1
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
2
|
Lapraz F, Boutres C, Fixary-Schuster C, De Queiroz BR, Plaçais PY, Cerezo D, Besse F, Préat T, Noselli S. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. Nat Commun 2023; 14:1052. [PMID: 36828820 PMCID: PMC9958012 DOI: 10.1038/s41467-023-36644-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Left-Right (LR) asymmetry of the nervous system is widespread across animals and is thought to be important for cognition and behaviour. But in contrast to visceral organ asymmetry, the genetic basis and function of brain laterality remain only poorly characterized. In this study, we performed RNAi screening to identify genes controlling brain asymmetry in Drosophila. We found that the conserved NetrinB (NetB) pathway is required for a small group of bilateral neurons to project asymmetrically into a pair of neuropils (Asymmetrical Bodies, AB) in the central brain in both sexes. While neurons project unilaterally into the right AB in wild-type flies, netB mutants show a bilateral projection phenotype and hence lose asymmetry. Developmental time course analysis reveals an initially bilateral connectivity, eventually resolving into a right asymmetrical circuit during metamorphosis, with the NetB pathway being required just prior symmetry breaking. We show using unilateral clonal analysis that netB activity is required specifically on the right side for neurons to innervate the right AB. We finally show that loss of NetB pathway activity leads to specific alteration of long-term memory, providing a functional link between asymmetrical circuitry determined by NetB and animal cognitive functions.
Collapse
Affiliation(s)
- F Lapraz
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| | - C Boutres
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - P Y Plaçais
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - D Cerezo
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - F Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - T Préat
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - S Noselli
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
3
|
Transcriptome Analyses Provide Insights into the Aggressive Behavior toward Conspecific and Heterospecific in Thitarodes xiaojinensis (Lepidoptera: Hepialidae). INSECTS 2021; 12:insects12070577. [PMID: 34201917 PMCID: PMC8306418 DOI: 10.3390/insects12070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Aggression is an evolutionarily conserved, complex behavior, essential for survival, reproduction, and the organization of social hierarchies. It is well studied in adult insects, such as flies, ants, honey bees, and crickets. However, the study of aggressive behavior in the larval stage is still lacking. T. xiaojinensis is a common species found in mountainous regions of the Tibetan Plateau, the larvae of which are highly aggressive toward conspecifics. High-throughput RNA-seq with a reference genome provides opportunities for in-depth analysis when T. xiaojinensis is aggressive toward conspecifics and heterospecifics. This study provided a set of important pathways and DEGs associated with aggressive behavior. We also constructed the weighted gene co-expression network for traits, and the central and hub genes involved in aggressive behavior were obtained. The results revealed the molecular responses when T. xiaojinensis showed aggressiveness toward conspecifics and heterospecifics. These data are important for better understanding the aggressive behavior of Lepidopteran larvae at the transcriptional level and provide a theoretical basis for the further analysis of the genetic mechanism of the insect’s aggression. Abstract Aggressive behavior in animals is important for survival and reproduction. It is well studied in adult insects, such as flies, ants, honey bees, and crickets. However, the larvae of Lepidopteran insects are also aggressive, studies of which are still lacking. Here, RNA-seq was used to generate a high-quality database for the aggressive behavior of Thitarodes xiaojinensis toward conspecifics and heterospecifics. Although there was similar aggressive behavior between the conspecific group and heterospecific group, significant differences were identified at the transcriptional level. When there was aggressive behavior toward conspecifics, T. xiaojinensis trended toward higher expression at the respiratory chain, while cuticle development and metabolism may have interfered. On the other hand, when there was aggressive behavior toward H. armigera, genes related to neuron and cuticle development, cellular processes, and its regulated signaling pathways were significantly upregulated, while the genes associated with oxidation-reduction and metabolism were downregulated. Weighted gene co-expression networks analysis (WGCNA) was performed, and two modules with properties correlating to the aggressive behavior of T. xiaojinensis were identified. Several hub genes were predicted and confirmed by qRT-PCR, such as CLTC, MYH, IGF2BP1, and EMC. This study provides a global view and potential key genes for the aggressive behavior of T. xiaojinensis toward conspecifics and heterospecifics. Further investigation of the hub genes would help us to better understand the aggressive behavior of insects.
