1
|
Okujeni S, Egert U. Self-organization of modular network architecture by activity-dependent neuronal migration and outgrowth. eLife 2019; 8:47996. [PMID: 31526478 PMCID: PMC6783273 DOI: 10.7554/elife.47996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
The spatial distribution of neurons and activity-dependent neurite outgrowth shape long-range interaction, recurrent local connectivity and the modularity in neuronal networks. We investigated how this mesoscale architecture develops by interaction of neurite outgrowth, cell migration and activity in cultured networks of rat cortical neurons and show that simple rules can explain variations of network modularity. In contrast to theoretical studies on activity-dependent outgrowth but consistent with predictions for modular networks, spontaneous activity and the rate of synchronized bursts increased with clustering, whereas peak firing rates in bursts increased in highly interconnected homogeneous networks. As Ca2+ influx increased exponentially with increasing network recruitment during bursts, its modulation was highly correlated to peak firing rates. During network maturation, long-term estimates of Ca2+ influx showed convergence, even for highly different mesoscale architectures, neurite extent, connectivity, modularity and average activity levels, indicating homeostatic regulation towards a common set-point of Ca2+ influx.
Collapse
Affiliation(s)
- Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Zhang XF, Ajeti V, Tsai N, Fereydooni A, Burns W, Murrell M, De La Cruz EM, Forscher P. Regulation of axon growth by myosin II-dependent mechanocatalysis of cofilin activity. J Cell Biol 2019; 218:2329-2349. [PMID: 31123185 PMCID: PMC6605792 DOI: 10.1083/jcb.201810054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Synergism between myosin II contractility and cofilin activity modulates serotonin-dependent axon growth. Normally, cofilin-dependent decreases in actin density are compensated by increases in point contact density and traction force; however, myosin hyperactivation leads to catastrophic decreases in actin network density and neurite retraction. Serotonin (5-HT) is known to increase the rate of growth cone advance via cofilin-dependent increases in retrograde actin network flow and nonmuscle myosin II activity. We report that myosin II activity is regulated by PKC during 5-HT responses and that PKC activity is necessary for increases in traction force normally associated with these growth responses. 5-HT simultaneously induces cofilin-dependent decreases in actin network density and PKC-dependent increases in point contact density. These reciprocal effects facilitate increases in traction force production in domains exhibiting decreased actin network density. Interestingly, when PKC activity was up-regulated, 5-HT treatments resulted in myosin II hyperactivation accompanied by catastrophic cofilin-dependent decreases in actin filament density, sudden decreases in traction force, and neurite retraction. These results reveal a synergistic relationship between cofilin and myosin II that is spatiotemporally regulated in the growth cone via mechanocatalytic effects to modulate neurite growth.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Visar Ajeti
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT
| | - Nicole Tsai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Ophthalmology, University of California, San Francisco, California, CA
| | - Arash Fereydooni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - William Burns
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
3
|
Protein kinase C regulates vascular calcification via cytoskeleton reorganization and osteogenic signaling. Biochem Biophys Res Commun 2014; 453:793-7. [PMID: 25445591 DOI: 10.1016/j.bbrc.2014.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 01/23/2023]
Abstract
Vascular calcification is an active cell-mediated process that reduces elasticity of blood vessels and increases blood pressure. Until now, the molecular basis of vascular calcification has not been fully understood. We previously reported that microtubule disturbances mediate vascular calcification. Here, we found that protein kinase C (PKC) signaling acted as a novel coordinator between cytoskeletal changes and hyperphosphatemia-induced vascular calcification. Phosphorylation and expression of both PKCα and PKCδ decreased during inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification. Knockdown of PKC isoforms by short interfering RNA as well as PKC inactivation by Go6976 or rottlerin treatment revealed that specific inhibition of PKCα and PKCδ accelerated Pi-induced calcification both in VSMCs and ex vivo aorta culture through upregulation of osteogenic signaling. Additionally, inhibition of PKCα and PKCδ induced disassembly of microtubule and actin, respectively. In summary, our results indicate that cytoskeleton perturbation via PKCα and PKCδ inactivation potentiates vascular calcification through osteogenic signal induction.
Collapse
|
4
|
De S, Tsimounis A, Chen X, Rotenberg SA. Phosphorylation of α-tubulin by protein kinase C stimulates microtubule dynamics in human breast cells. Cytoskeleton (Hoboken) 2014; 71:257-72. [PMID: 24574051 PMCID: PMC4113324 DOI: 10.1002/cm.21167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/18/2013] [Accepted: 02/03/2014] [Indexed: 01/27/2023]
Abstract
Protein kinase C (PKC) engenders motility through phosphorylation of α-tubulin at Ser-165 in nontransformed MCF-10A cells. Live cell imaging explored the impact of PKC-mediated phosphorylation on microtubule (MT) dynamics. MTs fluorescently labeled with GFP-α-tubulin were treated with diacylglycerol (DAG)-lactone (a membrane-permeable PKC activator), or cotransfected with a pseudophosphorylated S165D-α6-tubulin mutant. Each condition increased the dynamicity of MTs by stimulating the rate and duration of the growth phase and decreasing the frequency of catastrophe. In MDA-MB-231 metastatic breast cells where the intrinsic PKC activity is high, these MT growth parameters were also high but could be suppressed by expression of phosphorylation-resistant S165N-α6-tubulin or by treatment with a pan-PKC inhibitor (bis-indoleylmaleimide). Subcellular fractionation and immunofluorescence of MCF-10A cells showed that phosphorylation (via DAG-lactone) or pseudophosphorylation of α6-tubulin increased its partitioning into MTs as compared to controls, and produced longer, more stable MTs. Following expression of the plus-end binding protein GFP-EB1, DAG-lactone accelerated the formation and increased the number of nascent MTs. Expression of S165D-α6-tubulin promoted Rac1 activation and Rac1-dependent cell motility. These findings call attention to PKC-mediated phosphorylation of α-tubulin as a novel mechanism for controlling the dynamics of MTs that result in cell movement.
Collapse
Affiliation(s)
- Shatarupa De
- Department of Chemistry & Biochemistry, The City University of New York
- The Graduate Center, The City University of New York
| | - Areti Tsimounis
- Department of Biology of Queens College, The City University of New York
| | - Xiangyu Chen
- Department of Chemistry & Biochemistry, The City University of New York
- The Graduate Center, The City University of New York
| | | |
Collapse
|
5
|
Espenel C, Acharya BR, Kreitzer G. A biosensor of local kinesin activity reveals roles of PKC and EB1 in KIF17 activation. ACTA ACUST UNITED AC 2013; 203:445-55. [PMID: 24189273 PMCID: PMC3824023 DOI: 10.1083/jcb.201305023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that the kinesin-2 motor KIF17 regulates microtubule (MT) dynamics and organization to promote epithelial differentiation. How KIF17 activity is regulated during this process remains unclear. Several kinesins, including KIF17, adopt compact and extended conformations that reflect autoinhibited and active states, respectively. We designed biosensors of KIF17 to monitor its activity directly in single cells using fluorescence lifetime imaging to detect Förster resonance energy transfer. Lifetime data are mapped on a phasor plot, allowing us to resolve populations of active and inactive motors in individual cells. Using this biosensor, we demonstrate that PKC contributes to the activation of KIF17 and that this is required for KIF17 to stabilize MTs in epithelia. Furthermore, we show that EB1 recruits KIF17 to dynamic MTs, enabling its accumulation at MT ends and thus promoting MT stabilization at discrete cellular domains.
