of Surgery, Nationwide Children's Hospital , Columbus, Ohio
| | - Kirk M McHugh
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
- Department of Anatomy, Ohio State University School of Medicine , Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
- Nephrology Section, Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
37
|
Liaw A, Cunha GR, Shen J, Cao M, Liu G, Sinclair A, Baskin L. Development of the human bladder and ureterovesical junction. Differentiation 2018; 103:66-73. [PMID: 30236462 DOI: 10.1016/j.diff.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022]
Abstract
The urinary bladder collects urine from the kidneys and stores it until the appropriate moment for voiding. The trigone and ureterovesical junctions are key to bladder function, by allowing one-way passage of urine into the bladder without obstruction. Embryological development of these structures has been studied in multiple animal models as well as humans. In this report we review the existing literature on bladder development and cellular signalling with particular focus on bladder development in humans. The bladder and ureterovesical junction form primarily during the fourth to eighth weeks of gestation, and arise from the primitive urogenital sinus following subdivision of the cloaca. The bladder develops through mesenchymal-epithelial interactions between the endoderm of the urogenital sinus and mesodermal mesenchyme. Key signalling factors in bladder development include shh, TGF-β, Bmp4, and Fgfr2. A concentration gradient of shh is particularly important in development of bladder musculature, which is vital to bladder function. The ureterovesical junction forms from the interaction between the Wolffian duct and the bladder. The ureteric bud arises from the Wolffian duct and is incorporated into the developing bladder at the trigone. It was previously thought that the trigonal musculature developed primarily from the Wolffian duct, but it has been shown to develop primarily from bladder mesenchyme. Following emergence of the ureters from the Wolffian ducts, extensive epithelial remodelling brings the ureters to their final trigonal positions via vitamin A-induced apoptosis. Perturbation of this process is implicated in clinical obstruction or urine reflux. Congenital malformations include ureteric duplication and bladder exstrophy.
Collapse
Affiliation(s)
- Aron Liaw
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Ge Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States.
| |
Collapse
|
38
|
Lu M, Li JR, Alvarez-Lugo L, Li Y, Yu S, Li X, Shi B, Chai TC. Lipopolysaccharide stimulates BK channel activity in bladder umbrella cells. Am J Physiol Cell Physiol 2018; 314:C643-C653. [PMID: 29466671 DOI: 10.1152/ajpcell.00339.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bladder urothelium plays an active role in response to bacterial infection. There is little known about the electrophysiological activity in urothelial cells in this process. We used a nonenzymatic method to isolate bladder urothelial tissue and to patch clamp umbrella cells in situ. A 200 pS conductance potassium (K+) channel was detected from female C57BL6 mice. Of 58 total patches, 17.2% patches displayed the 200 pS K+ conductance channel. This K+ conductance channel showed Ca2+ sensitivity and voltage dependence. Specific big-conductance potassium channel (BK) inhibitors (paxilline, iberiotoxin) blocked the 200 pS K+ conductance channel activity. RT-PCR and immunoblot confirmed BK channel pore-forming α-subunit (BK-α) mRNA and protein in urothelium. Immunohistochemistry also showed the BK-α located in urothelium. The above data provided evidence that the 200 pS K+ conductance channel was a BK channel. Lipopolysaccharide (LPS), a component of uropathogenic Escherichia coli, was used to investigate the role of BK channel in the pathogenesis of urinary tract infection. BK channel activity as NPo increased threefold within 30 min of exposure to LPS. mRNAs for LPS receptors (TLR4, CD14, MD-2) were expressed in the urothelium but not in lamina propria or detrusor. Blockade of the receptors by an antagonist (polymyxin B) abrogated LPS's effect on BK channel. The involvement of protein kinase A (PKA) on BK channel activity was demonstrated by applying PKA blockers (H89 and PKI). Both PKA inhibitors abolished the BK channel activity induced by LPS. In conclusion, BK channel was identified in bladder umbrella cells, and its activity was significantly increased by LPS.