Collapse
|
4
|
Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, Lin ZY, Thibault MP, Dubé N, Faubert D, Hipfner DR, Gingras AC, Côté JF. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol 2019; 22:120-134. [DOI: 10.1038/s41556-019-0438-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
5
|
Wester JVWC, Lima CAC, Machado MCR, Zampar PV, Tavares SS, Monesi N. Characterization of a novel Drosophila melanogaster cis-regulatory module that drives gene expression to the larval tracheal system and adult thoracic musculature. Genesis 2018; 56:e23222. [PMID: 30096221 DOI: 10.1002/dvg.23222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/05/2022]
Abstract
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis-regulatory module (CRM) that we denominate TT-CRM. The TT-CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp-lacZ lines revealed that TT-CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT-CRM were investigated both in dissected trachea and in adult thoraces. Through RT-qPCR we observed that in the tracheal system the pattern of expression of 646 bp-lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp-lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.
Collapse
Affiliation(s)
- Jorge Victor Wilfredo Cachay Wester
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Antonio Couto Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Vieira Zampar
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Sakagute Tavares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
7
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
8
|
Fort P, Blangy A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol Evol 2017; 9:1471-1486. [PMID: 28541439 PMCID: PMC5499878 DOI: 10.1093/gbe/evx100] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
Collapse
Affiliation(s)
- Philippe Fort
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| | - Anne Blangy
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| |
Collapse
|
9
|
Liu B, Bossing T. Single neuron transcriptomics identify SRSF/SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing. Sci Rep 2016; 6:34952. [PMID: 27725692 PMCID: PMC5057162 DOI: 10.1038/srep34952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log21.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently.
Collapse
Affiliation(s)
- Boyin Liu
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Torsten Bossing
- School of Biomedical and Healthcare Sciences, Plymouth University, John Bull Building, Plymouth, PL6 8BU, U.K
| |
Collapse
|
10
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
11
|
Xu Y, Zhang C, Wang R, Govindarajan S, Barish P, Vernon M, Fu C, Acharya A, Chen L, Boykin E, Yu J, Pan J, O'Donnell J, Ogle W. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. Neuroscience 2011; 182:71-81. [DOI: 10.1016/j.neuroscience.2011.02.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/16/2022]
|
12
|
Vlachos S, Harden N. Genetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis. Genetics 2011; 187:501-12. [PMID: 21098722 PMCID: PMC3030492 DOI: 10.1534/genetics.110.120998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/18/2010] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.
Collapse
Affiliation(s)
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
13
|
Comparative global transcription analysis of Aconitum koreanum Raymond, Typhonium gigantum Engl., and Helianthus tuberosis Linne. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Hall A, Lalli G. Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010; 2:a001818. [PMID: 20182621 DOI: 10.1101/cshperspect.a001818] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis.
Collapse
Affiliation(s)
- Alan Hall
- Memorial Sloan-Kettering Cancer Center, Cell Biology Program, New York, New York 10065, USA
| | | |
Collapse
|
15
|
Regulation of axonal development by the nuclear protein hindsight (pebbled) in the Drosophila visual system. Dev Biol 2010; 344:911-21. [PMID: 20541542 DOI: 10.1016/j.ydbio.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/14/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022]
Abstract
The molecules and networks involved in the process of acquisition and maintenance of the form of a mature neuron are not completely known. Using a misexpression screen we identified the gene hindsight as a gene involved in the process of acquisition of the neuronal morphogenesis in the Drosophila adult nervous system. hindsight encodes a transcription factor known for its role in early developmental processes such as embryonic germ band retraction and dorsal closure, as well as in the establishment of cell morphology, planar cell polarity, and epithelial integrity during retinal development. We describe here a novel function for HNT by showing that both loss and gain of function of HNT affects the pathfinding of the photoreceptors axons. By manipulating the timing and level of HNT expression, together with the number of cells manipulated we show here that the function of HNT in axonal guidance is independent of the HNT functions previously reported in retinal cells. Based on genetic interaction experiments we show that part of HNT function in axonal development is exerted through the regulation of genes involved in the dynamics of the actin cytoskeleton.