Collapse
Affiliation(s)
- Cedric Espenel
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10021
| | | | | |
Collapse
|
6
|
Li L, Fothergill T, Hutchins BI, Dent EW, Kalil K. Wnt5a evokes cortical axon outgrowth and repulsive guidance by tau mediated reorganization of dynamic microtubules. Dev Neurobiol 2013; 74:797-817. [PMID: 23818454 PMCID: PMC4087151 DOI: 10.1002/dneu.22102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/24/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023]
Abstract
Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014
Collapse
Affiliation(s)
- Li Li
- Neuroscience Training Program, University of Wisconsin-Madison, Wisconsin, 53706
| | | | | | | | | |
Collapse
|
7
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Axon regeneration after damage is widespread in the animal kingdom, and the nematode Caenorhabditis elegans has recently emerged as a tractable model in which to study the genetics and cell biology of axon regrowth in vivo. A key early step in axon regrowth is the conversion of part of a mature axon shaft into a growth cone-like structure, involving coordinated alterations in the microtubule, actin, and neurofilament systems. Recent attention has focused on microtubule dynamics as a determinant of axon-regrowth ability in several organisms. Live imaging studies have begun to reveal how the microtubule cytoskeleton is remodeled after axon injury, as well as the regulatory pathways involved. The dual leucine zipper kinase family of mixed-lineage kinases has emerged as a critical sensor of axon damage and plays a key role in regulating microtubule dynamics in the damaged axon.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
9
|
Mahajan S, Athale CA. Spatial and temporal sensing limits of microtubule polarization in neuronal growth cones by intracellular gradients and forces. Biophys J 2012; 103:2432-45. [PMID: 23260045 DOI: 10.1016/j.bpj.2012.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022] Open
Abstract
Neuronal growth cones are the most sensitive among eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth-cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuronal growth cone. We explore the limits of directional cues in modifying the spatial polarization of microtubules by testing the role of microtubule dynamics, gradients of regulators, and retrograde forces along filopodia. We analyze the steady state and transition behavior of microtubules on being presented with a directional stimulus. Our model makes novel, to our knowledge, predictions about the minimal angular spread of the chemical signal at the growth cone and the fastest polarization times. A regulatory reaction-diffusion network based on the cyclic phosphorylation-dephosphorylation of a regulator predicts that the receptor-signal magnitude can generate the maximal polarization of microtubules and not feedback loops or amplifications in the network. Using both the phenomenological and network models, we have demonstrated some of the physical limits within which the microtubule polarization system works in turning the neuron.
Collapse
Affiliation(s)
- Saurabh Mahajan
- Division of Biology, Indian Institute of Science Education and Research-Pune, Pune, India
| | | |
Collapse
|
10
|
Kelly TAN, Katagiri Y, Vartanian KB, Kumar P, Chen II, Rosoff WJ, Urbach JS, Geller HM. Localized alteration of microtubule polymerization in response to guidance cues. J Neurosci Res 2011; 88:3024-33. [PMID: 20806407 DOI: 10.1002/jnr.22478] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inhibition of microtubule dynamic instability prevents growth cone turning in response to guidance cues, yet specific changes in microtubule polymerization as growth cones encounter boundaries have not been investigated. In this study, we examined the rate and direction of microtubule polymerization in response to soluble nerve growth factor (NGF) and immobilized chondroitin sulfate proteoglycans (CSPGs) by expressing enhanced GFP-EB3 in rat pheochromocytoma (PC12) cells. GFP-EB3 comets were monitored in live cells using time-lapse epifluorescent microscopy. With an automated tracking system, the rate of microtubule polymerization was calculated as the frame-to-frame displacement of EB3 comets. Our results demonstrate that the rate of microtubule polymerization is increased following NGF treatment, whereas contact with CSPGs decreases microtubule polymerization rates. This reduction in microtubule polymerization rates was specifically localized to neurites in direct contact with CSPGs and not at noncontacting neurites. Additionally, we found an increase in the percentage of microtubules polymerizing in the retrograde direction in neurites at CSPG boundaries, with a concomitant decrease in the rate of retrograde microtubule polymerization. These results implicate localized changes in microtubule dynamics as an important component of the growth cone response to guidance cues.
Collapse
Affiliation(s)
- Terri-Ann N Kelly
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Michel M, Green CL, Lyons LC. PKA and PKC are required for long-term but not short-term in vivo operant memory in Aplysia. Learn Mem 2010; 18:19-23. [PMID: 21169419 DOI: 10.1101/lm.2026311] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in Aplysia, learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term memory. Surprisingly, neither PKA nor PKC activity was required for associative short-term LFI memory. Additionally, PKA and PKC were not required for the retrieval of short- or long-term memory (STM and LTM, respectively). These studies have identified key differences between the mechanisms underlying nonassociative sensitization, operant reward learning, and LFI memory in Aplysia.
Collapse
Affiliation(s)
- Maximilian Michel
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | | | | |
Collapse
|
12
|
Tischer C, Ten Wolde PR, Dogterom M. Providing positional information with active transport on dynamic microtubules. Biophys J 2010; 99:726-35. [PMID: 20682249 DOI: 10.1016/j.bpj.2010.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/15/2010] [Accepted: 05/12/2010] [Indexed: 12/24/2022] Open
Abstract
Microtubules (MTs) are dynamic protein polymers that change their length by switching between growing and shrinking states in a process termed dynamic instability. It has been suggested that the dynamic properties of MTs are central to the organization of the eukaryotic intracellular space, and that they are involved in the control of cell morphology, but the actual mechanisms are not well understood. Here, we present a theoretical analysis in which we explore the possibility that a system of dynamic MTs and MT end-tracking molecular motors is providing specific positional information inside cells. We compute the MT length distribution for the case of MT-length-dependent switching between growing and shrinking states, and analyze the accumulation of molecular motors at the tips of growing MTs. Using these results, we show that a transport system consisting of dynamic MTs and associated motor proteins can deliver cargo proteins preferentially to specific positions within the cell. Comparing our results with experimental data in the model organism fission yeast, we propose that the suggested mechanisms could play important roles in setting length scales during cellular morphogenesis.
Collapse
Affiliation(s)
- Christian Tischer
- Institute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro. Methods Cell Biol 2010; 95:481-503. [DOI: 10.1016/s0091-679x(10)95024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Sossin WS, Abrams TW. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:191-205. [PMID: 20029183 DOI: 10.1159/000258666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Que., Canada.
| | | |
Collapse
|
15
|
Abstract
Interactions between dynamic microtubules and actin filaments are essential to a wide range of cell biological processes including cell division, motility and morphogenesis. In neuronal growth cones, interactions between microtubules and actin filaments in filopodia are necessary for growth cones to make a turn. Growth-cone turning is a fundamental behaviour during axon guidance, as correct navigation of the growth cone through the embryo is required for it to locate an appropriate synaptic partner. Microtubule-actin filament interactions also occur in the transition zone and central domain of the growth cone, where actin arcs exert compressive forces to corral microtubules into the core of the growth cone and thereby facilitate microtubule bundling, a requirement for axon formation. We now have a fairly comprehensive understanding of the dynamic behaviour of the cytoskeleton in growth cones, and the stage is set for discovering the molecular machinery that enables microtubule-actin filament coupling in growth cones, as well as the intracellular signalling pathways that regulate these interactions. Furthermore, recent experiments suggest that microtubule-actin filament interactions might also be important for the formation of dendritic spines from filopodia in mature neurons. Therefore, the mechanisms coupling microtubules to actin filaments in growth-cone turning and dendritic-spine maturation might be conserved.