Collapse
Affiliation(s)
- Ming Lu
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| | - Jian-Ri Li
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| | - Lery Alvarez-Lugo
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| | - Yan Li
- Department of Urology, Qilu Hospital, Shandong University , Jinan , China
| | - Shan Yu
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| | - XuanHao Li
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Shandong University , Jinan , China
| | - Toby C Chai
- Department of Urology, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
39
|
Kitamura N, Nishino M, Fujii A, Hashizume K, Nakamura J, Kondo H, Ohuchi A, Hase T, Murase T. Perilla extract improves frequent urination in spontaneously hypertensive rats with enhancement of the urothelial presence and anti-inflammatory effects. Int J Urol 2017; 25:298-304. [PMID: 29268303 DOI: 10.1111/iju.13516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effects of perilla extract on urinary symptoms in spontaneously hypertensive rats as a model of spontaneous overactive bladder. METHODS Spontaneously hypertensive rats were randomly divided into two groups and fed either a control diet or a perilla extract-containing diet. Cystometry, gene expression and histological analyses were carried out to evaluate the effects of perilla extract after 2-week feeding of either the control or the perilla extract diet. The expression of inflammation-related genes in the human urothelial cell line HT-1376 and the normal human bladder epithelial cell was measured after the treatment with perillaldehyde, the main component of perilla extract, or perillic acid, the final metabolite of perillaldehyde. RESULTS A significant 27% increase in the micturition interval and decreased expression of nerve growth factor, tumor necrosis factor-α, interleukin-1β and transient receptor potential V1 were observed in the perilla group compared with the control group. The level of uroplakin 3A was 40% higher in the perilla group than in the control group. The urothelium in the control group was thin or defective, but it was almost completely intact in the perilla group. Perillaldehyde and perillic acid suppressed the induction of nerve growth factor and tumor necrosis factor-α by interleukin-1β in HT-1376 and normal human bladder epithelial cells. CONCLUSIONS The present findings suggest that perilla extract improves frequent urination, and this improvement seems to be mediated, at least in part, by enhancement of the urothelial presence and by the anti-inflammatory effects of perilla.
Collapse
Affiliation(s)
- Naoya Kitamura
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Machiko Nishino
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Akihiko Fujii
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | | - Junji Nakamura
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Hidehiko Kondo
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Atsushi Ohuchi
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Tadashi Hase
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
40
|
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7:12842. [PMID: 28993693 PMCID: PMC5634464 DOI: 10.1038/s41598-017-13103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
Uroplakins (UPs) play an essential role in maintaining an effective urothelial permeability barrier at the level of superficial urothelial cell (UC) layer. Although the organization of UPs in the apical plasma membrane (PM) of UCs is well known, their transport in UCs is only partially understood. Here, we dissected trafficking of UPs and its differentiation-dependent impact on Golgi apparatus (GA) architecture. We demonstrated that individual subunits UPIb and UPIIIa are capable of trafficking from the endoplasmic reticulum to the GA in UCs. Moreover, UPIb, UPIIIa or UPIb/UPIIIa expressing UCs revealed fragmentation and peripheral redistribution of Golgi-units. Notably, expression of UPIb or UPIb/UPIIIa triggered similar GA fragmentation in MDCK and HeLa cells that do not express UPs endogenously. The colocalization analysis of UPIb/UPIIIa-EGFP and COPI, COPII or clathrin suggested that UPs follow constitutively the post-Golgi route to the apical PM. Depolymerisation of microtubules leads to complete blockade of the UPIb/UPIIIa-EGFP post-Golgi transport, while disassembly of actin filaments shows significantly reduced delivery of UPIb/UPIIIa-EGFP to the PM. Our findings show the significant effect of the UPs expression on the GA fragmentation, which enables secretory Golgi-outpost to be distributed as close as possible to the sites of cargo delivery at the PM.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Horst Robenek
- Institute for experimental musculoskeletal medicine, University of Münster, Albert-Schweitzer-Campus 1, Domagkstrasse 3, 48149, Münster, Germany
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia & LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana & Celica Biomedical Center, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Carpenter AR, McHugh KM. Role of renal urothelium in the development and progression of kidney disease. Pediatr Nephrol 2017; 32:557-564. [PMID: 27115886 PMCID: PMC5081278 DOI: 10.1007/s00467-016-3385-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
The clinical and financial impact of chronic kidney disease (CKD) is significant, while its progression and prognosis is variable and often poor. Studies using the megabladder (mgb -/- ) model of CKD show that renal urothelium plays a key role in modulating early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical, and molecular characterization of Upk1b RFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/asymmetric membrane unit (AUM) formation, and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence that Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis, and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in normal development and pathogenesis of the urinary tract and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression.