Collapse
|
16
|
Dorsten JN, Varughese BE, Karmo S, Seeger MA, VanBerkum MFA. In the absence of frazzled over-expression of Abelson tyrosine kinase disrupts commissure formation and causes axons to leave the embryonic CNS. PLoS One 2010; 5:e9822. [PMID: 20352105 PMCID: PMC2843715 DOI: 10.1371/journal.pone.0009822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the Drosophila embryonic nerve cord, the formation of commissures require both the chemoattractive Netrin receptor Frazzled (Fra) and the Abelson (Abl) cytoplasmic tyrosine kinase. Abl binds to the cytoplasmic domain of Fra and loss-of-function mutations in abl enhance fra-dependent commissural defects. To further test Abl's role in attractive signaling, we over-expressed Abl in Fra mutants anticipating rescue of commissures. METHODOLOGY/PRINCIPAL FINDINGS The Gal4-UAS system was used to pan-neurally over-express Abl in homozygous fra embryos. Surprisingly, this led to a significant decrease in both posterior and anterior commissure formation and induced some commissural and longitudinal axons to project beyond the CNS/PNS border. Re-expressing wild-type Fra, or Fra mutants with a P-motif deleted, revert both commissural and exiting phenotypes, indicating that Fra is required but not a specific P-motif. This is supported by S2 cell experiments demonstrating that Abl binds to Fra independent of any specific P-motif and that Fra continues to be phosphorylated when individual P-motifs are removed. Decreasing midline repulsion by reducing Robo signaling had no effect on the Abl phenotype and the phenotypes still occur in a Netrin mutant. Pan-neural over-expression of activated Rac or Cdc42 in a fra mutant also induced a significant loss in commissures, but axons did not exit the CNS. CONCLUSION/SIGNIFICANCE Taken together, these data suggest that Fra activity is required to correctly regulate Abl-dependent cytoskeletal dynamics underlying commissure formation. In the absence of Fra, increased Abl activity appears to be incorrectly utilized downstream of other guidance receptors resulting in a loss of commissures and the abnormal projections of some axons beyond the CNS/PNS border.
Collapse
Affiliation(s)
- Joy N. Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Bridget E. Varughese
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Stephanie Karmo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mark A. Seeger
- Department of Molecular Genetics and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio, United States of America
| | - Mark F. A. VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
17
|
Picard M, Petrie RJ, Antoine-Bertrand J, Saint-Cyr-Proulx E, Villemure JF, Lamarche-Vane N. Spatial and temporal activation of the small GTPases RhoA and Rac1 by the netrin-1 receptor UNC5a during neurite outgrowth. Cell Signal 2009; 21:1961-73. [DOI: 10.1016/j.cellsig.2009.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 08/11/2009] [Accepted: 09/06/2009] [Indexed: 11/29/2022]
|
18
|
Massarwa R, Schejter ED, Shilo BZ. Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanous. Dev Cell 2009; 16:877-88. [PMID: 19531358 DOI: 10.1016/j.devcel.2009.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/15/2009] [Accepted: 04/21/2009] [Indexed: 01/19/2023]
Abstract
Apical localization of filamentous actin (F-actin) is a common feature of epithelial tubes in multicellular organisms. However, its origins and function are not known. We demonstrate that the Diaphanous (Dia)/Formin actin-nucleating factor is required for generation of apical F-actin in diverse types of epithelial tubes in the Drosophila embryo. Dia itself is apically localized both at the RNA and protein levels, and apical localization of its activators, including Rho1 and two guanine exchange factor proteins (Rho-GEFs), contributes to its activity. In the absence of apical actin polymerization, apical-basal polarity and microtubule organization of tubular epithelial cells remain intact; however, secretion through the apical surface to the lumen of tubular organs is blocked. Apical secretion also requires the Myosin V (MyoV) motor, implying that secretory vesicles are targeted to the apical membrane by MyoV-based transport, along polarized actin filaments nucleated by Dia. This mechanism allows efficient utilization of the entire apical membrane for secretion.