Collapse
Affiliation(s)
- Sara Geraldo
- The MRC Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | |
Collapse
|
16
|
Garcia-Marin V, Garcia-Lopez P, Freire M. The growth cone as seen through Cajal's original histological preparations and publications. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2009; 18:197-210. [PMID: 19367487 DOI: 10.1080/09647040801961430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the development of the nervous system, each neuron must contact its appropriate target cell in order to establish its specific connections. More than a century ago, Ramon y Cajal discovered an amoeboid-like structure at the end of the axon of developing nerve cells. He called this structure the growth cone [cono de crecimiento] and he proposed that this structure was guided towards its target tissue by chemical substances secreted by the different cells that line its course. We have reviewed the discovery of the growth cone by Cajal using his original publications, his original scientific drawings, and by studying his histological preparations conserved at the "Instituto Cajal" (Madrid, Spain).(1) We found a very good correlation between the structure of the growth cone in the Golgi-impregnated and reduced silver-nitrate-stained material used by Cajal, and that which is revealed with present-day methods. Finally, Cajal's view of the function of the growth cone and his chemotactic hypothesis will also be considered in the light of present-day knowledge.
Collapse
|
17
|
Sharma D, Sethi P, Hussain E, Singh R. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 2008; 10:489-502. [DOI: 10.1007/s10522-008-9195-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/28/2008] [Indexed: 12/23/2022]
|
18
|
Lorenzetti FD, Baxter DA, Byrne JH. Molecular mechanisms underlying a cellular analog of operant reward learning. Neuron 2008; 59:815-28. [PMID: 18786364 DOI: 10.1016/j.neuron.2008.07.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 01/23/2008] [Accepted: 07/07/2008] [Indexed: 11/30/2022]
Abstract
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.
Collapse
Affiliation(s)
- Fred D Lorenzetti
- Department of Neurobiology and Anatomy, W.M. Keck Center for Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Bedi SS, Cai D, Glanzman DL. Effects of axotomy on cultured sensory neurons of Aplysia: long-term injury-induced changes in excitability and morphology are mediated by different signaling pathways. J Neurophysiol 2008; 100:3209-24. [PMID: 18842953 DOI: 10.1152/jn.90539.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To facilitate an understanding of injury-induced changes within the nervous system, we used a single-cell, in vitro model of axonal injury. Sensory neurons were individually dissociated from the CNS of Aplysia and placed into cell culture. The major neurite of some neurons was then transected (axotomized neurons). Axotomy in hemolymph-containing culture medium produced long-term hyperexcitability (LTH-E) and enhanced neuritic sprouting (long-term hypermorphogenesis [LTH-M]). Axotomy in the absence of hemolymph induced LTH-E, but not LTH-M. Hemolymph-derived growth factors may activate tyrosine receptor kinase (Trk) receptors in sensory neurons. To examine this possibility, we treated uninjured (control) and axotomized sensory neurons with K252a, an inhibitor of Trk receptor activity. K252a depressed the excitability of both axotomized and control neurons. K252a also produced a distinct pattern of arborizing outgrowth of neurites in both axotomized and control neurons. Protein kinase C (PKC) is an intracellular signal downstream of Trk; accordingly, we tested the effects of bisindolylmaleimide I (Bis-I), a specific inhibitor of PKC, on the axotomy-induced cellular changes. Bis-I blocked LTH-E, but did not disrupt LTH-M. Finally, because Trk activates the extracellular signal regulated kinase pathway in Aplysia sensory neurons, we examined whether this pathway mediates the injury-induced changes. Sensory neurons were axotomized in the presence of U0126, an inhibitor of mitogen-activated/extracellular receptor-regulated kinase. U0126 blocked the LTH-M due to axotomy, but did not impair LTH-E. Therefore distinct cellular signaling pathways mediate the induction of LTH-E and LTH-M in the sensory neurons.
Collapse
Affiliation(s)
- Supinder S Bedi
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | |
Collapse
|
20
|
PKC-induced intracellular trafficking of Ca(V)2 precedes its rapid recruitment to the plasma membrane. J Neurosci 2008; 28:2601-12. [PMID: 18322103 DOI: 10.1523/jneurosci.4314-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of protein kinase C (PKC) potentiates secretion in Aplysia peptidergic neurons, in part by inducing new sites for peptide release at growth cone terminals. The mechanisms by which ion channels are trafficked to such sites are, however, not well understood. We now show that PKC activation rapidly recruits new Ca(V)2 subunits to the plasma membrane, and that recruitment is blocked by latrunculin B, an inhibitor of actin polymerization. In contrast, inhibition of microtubule polymerization selectively prevents the appearance of Ca(V)2 subunits only at the distal edge of the growth cone. In resting neurons, Ca(V)2-containing organelles reside in the central region of growth cones, but are absent from distal lamellipodia. After activation of PKC, these organelles are transported on microtubules to the lamellipodium. The ability to traffic to the most distal sites of channel insertion inside the lamellipodium does, therefore, not require intact actin but requires intact microtubules. Only after activation of PKC do Ca(V)2 channels associate with actin and undergo insertion into the plasma membrane.
Collapse
|
21
|
Lam JSY, Wang L, Lin L, Chan SO. Role of protein kinase C in selective inhibition of mouse retinal neurites during contacts with chondroitin sulfates. Neurosci Lett 2008; 434:150-4. [PMID: 18313852 DOI: 10.1016/j.neulet.2008.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate proteoglycans elicit a selective inhibition to neurite growth from ventrotemporal (VT) but not dorsonasal (DN) retina, potentiating the bilateral routing of axons in the mouse optic chiasm. We examined whether this selective response is mediated by a difference in protein kinase C (PKC) expression. Effects of suppressing PKC activity in explant preparations of embryonic day 14 retinae with inhibitor Gö6976 or Ro-32-0432 abolished the chondroitin sulfate inhibition to the VT neurites but had no effect to the DN neurites. Whether these responses rely on a difference in expression of PKC in the growth cones was examined using antibodies against six isozymes of PKC. Among these the alpha, betaI and epsilon isozymes were expressed prominently in the retinal growth cones; whilst the betaII, delta and gamma isozymes were barely detected. Moreover, while the alpha and epsilon isozymes were abundant in the filopodial and lamellipodial processes, the betaI isozyme was restricted largely in the core region of the growth cones. Despite these subtype specific localization, there was no significant difference in expression of any of these PKC isozymes between growth cones from VT and DN retina, indicating that the selective response to chondroitin sulfates is not likely generated by a regulation of PKC expression, but by expression of surface molecules that interact with chondroitin sulfate proteoglycans.
Collapse
Affiliation(s)
- Joyce Shi-Ying Lam
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|
22
|
Ertürk A, Hellal F, Enes J, Bradke F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 2007; 27:9169-80. [PMID: 17715353 PMCID: PMC6672197 DOI: 10.1523/jneurosci.0612-07.2007] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Axons in the CNS do not regrow after injury, whereas lesioned axons in the peripheral nervous system (PNS) regenerate. Lesioned CNS axons form characteristic swellings at their tips known as retraction bulbs, which are the nongrowing counterparts of growth cones. Although much progress has been made in identifying intracellular and molecular mechanisms that regulate growth cone locomotion and axonal elongation, a comprehensive understanding of how retraction bulbs form and why they are unable to grow is still elusive. Here we report the analysis of the morphological and intracellular responses of injured axons in the CNS compared with those in the PNS. We show that retraction bulbs of injured CNS axons increase in size over time, whereas growth cones of injured PNS axons remain constant. Retraction bulbs contain a disorganized microtubule network, whereas growth cones possess the typical bundling of microtubules. Using in vivo imaging, we find that pharmacological disruption of microtubules in growth cones transforms them into retraction bulb-like structures whose growth is inhibited. Correspondingly, microtubule destabilization of sensory neurons in cell culture induces retraction bulb formation. Conversely, microtubule stabilization prevents the formation of retraction bulbs and decreases axonal degeneration in vivo. Finally, microtubule stabilization enhances the growth capacity of CNS neurons cultured on myelin. Thus, the stability and organization of microtubules define the fate of lesioned axonal stumps to become either advancing growth cones or nongrowing retraction bulbs. Our data pinpoint microtubules as a key regulatory target for axonal regeneration.