Collapse
Affiliation(s)
- Ashley R. Carpenter
- Biomedical Sciences Graduate Program, The Ohio State University,Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Kirk M. McHugh
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital,Division of Anatomy, The Ohio State University
| |
Collapse
|
42
|
Kuriyama S, Tamiya Y, Tanaka M. Spatiotemporal expression of UPK3B and its promoter activity during embryogenesis and spermatogenesis. Histochem Cell Biol 2016; 147:17-26. [PMID: 27577269 DOI: 10.1007/s00418-016-1486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Uroplakin (Upk) 3 is one of the main structural components of the urothelium tissue. Although expression of UPK3B is seen in a wider variety of the tissues and organs than UPK3A, tissue-specific expression has not yet been analyzed. Here, we analyzed the Cre recombinase activity driven by the Upk3b promoter in transgenic mice and the endogenous localization of UPK3B. We generated Tg(Upk3b-Cre)/R26tdTomato mice by crossing ROSA26tm14(CAG-tdTomato) (R26tdTomato) mice with Tg(Upk3b-Cre) mice and investigated the spatiotemporal distribution of tdTomato in embryonic and adult mice. In embryos, we detected Cre recombinase activity in neural crest cells and the heart, liver, kidneys, and lungs. In adult mice, Cre recombinase activity was detected in male and female genital organs; however, the activity was absent in the bladder. Histological analyses revealed that both tdTomato and UPK3B were present in testicular and epididymal sperm; however, tdTomato was not present in the ductus epididymis, where the endogenous expression of UPK3B was detected. In female siblings, both tdTomato and UPK3B expressions were detected in the follicles of the ovary, whereas no tdTomato expression was found in the mucosal epithelium of the fallopian tubes, where the endogenous UPK3B was expressed. These data suggest that UPK3B may play a pivotal role in the maturation of gametes and gamete-delivery organs.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.
| | - Yuutaro Tamiya
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita City, Akita, 010-8502, Japan
| | - Masamitsu Tanaka
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan
| |
Collapse
|
43
|
Lee AJ, Polgar N, Napoli JA, Lui VH, Tamashiro KK, Fujimoto BA, Thompson KS, Fogelgren B. Fibroproliferative response to urothelial failure obliterates the ureter lumen in a mouse model of prenatal congenital obstructive nephropathy. Sci Rep 2016; 6:31137. [PMID: 27511831 PMCID: PMC4980620 DOI: 10.1038/srep31137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital obstructive nephropathy (CON) is the most prevalent cause of pediatric chronic kidney disease and end-stage renal disease. The ureteropelvic junction (UPJ) region, where the renal pelvis transitions to the ureter, is the most commonly obstructed site in CON. The underlying causes of congenital UPJ obstructions remain poorly understood, especially when they occur in utero, in part due to the lack of genetic animal models. We previously showed that conditional inactivation of Sec10, a central subunit of the exocyst complex, in the epithelial cells of the ureter and renal collecting system resulted in late gestational bilateral UPJ obstructions with neonatal anuria and death. In this study, we show that without Sec10, the urothelial progenitor cells that line the ureter fail to differentiate into superficial cells, which are responsible for producing uroplakin plaques on the luminal surface. These Sec10-knockout urothelial cells undergo cell death by E17.5 and the urothelial barrier becomes leaky to luminal fluid. Also at E17.5, we measured increased expression of TGFβ1 and genes associated with myofibroblast activation, with evidence of stromal remodeling. Our findings support the model that a defective urothelial barrier allows urine to induce a fibrotic wound healing mechanism, which may contribute to human prenatal UPJ obstructions.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Josephine A Napoli
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Vanessa H Lui
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Kadee-Kalia Tamashiro