Collapse
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
19
|
Abstract
Slit was identified in Drosophila embryo as a gene involved in the patterning of larval cuticle. It was later shown that Slit is synthesized in the fly central nervous system by midline glia cells. Slit homologues have since been found in C. elegans and many vertebrate species, from amphibians, fishes, birds to mammals. A single slit was isolated in invertebrates, whereas there are three slit genes (slit1-slit3) in mammals, that have around 60% homology. All encodes large ECM glycoproteins of about 200 kDa (Fig. 1A), comprising, from their N terminus to their C terminus, a long stretch of four leucine rich repeats (LRR) connected by disulphide bonds, seven to nine EGF repeats, a domain, named ALPS (Agrin, Perlecan, Laminin, Slit) or laminin G-like module (see ref 17), and a cystein knot (Fig. 1A). Alternative spliced transcripts have been reported for Drosophila Slit2, human Slit2 and Slit3, and Slit1. Moreover, two Slit1 isoforms exist in zebrafish as a consequence of gene duplication. Last, in mammals, two Slit2 isoforms can be purified from brain extracts, a long 200 kDa one and a shorter 150 kDa form (Slit2-N) that was shown to result from the proteolytic processing of full-length Slit2. Human Slit and Slit3 and Drosophila Slit are also cleaved by an unknown protease in a large N-terminal fragment and a shorter C-terminal fragment, suggesting conserved mechanisms for Slit cleavage across species. Moreover, Slit fragments have different cell association characteristics in cell culture suggesting that they may also have different extents of diffusion, different binding properties, and, hence, different functional activities in vivo. This conclusion is supported by in vitro data showing that full-length Slit2 functions as an antagonist of Slit2-N in the DRG branching assay, and that Slit2-N, not full-length Slit2, causes collapse of OB growth cones. In addition, Slit1-N and full-length Slit1 can induce branching of cortical neurons (see below), but only full-length Slit1 repels cortical axons. Structure-function analysis in vertebrates and Drosophila demonstrated that the LRRs of Slits are required and sufficient to mediate their repulsive activities in neurons. More recent detailed structure function analysis of the LRR domains of Drosophila Slit, revealed that the active site of Slit (at least regarding its pro-angiogenic activity) is located on the second of the fourth LRR (LRR2), which is highly conserved between Slits. Slit can also dimerize through the LRR4 domain and the cystein knot.However, a Slit1 spliced-variant that lacks the cysteine knot and does not dimerize is still able to repel OB axons.
Collapse
|
20
|
Gilestro GF. Redundant mechanisms for regulation of midline crossing in Drosophila. PLoS One 2008; 3:e3798. [PMID: 19030109 PMCID: PMC2583054 DOI: 10.1371/journal.pone.0003798] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022] Open
Abstract
During development, all neurons have to decide on whether to cross the longitudinal midline to project on the contralateral side of the body. In vertebrates and invertebrates regulation of crossing is achieved by interfering with Robo signalling either through sorting and degradation of the receptor, in flies, or through silencing of its repulsive activity, in vertebrates. Here I show that in Drosophila a second mechanism of regulation exists that is independent from sorting. Using in vitro and in vivo assays I mapped the region of Robo that is sufficient and required for its interaction with Comm, its sorting receptor. By modifying that region, I generated new forms of Robo that are insensitive to Comm sorting in vitro and in vivo, yet still able to normally translate repulsive activity in vivo. Using gene targeting by homologous recombination I created new conditional alleles of robo that are sorting defective (robo(SD)). Surprisingly, expression of these modified proteins results in phenotypically normal flies, unveiling a sorting independent mechanism of regulation.