Collapse
Affiliation(s)
- Ali Ertürk
- Max-Planck Institute of Neurobiology, Axonal Growth and Regeneration, 82152 Martinsried, Germany
| | - Farida Hellal
- Max-Planck Institute of Neurobiology, Axonal Growth and Regeneration, 82152 Martinsried, Germany
| | - Joana Enes
- Max-Planck Institute of Neurobiology, Axonal Growth and Regeneration, 82152 Martinsried, Germany
| | - Frank Bradke
- Max-Planck Institute of Neurobiology, Axonal Growth and Regeneration, 82152 Martinsried, Germany
| |
Collapse
|
23
|
Grabham PW, Seale GE, Bennecib M, Goldberg DJ, Vallee RB. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J Neurosci 2007; 27:5823-34. [PMID: 17522326 PMCID: PMC6672755 DOI: 10.1523/jneurosci.1135-07.2007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence has implicated dynein and its regulatory factors dynactin and LIS1 in neuronal and non-neuronal cell migration. In the current study we sought to test whether effects on neuronal cell motility might reflect, in part, a role for these proteins in the growth cone. In chick sensory neurons subjected to acute laminin treatment dynein, dynactin, and LIS1 were mobilized strikingly and rapidly to the leading edge of the growth cone, where they were seen to be associated with microtubules converging into the laminin-induced axonal outgrowths. To interfere acutely with LIS1 and dynein function and to minimize secondary phenotypic effects, we injected antibodies to these proteins just before axon initiation. Antibody to both proteins produced an almost complete block of laminin-induced growth cone remodeling and the underlying reorganization of microtubules. Penetration of microtubules into the peripheral zone of differentiating axonal growth cones was decreased dramatically by antibody injection, as judged by live analysis of enhanced green fluorescent protein-tubulin and the microtubule tip-associated EB3 (end-binding protein 3). Dynein and LIS1 inhibition had no detectable effect on microtubule assembly but reduced the ability of microtubules to resist retrograde actin flow. In hippocampal neurons dynein, dynactin, and LIS1 were enriched in axonal growth cones at stage 3, and both growth cone organization and axon elongation were altered by LIS1 RNA interference. Together, our data indicate that dynein and LIS1 play a surprisingly prominent role in microtubule advance during growth cone remodeling associated with axonogenesis. These data may explain, in part, the role of these proteins in brain developmental disease and support an important role in diverse aspects of neuronal differentiation and nervous system development.
Collapse
Affiliation(s)
- Peter W. Grabham
- Departments of Pharmacology and
- Centers for Radiological Research and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Garrett E. Seale
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Malika Bennecib
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Daniel J. Goldberg
- Departments of Pharmacology and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Richard B. Vallee
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
24
|
Abstract
Most cells are polarized. Embryonic and stem cells can use their polarity to generate cell diversity by asymmetric cell division, whereas differentiated cells use their polarity to execute specific functions. For example, fibroblasts form an actin-rich leading edge required for cell migration, neurons form distinctive axonal and dendritic compartments important for directional signaling, and epithelial cells have apical and basolateral cortical domains necessary for maintaining tissue impermeability. It is well established that actin and actin-associated proteins are essential for generating molecular and morphological cell polarity, but only recently has it become accepted that microtubules can induce and/or maintain polarity. One common feature among different cell types is that microtubules can establish the position of cortical polarity, but are not required for cortical polarity per se. In this review, we discuss how different cell types utilize microtubules and microtubule-associated signaling pathways to generate cortical cell polarity, highlight common mechanisms, and discuss open questions for directing future research.
Collapse
Affiliation(s)
- Sarah E Siegrist
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
25
|
Abstract
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used Aplysia as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented physiological roles for PKC in synaptic plasticity in this system. In particular, we have shown that distinct isoforms mediate distinct types of synaptic plasticity induced by the same neurotransmitter: The novel calcium-independent PKC Apl II is required for actions mediated by serotonin (5-HT) alone, while the classical calcium-dependent PKC Apl I is required for actions mediated when 5-HT is coupled to activity. We will discuss the reasons for PKC isoform specificity, assess the tools used to uncover isoform specificity, and discuss the implications of isoform specificity for understanding the roles of PKC in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Bellon A, Ortíz-López L, Ramírez-Rodríguez G, Antón-Tay F, Benítez-King G. Melatonin induces neuritogenesis at early stages in N1E-115 cells through actin rearrangements via activation of protein kinase C and Rho-associated kinase. J Pineal Res 2007; 42:214-21. [PMID: 17349018 DOI: 10.1111/j.1600-079x.2006.00408.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin increases neurite formation in N1E-115 cells through microtubule enlargement elicited by calmodulin antagonism and vimentin intermediate filament reorganization caused by protein kinase C (PKC) activation. Microfilament rearrangement is also a necessary process in growth cone formation during neurite outgrowth. In this work, we studied the effect of melatonin on microfilament rearrangements present at early stages of neurite formation and the possible participation of PKC and the Rho-associated kinase (ROCK), which is a downstream kinase in the PKC signaling pathway. The results showed that 1 nm melatonin increased both the number of cells with filopodia and with long neurites. Similar results were obtained with the PKC activator phorbol 12-myristate 13-acetate (PMA). Both melatonin and PMA increased the quantity of filamentous actin. In contrast, the PKC inhibitor bisindolylmaleimide abolished microfilament organization elicited by either melatonin or PMA, while the Rho inhibitor C3, or the ROCK inhibitor Y27632, abolished the bipolar neurite morphology of N1E-115 cells. Instead, these inhibitors prompted neurite ramification. ROCK activity measured in whole cell extracts and in N1E-115 cells was increased in the presence of melatonin and PMA. The results indicate that melatonin increases the number of cells with immature neurites and suggest that these neurites can be susceptible to differentiation by incoming extracellular signals. Data also indicate that PKC and ROCK are involved at initial stages of neurite formation in the mechanism by which melatonin recruits cells for later differentiation.
Collapse
Affiliation(s)
- Alfredo Bellon
- Instituto Nacional de Psiquiatría, Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico D.F., Mexico
| | | | | | | | | |
Collapse
|
27
|
Schober JM, Komarova YA, Chaga OY, Akhmanova A, Borisy GG. Microtubule-targeting-dependent reorganization of filopodia. J Cell Sci 2007; 120:1235-44. [PMID: 17356063 DOI: 10.1242/jcs.003913] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interaction between the microtubule system and actin cytoskeleton has emerged as a fundamental process required for spatial regulation of cell protrusion and retraction activities. In our current studies, analysis of digital fluorescence images revealed targeting of microtubules to filopodia in B16F1 melanoma cells and fibroblasts. We investigated the functional consequence of targeting on filopodia reorganization and examined mechanisms by which microtubules may be guided to, or interact with, filopodia. Live cell imaging studies show that targeting events in lamellipodia wings temporally correlated with filopodia turning toward the lamellipodium midline and with filopodia merging. Rapid uncoupling of targeting with nocodazole decreased filopodia merging events and increased filopodia density. Total internal reflection fluorescence microscopy identified microtubules near the ventral surface and upward movement of targeted filopodia. The role of adhesion sites and microtubule plus-end proteins in targeting was investigated. Correlation of adhesion sites with microtubule targeting to filopodia was not observed and depletion of microtubule plus-end proteins did not significantly alter targeting frequency. We propose that microtubules target filopodia, independent of focal adhesions and plus-end proteins, causing filopodia movement and microtubules regulate filopodia density in lamellipodia wings through filopodia merging events.