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Brent A Fujimoto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Karen S Thompson
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| |
Collapse
|
44
|
Zwaans BMM, Krueger S, Bartolone SN, Chancellor MB, Marples B, Lamb LE. Modeling of chronic radiation-induced cystitis in mice. Adv Radiat Oncol 2016; 1:333-343. [PMID: 28217761 PMCID: PMC5312778 DOI: 10.1016/j.adro.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Radiation cystitis (RC), a severe inflammatory bladder condition, develops as a side effect of pelvic radiation therapy in cancer patients. There are currently no effective therapies to treat RC, in part from the lack of preclinical model systems. In this study, we developed a mouse model for RC and used a Small Animal Radiation Research Platform to simulate the targeted delivery of radiation as used with human patients. Methods and materials To induce RC, C3H mice received a single radiation dose of 20 Gy delivered through 2 beams. Mice were subjected to weekly micturition measurements to assess changes in urinary frequency. At the end of the study, bladder tissues were processed for histology. Results Radiation was well-tolerated; no change in weight was observed in the weeks after treatment, and there was no hair loss at the irradiation sites. Starting at 17 weeks after treatment, micturition frequency was significantly higher in irradiated mice versus control animals. Pathological changes include fibrosis, inflammation, urothelial thinning, and necrosis. At a site of severe insult, we observed telangiectasia, absence of uroplakin-3 and E-cadherin relocalization. Conclusions We developed an RC model that mimics the human pathology and functional changes. Furthermore, radiation exposure attenuates the urothelial integrity long-term, allowing for potential continuous irritability of the bladder wall from exposure to urine. Future studies will focus on the underlying molecular changes associated with this condition and investigate novel treatment strategies.
Collapse
Affiliation(s)
| | - Sarah Krueger
- Beaumont Health System, Royal Oak, MI; Oakland University William Beaumont School of Medicine, Auburn Hills, MI
| | | | - Michael B Chancellor
- Beaumont Health System, Royal Oak, MI; Oakland University William Beaumont School of Medicine, Auburn Hills, MI; Lipella Pharmaceuticals, Pittsburgh, PA
| | - Brian Marples
- Beaumont Health System, Royal Oak, MI; Oakland University William Beaumont School of Medicine, Auburn Hills, MI
| | - Laura E Lamb
- Beaumont Health System, Royal Oak, MI; Oakland University William Beaumont School of Medicine, Auburn Hills, MI
| |
Collapse
|
45
|
Matuszewski MA, Tupikowski K, Dołowy Ł, Szymańska B, Dembowski J, Zdrojowy R. Uroplakins and their potential applications in urology. Cent European J Urol 2016; 69:252-257. [PMID: 27729990 PMCID: PMC5057044 DOI: 10.5173/ceju.2016.638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 06/12/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Urothelium is a highly specialized type of epithelium covering the interior of the urinary tract. One of the structures responsible for its unique features are urothelial plaques formed from glycoprotein heteropolymers, the uroplakins. Four types of uroplakins are known – UPIa, UPIb, UPII, UPIII. Herein we review the current status of knowledge about uroplakins and discuss their potential clinical applications. Material and methods A PubMed search was conducted to find original and review papers about uroplakins. Results Uroplakins can be detected in tissue, urine and blood. The process of urothelial plaque formation is complex and its disturbances resulting in incorrect plaque formation might be responsible for some pathological states. Additionally, uroplakins might be associated with other pathological processes i.e. urothelial cancer or infections of the urinary tract. Conclusions Uroplakins as the end-product of urothelial cells have unique features and a complex structure. These glycoproteins can be involved in some diseases of the urinary tract and as such can be used as potential targets for intervention and markers of the disease.