Collapse
|
21
|
Ng J. TGF-beta signals regulate axonal development through distinct Smad-independent mechanisms. Development 2008; 135:4025-35. [PMID: 19004854 DOI: 10.1242/dev.028209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proper nerve connections form when growing axons terminate at the correct postsynaptic target. Here I show that Transforming growth factor beta (TGFbeta) signals regulate axon growth. In most contexts, TGFbeta signals are tightly linked to Smad transcriptional activity. Although known to exist, how Smad-independent pathways mediate TGFbeta responses in vivo is unclear. In Drosophila mushroom body (MB) neurons, loss of the TGFbeta receptor Baboon (Babo) results in axon overextension. Conversely, misexpression of constitutively active Babo results in premature axon termination. Smad activity is not required for these phenotypes. This study shows that Babo signals require the Rho GTPases Rho1 and Rac, and LIM kinase1 (LIMK1), which regulate the actin cytoskeleton. Contrary to the well-established receptor activation model, in which type 1 receptors act downstream of type 2 receptors, this study shows that the type 2 receptors Wishful thinking (Wit) and Punt act downstream of the Babo type 1 receptor. Wit and Punt regulate axon growth independently, and interchangeably, through LIMK1-dependent and -independent mechanisms. Thus, novel TGFbeta receptor interactions control non-Smad signals and regulate multiple aspects of axonal development in vivo.
Collapse
Affiliation(s)
- Julian Ng
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK.
| |
Collapse
|
22
|
Dorsten JN, Kolodziej PA, VanBerkum MFA. Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 2007; 308:120-32. [PMID: 17568577 DOI: 10.1016/j.ydbio.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 12/30/2022]
Abstract
Frazzled (Fra) is a chemoattractive guidance receptor regulating the cytoskeletal dynamics underlying growth cone steering at the Drosophila embryonic midline. Here, by genetically evaluating the role of Rho GTPases in Fra signaling in vivo, we uncover a Rho-dependent pathway apparently regulating conventional myosin II activity. Midline crossing errors induced by expressing activated Cdc42(v12) or Rac(v12) are suppressed by a heterozygous loss of fra(4) signaling but, in a Fra(wt) gain-of-function condition, no interaction is detected. In contrast, the frequency of crossovers is enhanced approximately 5-fold when Fra(wt) is co-expressed with activated Rho(v14) and this interaction specifically requires the cytoplasmic P3 motif of Fra. Expression of Rho(v14) and activated MLCK (ctMLCK) synergistically increase ectopic crossovers and both require phosphorylation of the regulatory light chain (Sqh) of myosin II. Abelson tyrosine kinase may also help regulate myosin II activity. Heterozygous abl(4) abolishes the midline crossing errors induced by ctMLCK alone or in combination with Fra(wt); suppression of Rho(v14) crossovers is not observed. Interestingly, an interaction between Fra and an activated Abl (Bcr-Abl) also specifically requires the P3 motif. Therefore, the P3 motif of Frazzled appears to initiate Rho and Abl dependent signals to directly or indirectly regulate myosin II activity in growth cones.
Collapse
Affiliation(s)
- Joy N Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
23
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Lovegrove B, Simões S, Rivas ML, Sotillos S, Johnson K, Knust E, Jacinto A, Hombría JCG. Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila. Curr Biol 2007; 16:2206-16. [PMID: 17113384 DOI: 10.1016/j.cub.2006.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hox genes control animal body plans by directing the morphogenesis of segment-specific structures. As transcription factors, HOX proteins achieve this through the activation of downstream target genes. Much research has been devoted to the search for these targets and the characterization of their roles in organogenesis. This has shown that the direct targets of Hox activation are often transcription factors or signaling molecules, which form hierarchical genetic networks directing the morphogenesis of particular organs. Importantly, very few of the direct Hox targets known are "realizator" genes involved directly in the cellular processes of organogenesis. RESULTS Here, we describe for the first time a complete network linking the Hox gene Abdominal-B to the realizator genes it controls during the organogenesis of the external respiratory organ of the larva. In this process, Abdominal-B induces the expression of four intermediate signaling molecules and transcription factors, and this expression results in the mosaic activation of several realizator genes. The ABD-B spiracle realizators include at least five cell-adhesion proteins, cell-polarity proteins, and GAP and GEF cytoskeleton regulators. Simultaneous ectopic expression of the Abd-B downstream targets can induce spiracle-like structure formation in the absence of ABD-B protein. CONCLUSION Hox realizators include cytoskeletal regulators and molecules required for the apico-basal cell organization. HOX-coordinated activation of these realizators in mosaic patterns confers to the organ primordium its assembling properties. We propose that during animal development, Hox-controlled genetic cascades coordinate the local cell-specific behaviors that result in organogenesis of segment-specific structures.