Collapse
Affiliation(s)
- Joseph M Schober
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
28
|
Major DL, Brady-Kalnay SM. Rho GTPases regulate PTPmu-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Mol Cell Neurosci 2007; 34:453-67. [PMID: 17234431 PMCID: PMC1855295 DOI: 10.1016/j.mcn.2006.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 09/25/2006] [Accepted: 11/30/2006] [Indexed: 01/01/2023] Open
Abstract
Members of the receptor protein tyrosine phosphatase (RPTP) subfamily of cell adhesion molecules (CAMs) mediate neurite outgrowth and growth cone repulsion. PTPmu is a growth permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGCs. In this manuscript, we demonstrate that the distinct PTPmu-dependent phenotypes of nasal outgrowth and temporal repulsion are regulated by Rho GTPases. The role of Rho GTPases in the regulation of nasal outgrowth and temporal repulsion was tested by utilizing dominant negative and constitutively active forms of Rac1, RhoA and Cdc42 in Bonhoeffer stripe assays. Nasal neurite outgrowth on PTPmu was blocked by Cdc42-DN. Temporal repulsion to a PTPmu substrate was substantially reduced by addition of Cdc42-DN. The molecule that regulates the switch between permissive versus repulsive responses to PTPmu is Rac1 for temporal neurons. Inhibition of Rac1 is required for repulsion of temporal neurons. Interestingly, adding Rac1-CA to temporal RGC neurons converted PTPmu-dependent repulsion to a permissive response. In addition, adding exogenous Rac1-DN to nasal neurons induced a phenotype switch from a permissive to repulsive response to PTPmu. Together these data suggest that Cdc42 activity is required for both permissive and repulsive responses to PTPmu. However, the key to PTPmu-dependent repulsion is inhibition of Rac1 activity in temporal RGC neurons.
Collapse
Affiliation(s)
| | - Susann M. Brady-Kalnay
- *Corresponding author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, Phone: (216) 368-0330, Fax: (216) 368-3055,
| |
Collapse
|
29
|
Ehrlicher A, Betz T, Stuhrmann B, Gögler M, Koch D, Franze K, Lu Y, Käs J. Optical Neuronal Guidance. Methods Cell Biol 2007; 83:495-520. [PMID: 17613322 DOI: 10.1016/s0091-679x(07)83021-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a novel technique to noninvasively control the growth and turning behavior of an extending neurite. A highly focused infrared laser, positioned at the leading edge of a neurite, has been found to induce extension/turning toward the beam's center. This technique has been used successfully to guide NG108-15 and PC12 cell lines [Ehrlicher, A., Betz, T., Stuhrmann, B., Koch, D. Milner, V. Raizen, M. G., and Kas, J. (2002). Guiding neuronal growth with light. Proc. Natl. Acad. Sci. USA 99, 16024-16028], as well as primary rat and mouse cortical neurons [Stuhrmann, B., Goegler, M., Betz, T., Ehrlicher, A., Koch, D., and Kas, J. (2005). Automated tracking and laser micromanipulation of cells. Rev. Sci. Instr. 76, 035105]. Optical guidance may eventually be used alone or with other methods for controlling neurite extension in both research and clinical applications.
Collapse
Affiliation(s)
- Allen Ehrlicher
- Lehrstuhl für die Physik Weicher Materie, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, Leipzig D-04103, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ikuta J, Maturana A, Fujita T, Okajima T, Tatematsu K, Tanizawa K, Kuroda S. Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun 2006; 353:127-32. [PMID: 17173861 DOI: 10.1016/j.bbrc.2006.11.142] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 11/29/2006] [Indexed: 12/21/2022]
Abstract
The fasciculation and elongation protein zeta-1 (FEZ1), a mammalian orthologue of Caenorhabditis elegans UNC-76 protein, is a 45-kDa protein with four coiled-coiled domains and efficiently promotes the neurite elongation in the rat phaeochromocytoma PC12 cells. UNC-76 proteins of C. elegans and Drosophila have been genetically demonstrated to be involved in the axonal guidance. We here show that FEZ1 RNA interference (RNAi) represses the formation of axon in rat embryo hippocampal neurons. An anterograde mitochondrial movement is also retarded in neurites of the RNAi-treated hippocampal neurons. Moreover, the size of mitochondria is considerably elongated by the RNAi treatment. The transport of mitochondria from soma to axon or dendrites is essential for the neuronal differentiation. Therefore, our results strongly suggest that FEZ1 participates in the establishment of neuronal polarity by controlling the mitochondrial motility along axon.
Collapse
Affiliation(s)
- Junko Ikuta
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Y, Leal K, Abi-Farah C, Martin KC, Sossin WS, Klein M. Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation. J Neurosci 2006; 26:8847-56. [PMID: 16928874 PMCID: PMC6674363 DOI: 10.1523/jneurosci.1919-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase Cs (PKCs) are important effectors of synaptic plasticity. In Aplysia, there are two major phorbol ester-activated PKCs, Ca2+-activated PKC Apl I and Ca2+-independent PKC Apl II. Functional Apl II, but not Apl I, in sensory neurons is required for a form of short-term facilitation induced at sensorimotor synapses by the facilitatory transmitter serotonin (5-HT). Because PKCs are activated by translocating from the cytoplasm to the membrane, we used fluorescently tagged PKCs to determine the isoform and cell-type specificity of translocation in living Aplysia neurons. In Sf9 cells, low levels of diacylglycerol translocate Apl II, but not Apl I, which requires calcium for translocation at low concentrations of diacylglycerol. Accordingly, application of 5-HT to Aplysia sensory neurons in the absence of neuronal firing translocates Apl II, but not Apl I, consistent with the role of Apl II in short-term facilitation. This translocation is observed in sensory neurons, but not in motor neurons. Apl I translocates only if 5-HT is coupled to firing in the sensory neuron; firing alone is ineffective. Because combined 5-HT and firing are required for the induction of one type of intermediate-term facilitation at these synapses, we asked whether this form of synaptic plasticity involves activation of Apl I. We report here that dominant-negative Apl I, but not Apl II, blocks intermediate-term facilitation. Thus, different isoforms of PKC translocate under different conditions to mediate distinct types of synaptic plasticity: Ca2+-independent Apl II is involved in short-term facilitation, and Ca2+-dependent Apl I contributes to intermediate-term facilitation.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Psychiatry and Biobehavioral Science
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095-1606, and
| | - Karina Leal
- Department of Physiological Science, and
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095-1606, and
| | - Carole Abi-Farah
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada H3A 2B4
| | - Kelsey C. Martin
- Department of Psychiatry and Biobehavioral Science
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095-1606, and
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada H3A 2B4
| | - Marc Klein
- Department of Physiological Science, and
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095-1606, and
| |
Collapse
|
32
|
Beaudry H, Gendron L, Guimond MO, Payet MD, Gallo-Payet N. Involvement of protein kinase C alpha (PKC alpha) in the early action of angiotensin II type 2 (AT2) effects on neurite outgrowth in NG108-15 cells: AT2-receptor inhibits PKC alpha and p21ras activity. Endocrinology 2006; 147:4263-72. [PMID: 16740968 DOI: 10.1210/en.2006-0411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate whether protein kinase C (PKC) isoforms may be among the putative candidates implicated in the primary effects of the Ang II type 2 (AT2) receptor. Western blot analyses revealed the presence of PKC alpha,epsilon, iota, and zeta in NG108-15 cells. After a 3-d treatment with 3 nm Gö6976, a specific inhibitor of classical PKC isoforms, cells were characterized by the presence of one elongated process similar to that observed after treatment with Ang II or with CGP42112, a selective AT2 receptor agonist. Similar findings were observed in cells expressing a dominant-negative mutant of PKC alpha (K368A). Inhibition of PKC alpha in NG108-15 cells also decreased cell number and proliferation. In conditions of acute stimulation, Ang II induced a time-dependent and transient inhibition of PKC alpha activity, as well as a decrease in PKC alpha levels associated with the membrane. Treatment of cells with Gö6976 was also found to inhibit p21(ras) (between 1-10 min) but stimulated Rap1 activity (1-5 min) in a time-course similar to that of Ang II. Incubation of NG108-15 cells with Gö6976 (3 nm) inhibited basal p42/p44(mapk) phosphorylation, but failed to interfere with its activation by the AT(2) receptor, indicating that inhibition of PKC alpha is not directly involved in the Rap1-MEK-p42/p44(mapk) cascade. Taken together, these results indicate that PKC alpha is a primary target of the AT2 receptor. Inhibition of PKC alpha leads to a decrease in both p21(ras) activity and cell proliferation, which may facilitate AT2 receptor signaling through p42/p44(mapk), thereby leading to neurite outgrowth.