Collapse
Affiliation(s)
| | | | - Łukasz Dołowy
- Department of Urology, University Clinical Hospital in Wrocław, Poland
| | - Beata Szymańska
- Department of Toxicology, Wrocław Medical University, Poland
| | - Janusz Dembowski
- Department of Urology and Oncologic Urology, Wrocław Medical University, Poland
| | - Romuald Zdrojowy
- Department of Urology and Oncologic Urology, Wrocław Medical University, Poland
| |
Collapse
|
46
|
Wankel B, Ouyang J, Guo X, Hadjiolova K, Miller J, Liao Y, Tham DKL, Romih R, Andrade LR, Gumper I, Simon JP, Sachdeva R, Tolmachova T, Seabra MC, Fukuda M, Schaeren-Wiemers N, Hong WJ, Sabatini DD, Wu XR, Kong X, Kreibich G, Rindler MJ, Sun TT. Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol Biol Cell 2016; 27:1621-34. [PMID: 27009205 PMCID: PMC4865319 DOI: 10.1091/mbc.e15-04-0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
As major urothelial differentiation products, uroplakins are targeted to the apical surface of umbrella cells. Via the sequential actions of Rabs 11, 8, and 27b and their effectors, uroplakin vesicles are transported to a subapical zone above a K20 network and fuse, via a SNARE-mediated and MAL-facilitated step, with the urothelial apical membrane. Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.
Collapse
Affiliation(s)
- Bret Wankel
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jiangyong Ouyang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xuemei Guo
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Krassimira Hadjiolova
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jeremy Miller
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Daniel Kai Long Tham
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Leonardo R Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jean-Pierre Simon
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rakhee Sachdeva
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tanya Tolmachova
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Miguel C Seabra
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nicole Schaeren-Wiemers
- Neurobiology Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Wan Jin Hong
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY10016
| | - Xiangpeng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016
| | - Gert Kreibich
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY10016 Department of Urology, New York University School of Medicine, New York, NY10016 Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016 Department of Dermatology, New York University School of Medicine, New York, NY10016
| |
Collapse
|
47
|
Evidence of Nonuniformity in Urothelium Barrier Function between the Upper Urinary Tract and Bladder. J Urol 2016; 195:763-70. [DOI: 10.1016/j.juro.2015.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 11/23/2022]
|
48
|
Johnson DT, Hooker E, Luong R, Yu EJ, He Y, Gonzalgo ML, Sun Z. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS One 2016; 11:e0148851. [PMID: 26862755 PMCID: PMC4749068 DOI: 10.1371/journal.pone.0148851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 01/09/2023] Open
Abstract
Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC) than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.
Collapse
MESH Headings
- Androgens
- Animals
- Butylhydroxybutylnitrosamine
- Carcinoma, Transitional Cell/chemically induced
- Carcinoma, Transitional Cell/etiology
- Carcinoma, Transitional Cell/genetics
- Cell Division
- Cell Transformation, Neoplastic
- Drug Implants
- Female
- Genetic Predisposition to Disease
- Humans
- Integrases
- Male
- Mice
- Mice, Transgenic
- Neoplasms, Hormone-Dependent/chemically induced
- Neoplasms, Hormone-Dependent/etiology
- Neoplasms, Hormone-Dependent/genetics
- Orchiectomy
- Promoter Regions, Genetic/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Recombinant Fusion Proteins/metabolism
- Tamoxifen/pharmacology
- Testosterone/administration & dosage
- Transgenes
- Urinary Bladder Neoplasms/chemically induced
- Urinary Bladder Neoplasms/etiology
- Urinary Bladder Neoplasms/genetics
- Uroplakin III/biosynthesis
- Uroplakin III/genetics
Collapse
Affiliation(s)
- Daniel T. Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
| | - Erika Hooker
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
| | - Eun-Jeong Yu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
| | - Yongfeng He
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
| | - Mark L. Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States of America
| | - Zijie Sun
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305–5328, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zwaans BM, Chancellor MB, Lamb LE. Modeling and Treatment of Radiation Cystitis. Urology 2016; 88:14-21. [DOI: 10.1016/j.urology.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
50
|
Imani R, Veranič P, Iglič A, Kreft ME, Pazoki M, Hudoklin S. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem Photobiol Sci 2015; 14:583-90. [PMID: 25385056 DOI: 10.1039/c4pp00272e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|