Collapse
Affiliation(s)
- Hélène Beaudry
- Service of Endocrinology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
33
|
Togo T. Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J Cell Sci 2006; 119:2780-6. [PMID: 16772335 DOI: 10.1242/jcs.03006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resealing of a disrupted plasma membrane requires Ca2+-regulated exocytosis. Repeated disruptions reseal more quickly than the initial wound. This facilitated response requires both Ca2+ and protein kinase C (PKC), and is sensitive to brefeldin A. There is also evidence that this response is polarized to the site where the cell membrane had previously been disrupted. Observations of GFP-tagged α-tubulin and end-binding protein 1 (EB1) revealed that membrane disruption initially induced disassembly of microtubules around the wound site, followed by elongation of microtubules toward the wound site. Recruitment of EB1 to microtubules required Ca2+ influx, but was independent of PKC. NBD C6-ceramide, a probe for the Golgi apparatus and Golgi-derived lipids, initially stained the perinuclear region, and a portion of the probe was translocated to the wound site 5 minutes after wounding. Translocation of the lipids required microtubules and PKC activity, and was suppressed by low temperature. On the other hand, constitutive traffic of the lipid was still normal in the presence of a PKC inhibitor. These findings suggest that membrane disruption stimulates regulated vesicle traffic from the region of the trans-Golgi network to the wound site along rearranged microtubules in a PKC-dependent manner.
Collapse
Affiliation(s)
- Tatsuru Togo
- Misaki Marine Biological Station, University of Tokyo, 1024 Ko-Ajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|
34
|
Kovacs EM, Makar RS, Gertler FB. Tuba stimulates intracellular N-WASP-dependent actin assembly. J Cell Sci 2006; 119:2715-26. [PMID: 16757518 DOI: 10.1242/jcs.03005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuba is a multidomain scaffolding protein that links cytoskeletal dynamics and membrane trafficking pathways. The N-terminus of Tuba binds dynamin1, and the C-terminus contains domains that can interact with signaling pathways and cytoskeletal regulatory elements. We investigated Tuba localization, distribution and function in B16 melanoma cells. Tuba overexpression stimulated dorsal ruffles that occurred independently of dynamin function. Tuba expression induced actin-driven motility of small puncta that required the C-terminal SH3, GEF and BAR domains. Additionally, Tuba was recruited to lipid vesicles generated by overexpression of phosphatidylinositol-4-phosphate 5-kinase type Ialpha (PIP5Kalpha), localizing prominently to the head of the comets and at lower levels along the actin tail. We propose that Tuba facilitates dorsal ruffling of melanoma cells through direct interaction with actin-regulatory proteins and the recruitment of signaling molecules to lipid microdomains for the coordinated assembly of a cytoskeletal network. Knockdown of Tuba by RNA interference (RNAi) attenuated PIP5Kalpha-generated comet formation and the invasive behavior of B16 cells, implying that Tuba function is required for certain aspects of these processes. These results suggest first that Tuba-stimulated dorsal ruffling might represent a novel mechanism for the coordination of N-WASP-dependent cytoskeletal rearrangements and second that Tuba function is implicated in motility processes.
Collapse
Affiliation(s)
- Eva M Kovacs
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
35
|
Janulevicius A, van Pelt J, van Ooyen A. Compartment volume influences microtubule dynamic instability: a model study. Biophys J 2006; 90:788-98. [PMID: 16410484 PMCID: PMC1367104 DOI: 10.1529/biophysj.105.059410] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubules (MTs) are cytoskeletal polymers that exhibit dynamic instability, the random alternation between growth and shrinkage. MT dynamic instability plays an essential role in cell development, division, and motility. To investigate dynamic instability, simulation models have been widely used. However, conditions under which the concentration of free tubulin fluctuates as a result of growing or shrinking MTs have not been studied before. Such conditions can arise, for example, in small compartments, such as neuronal growth cones. Here we investigate by means of computational modeling how concentration fluctuations caused by growing and shrinking MTs affect dynamic instability. We show that these fluctuations shorten MT growth and shrinkage times and change their distributions from exponential to non-exponential, gamma-like. Gamma-like distributions of MT growth and shrinkage times, which allow optimal stochastic searching by MTs, have been observed in various cell types and are believed to require structural changes in the MT during growth or shrinkage. Our results, however, show that these distributions can already arise as a result of fluctuations in the concentration of free tubulin due to growing and shrinking MTs. Such fluctuations are possible not only in small compartments but also when tubulin diffusion is slow or when many MTs (de)polymerize synchronously. Volume and all other factors that influence these fluctuations can affect MT dynamic instability and, consequently, the processes that depend on it, such as neuronal growth cone behavior and cell motility in general.
Collapse
|
36
|
Depaz IM, Wilce PA. The novel cytoskeleton-associated protein Neuronal protein 22: Elevated expression in the developing rat brain. Brain Res 2006; 1081:59-64. [PMID: 16542643 DOI: 10.1016/j.brainres.2006.01.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
Neuronal development and process targeting is mediated by proteins of the cytoskeleton. However, the signaling pathways underlying these mechanisms are complex and have not yet been fully elucidated. Neuronal protein 22 (NP22) has been identified as a cytoskeleton-associated protein. It colocalizes with microtubules and actin, the two major components of the cytoskeleton. It contains numerous signaling motifs and induces process formation in non-neuronal cells. Expression of rat NP22 (rNP22) rises incrementally at specific time points during brain development, with the greatest elevation occurring during synaptogenesis in the rat brain. Its neuronal localization is primarily at the plasma membrane of the soma in the embryonic brain and progresses into homogeneous expression in the postnatal rat brain. Data suggest that NP22 may play a role in mediating the molecular events governing development of the neuronal architecture. Furthermore, its sustained expression in postnatal brain implies a function in the maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Iris M Depaz
- Alcohol Research Unit, Department of Biochemistry, School of Molecular and Microbial Sciences, Faculty of Biological and Medical Sciences, University of Queensland, St. Lucia Campus, Brisbane, Queensland, 4072, Australia.
| | | |
Collapse
|
37
|
Wang C, Li Y, Xiong J, Tan Y, Yu J. Using of the surface plasmon resonance cytosensor for real-time and non-invasive monitoring of cellular effects in living C6 cells induced by PMA. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-0927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Hanson CA, Miller JR. Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. Gene 2005; 361:1-12. [PMID: 16185824 DOI: 10.1016/j.gene.2005.07.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/23/2005] [Accepted: 07/25/2005] [Indexed: 11/21/2022]
Abstract
The Adenomatous Polyposis Coli (APC) tumor suppressor is a multifunctional protein that is mutated in a majority of colon cancers. The role of APC as an antagonist of the Wnt signaling pathway is well known and it is widely accepted that inappropriate activation of this pathway through loss of APC function contributes to the progression of colon cancers. However, a body of evidence is growing to support the idea that APC plays non-traditional functions outside of the Wnt pathway with roles in cell migration, adhesion, chromosome segregation, spindle assembly, apoptosis, and neuronal differentiation. This review highlights the research into alternate functions for APC beyond its role in Wnt signaling and discusses the possible contributions for these non-traditional functions of APC in tumor formation.
Collapse
Affiliation(s)
- Caroline A Hanson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
39
|
Abstract
An enormous literature has been developed on investigations of the growth and guidance of axons during development and after injury. In this review, we provide a guide to this literature as a resource for biomedical investigators. We first review briefly the molecular biology that is known to regulate migration of the growth cone and branching of axonal arbors. We then outline some important fundamental considerations that are important to the modeling of the phenomenology of these guidance effects and of what is known of their underlying internal mechanisms. We conclude by providing some thoughts on the outlook for future biomedical modeling in the field.
Collapse
Affiliation(s)
- Susan Maskery
- Biomedical Informatics, Windber Research Institute, Windber, PA 15963, USA.
| | | |
Collapse
|
40
|
Abstract
Tau is a major microtubule-associated protein which induces bundling and stabilization of axonal microtubules (MTs). To investigate the interaction of tau with MTs in living cells, we expressed GFP-tau fusion protein in cultured Xenopus embryo neurons and performed time-lapse imaging of tau-labeled MTs. Tau uniformly labeled individual MTs regardless of their assembly/disassembly status and location along the axon. Photobleaching experiments indicated that interaction of tau with MTs is very dynamic, with a half-time of fluorescence recovery of the order of 3 seconds. Treatment of cells with taxol, a drug that suppresses MT dynamics, rapidly induced detachment of tau from MTs. Although binding of tau to straight MTs was uniform, there was a heightened concentration of tau at the sites of high MT curvature. Our results suggest that dynamic interaction of tau with MTs may modify local mechanical properties of individual MTs and play a crucial role in the remodeling of the MT cytoskeleton during neuronal plasticity.
Collapse
Affiliation(s)
- Andrey Samsonov
- Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
41
|
Torreano PJ, Waterman-Storer CM, Cohan CS. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones. ACTA ACUST UNITED AC 2005; 60:166-79. [PMID: 15700278 DOI: 10.1002/cm.20051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.
Collapse
Affiliation(s)
- Paul J Torreano
- Division of Anatomy and Cell Biology, University at Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
42
|
Denis V, Cyert MS. Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. EUKARYOTIC CELL 2005; 4:36-45. [PMID: 15643058 PMCID: PMC544167 DOI: 10.1128/ec.4.1.36-45.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The catalytic activity and intracellular localization of protein kinase C (PKC) are both highly regulated in vivo. This family of kinases contains conserved regulatory motifs, i.e., the C1, C2, and HR1 domains, which target PKC isoforms to specific subcellular compartments and restrict their activity spatially. Saccharomyces cerevisiae contains a single PKC isozyme, Pkc1p, which contains all of the regulatory motifs found in mammalian PKCs. Pkc1p localizes to sites of polarized growth, consistent with its main function in maintaining cell integrity. We dissected the molecular basis of Pkc1p localization by expressing each of its domains individually and in combinations as green fluorescent protein fusions. We find that the Rho1p-binding domains, HR1 and C1, are responsible for targeting Pkc1p to the bud tip and cell periphery, respectively. We demonstrate that Pkc1p activity is required for its normal localization to the bud neck, which also depends on the integrity of the septin ring. In addition, we show for the first time that yeast protein kinase C can accumulate in the nucleus, and we identify a nuclear exit signal as well as nuclear localization signals within the Pkc1p sequence. Thus, we propose that Pkc1p shuttles in and out of the nucleus and consequently has access to nuclear substrates. Surprisingly, we find that deletion of the HR1 domain results in Pkc1p localization to the mitotic spindle and that the C2 domain is responsible for this targeting. This novel nuclear and spindle localization of Pkc1p may provide a molecular explanation for previous observations that suggest a role for Pkc1p in regulating microtubule function.
Collapse
Affiliation(s)
- Valérie Denis
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
43
|
Ensslen-Craig SE, Brady-Kalnay SM. PTP mu expression and catalytic activity are required for PTP mu-mediated neurite outgrowth and repulsion. Mol Cell Neurosci 2005; 28:177-88. [PMID: 15607952 DOI: 10.1016/j.mcn.2004.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/10/2004] [Accepted: 08/25/2004] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion molecules (CAMs) regulate neural development via both homophilic and heterophilic binding interactions. Various members of the receptor protein tyrosine phosphatase (RPTP) subfamily of CAMs mediate neurite outgrowth, yet in many cases, their ligands remain unknown. However, the PTP mu subfamily members are homophilic binding proteins. PTP mu is a growth-permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGC neurites. Whether PTP mu regulates these distinct behaviors via homophilic or heterophilic binding interactions is not currently known. In this manuscript, we demonstrate that PTP mu influences RGC axon guidance behaviors only in the E8 retina and not earlier in development. In addition, we demonstrate that PTP mu is permissive only for neurites from ventral-nasal retina and is repulsive to neurites from all other retinal quadrants. Furthermore, we show that PTP mu-mediated nasal neurite outgrowth and temporal repulsion require PTP mu expression and catalytic activity. These results are consistent with PTP mu homophilic binding generating a tyrosine phosphatase-dependent signal that ultimately leads to axon outgrowth or repulsion and that PTP mu's role in regulating axon guidance may be tightly regulated developmentally. In summary, these data demonstrate that PTP mu expression and catalytic activity are important in vertebrate axon guidance.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7960, USA
| | | |
Collapse
|
44
|
Chronic ethanol exposure increases microtubule content in PC12 cells. BMC Neurosci 2005; 6:16. [PMID: 15762984 PMCID: PMC555550 DOI: 10.1186/1471-2202-6-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 03/11/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic ethanol exposure has been shown to result in changes in neuronal cyto-architecture such as aberrant sprouting and alteration of neurite outgrowth. In PC12 cells, chronic ethanol treatment produces an increase in Nerve Growth Factor (NGF)-induced neurite outgrowth that appears to require the epsilon, but not delta, isoform of Protein Kinase C (PKC). Neurites contain a core of microtubules that are formed from polymerization of free-tubulin. Therefore, it would be expected that an increase in neurite outgrowth would correlate with an increase in microtubule content. We examined the effect of chronic ethanol exposure on microtubule content in PC12 cells and the role of PKC epsilon and delta in ethanol's effect on microtubule levels. RESULTS Chronic ethanol exposure of wild-type and vector control PC12 cells resulted in a significant increase in microtubule content and a corresponding decrease in free tubulin. There was also a significant increase in microtubule content in PC12 cells expressing a dominate-negative inhibitor of epsilon PKC; cells which have previously been shown to have no ethanol-induced increase in neurite outgrowth. In contrast, ethanol had no effect on microtubule content in PC12 cells expressing a dominate-negative inhibitor of delta PKC. CONCLUSION These results suggest that chronic ethanol exposure alters the relative ratio of free tubulin to microtubule-associated tubulin, an important component of the cytoskeleton. Further, the data from the PKC dominant-negative cell lines suggest that the effects of ethanol on microtubule content do not correlate with the effects of ethanol on neurite outgrowth. The delta isoform of PKC appears to be necessary for the ethanol-induced increase in microtubule content. These studies demonstrate an effect of chronic ethanol exposure which may contribute to previously documented alterations of neuronal cyto-architecture.
Collapse
|
45
|
Shimomura A, Kohu K, Akiyama T, Senda T. Subcellular localization of the tumor suppressor protein APC in developing cultured neurons. Neurosci Lett 2005; 375:81-6. [PMID: 15670646 DOI: 10.1016/j.neulet.2004.10.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/25/2004] [Accepted: 10/25/2004] [Indexed: 11/25/2022]
Abstract
We examined the subcellular distribution of tumor suppressor adenomatous polyposis coli (APC) in developing cultured rat hippocampal neurons using both immunofluorescent microscopy and immunoelectron microscopy. APC initially localized at the distal tips of all the cell processes. Between 12 and 24 h after plating, APC concentrated at the growth cone and in the distal portion of the longest process, which was growing very rapidly. The other processes, growing at a much slower rate, showed only weak immunoreactivity for APC. After maturation of the neurons, APC in the axons was restricted to the growth cones and distal portions. In contrast, APC formed a punctuated pattern along the dendritic processes. This subcellular distribution of APC was dependent on the organization of microtubules, but not actin filaments. Moreover, treatment of neurons with a PKCzeta specific inhibitor caused defects in the staining pattern of APC. These results suggest that APC may be involved in neuronal process extension, and that APC may exert different functions on axons and dendritic processes.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Department of Anatomy I, School of Medicine, Fujita Health University, 1-98, Toyoake, Aichi 470-1192, Japan
| | | | | | | |
Collapse
|
46
|
Ensslen SE, Brady-Kalnay SM. PTPmu signaling via PKCdelta is instructive for retinal ganglion cell guidance. Mol Cell Neurosci 2004; 25:558-71. [PMID: 15080886 DOI: 10.1016/j.mcn.2003.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/24/2003] [Accepted: 12/03/2003] [Indexed: 01/03/2023] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPmu mediates distinct cellular responses in nasal and temporal retinal ganglion cell (RGC) axons. PTPmu is permissive for nasal RGC neurite outgrowth and inhibitory to temporal RGCs. In addition, PTPmu causes preferential temporal growth cone collapse. Previous studies demonstrated that PTPmu associates with the scaffolding protein RACK1 and the protein kinase C-delta (PKCdelta) isoform in chick retina and that PKCdelta activity is required for PTPmu-mediated RGC outgrowth. Using in vitro stripe and collapse assays, we find that PKCdelta activity is required for both inhibitory and permissive responses of RGCs to PTPmu, with higher levels of PKCdelta activation associated with temporal growth cone collapse and repulsion. A potential mechanism for differential PKCdelta activation is due to the gradient of PTPmu expression in the retina. PTPmu is expressed in a high temporal, low nasal step gradient in the retina. In support of this, overexpression of exogenous PTPmu in nasal neurites results in a phenotypic switch from permissive to repulsive in response to PTPmu. Together, these results suggest that the differential expression of PTPmu within the retina is instructive for RGC guidance and that the magnitude of PKCdelta activation in response to PTPmu signaling results in the distinct cellular behaviors of nasal and temporal RGCs.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
47
|
Heckman CA, Urban JM, Cayer M, Li Y, Boudreau N, Barnes J, Plummer HK, Hall C, Kozma R, Lim L. Novel p21-activated kinase-dependent protrusions characteristically formed at the edge of transformed cells. Exp Cell Res 2004; 295:432-47. [PMID: 15093742 DOI: 10.1016/j.yexcr.2003.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 12/10/2003] [Indexed: 11/20/2022]
Abstract
During long-term culture, certain lines become neoplastic while accumulating changes in cell shape. Early and late cell populations have characteristic shape phenotypes that have been quantified by computerized assay. Phenotypes are determined from variables describing three-dimensional aspects of the subcellular distribution of mass. The features of cells can be recognized by use of latent factors, which are theoretical variables based on the covariance of the primary variables. Factor #7 represented a cell edge feature different from filopodia. We studied the morphological characteristics and morphogenesis of the feature. Brief exposure of cells from rat tracheal epithelium to phorbol 12-myristate 13-acetate (PMA) enhanced #7 values. The time to reach maximal #7 values was prolonged if PMA was administered with calcium ionophore or lysophosphatidic acid (LPA). Factor #7 was elevated during periods of ruffling suppression and stress fiber reorganization. Cells showing high #7 values were examined by scanning electron microscopy (SEM) and found to exhibit strap-shaped and cupola-shaped projections. Because RhoA regulates stress fiber formation, we sought to perturb #7 features by introducing dominant-acting negative and positive constructs of RhoA, RhoA-N19, and RhoA-V14. Neither affected #7 values. Although overexpression of the kinase inhibitory domain of p21-activated kinase 1 (PAK) had no effect on #7 values, they were affected by overexpression of a domain binding PAK-interacting guanine nucleotide exchange factor (PIX). Because a PAK-PIX complex is implicated in the remodeling of focal complexes (FCs) and recycling of PAK to the cytoplasm, the results implicate a component of FCs in the formation of #7 features. The data suggested that feature formation is driven by activated Cdc42-binding kinase (ACK) and Rac. Moreover, they suggested that the #7 protrusions are neurite-like structures and that their development involves FC regulation.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences and Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ma Y, Shakiryanova D, Vardya I, Popov SV. Quantitative Analysis of Microtubule Transport in Growing Nerve Processes. Curr Biol 2004; 14:725-30. [PMID: 15084289 DOI: 10.1016/j.cub.2004.03.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 01/19/2004] [Accepted: 03/02/2004] [Indexed: 11/24/2022]
Abstract
In neurons, tubulin is synthesized primarily in the cell body, whereas the molecular machinery for neurite extension and elaboration of microtubule (MT) array is localized to the growth cone region. This unique functional and biochemical compartmentalization of neuronal cells requires transport mechanisms for the delivery of newly synthesized tubulin and other cytoplasmic components from the cell body to the growing axon. According to the polymer transport model, tubulin is transported along the axon as a polymer. Because the majority of axonal MTs are stationary at any given moment, it has been assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured the translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for delivery of newly synthesized tubulin to the growing nerve processes.
Collapse
Affiliation(s)
- Yitao Ma
- Department of Physiology and Biophysics, M/C 901, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
49
|
Parran DK, Barone S, Mundy WR. Methylmercury inhibits TrkA signaling through the ERK1/2 cascade after NGF stimulation of PC12 cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 149:53-61. [PMID: 15013629 DOI: 10.1016/j.devbrainres.2003.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2003] [Indexed: 11/20/2022]
Abstract
Using PC12 cells as a model of neuronal differentiation, we have shown that acute exposure to methylmercury (CH3Hg) inhibits nerve growth factor (NGF)-induced activation of TrkA. In the present study, we examined the effects of CH3Hg on pathways activated by NGF. NGF-induced phosphorylation of ERK1/2 in PC12 cells was time-dependent. Concurrent exposure to CH3Hg and NGF for 2.5 min resulted in a concentration-dependent inhibition of ERK1/2 phosphorylation (EC50 = 0.018 microM). However, NGF-stimulated ERK1/2 phosphorylation was not altered after 5 min of exposure to CH3Hg. In vitro studies revealed that CH3Hg did not directly inhibit the ERK kinase MEK. As reported in other neuronal tissue, CH3Hg can inhibit PKC activity in vitro. Incubation of PC12 cell lysates with CH3Hg produced a concentration-dependent inhibition of PKC activity that was significant at 0.3-10 microM. Further studies using recombinant enzymes examined the effect of CH3Hg on PKC isoforms expressed in PC12 cells. CH3Hg inhibited PKCdelta, and zeta activity in a concentration-dependent manner at higher concentrations (3-10 microM), while a significant increase in PKCalpha activity was observed at lower concentrations (0.1 microM). However, CH3Hg had no affect on NGF-induced PKC activity in intact cells. These results show that CH3Hg inhibition of NGF-stimulated TrkA activation in PC12 cells decreases downstream signaling through the Raf/MEK/ERK cascade. In intact cells PKC does not appear to be a primary target for CH3Hg.
Collapse
Affiliation(s)
- Damani K Parran
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
50
|
Abstract
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.
Collapse
Affiliation(s)
- Phillip R Gordon-Weeks
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, England.
| |
Collapse
|