Collapse
Affiliation(s)
- Bridget Lovegrove
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Simões S, Denholm B, Azevedo D, Sotillos S, Martin P, Skaer H, Hombría JCG, Jacinto A. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development 2006; 133:4257-67. [PMID: 17021037 DOI: 10.1242/dev.02588] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During development, small RhoGTPases control the precise cell shape changes and movements that underlie morphogenesis. Their activity must be tightly regulated in time and space, but little is known about how Rho regulators(RhoGEFs and RhoGAPs) perform this function in the embryo. Taking advantage of a new probe that allows the visualisation of small RhoGTPase activity in Drosophila, we present evidence that Rho1 is apically activated and essential for epithelial cell invagination, a common morphogenetic movement during embryogenesis. In the posterior spiracles of the fly embryo, this asymmetric activation is achieved by at least two mechanisms: the apical enrichment of Rho1; and the opposing distribution of Rho activators and inhibitors to distinct compartments of the cell membrane. At least two Rho1 activators, RhoGEF2 and RhoGEF64C are localised apically, whereas the Rho inhibitor RhoGAP Cv-c localises at the basolateral membrane. Furthermore, the mRNA of RhoGEF64C is also apically enriched, depending on signals present within its open reading frame, suggesting that apical transport of RhoGEF mRNA followed by local translation is a mechanism to spatially restrict Rho1 activity during epithelial cell invagination.
Collapse
Affiliation(s)
- Sérgio Simões
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nahm M, Lee M, Baek SH, Yoon JH, Kim HH, Lee ZH, Lee S. Drosophila RhoGEF4 encodes a novel RhoA-specific guanine exchange factor that is highly expressed in the embryonic central nervous system. Gene 2006; 384:139-44. [PMID: 17011730 DOI: 10.1016/j.gene.2006.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/17/2006] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Rho family small GTPases act as molecular switches that regulate neuronal morphogenesis, including axon growth and guidance, dendritic spine formation, and synapse formation. These proteins are positively regulated by guanine nucleotide exchange factors (GEFs) of the Dbl family. This study describes the identification and characterization of Drosophila RhoGEF4 (DRhoGEF4), a novel Dbl family protein that is specifically expressed in the central nervous system during Drosophila embryogenesis. The predicted amino acid sequence of DRhoGEF4 contains a Dbl homology (DH) domain and an adjacent C-terminal pleckstrin homology (PH) domain, which are most closely related to those of mammalian frabins. In this study, the DH-PH motif is shown to enhance the dissociation of GDP from either RhoA or Rac1 but not from Cdc42 in vitro. In addition, p21-binding domain pull-down assays demonstrate that DRhoGEF4 activates RhoA, but neither Rac1 nor Cdc42 in HEK293 cells. Finally, overexpression of DRhoGEF4 is able to induce assembly of stress fibers in cultured NIH3T3 cells. Taken together, these findings suggest that DRhoGEF4 may participate in cytoskeleton-related cellular events by specifically activating RhoA in neuronal morphogenesis.
Collapse
Affiliation(s)
- Minyeop Nahm
- Interdisciplinary Program in Brain Science, School of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Nakamura T, Aoki K, Matsuda M. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain. ACTA ACUST UNITED AC 2006; 139:277-87. [PMID: 16024133 DOI: 10.1016/j.molbrainres.2005.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/24/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
Rho-family GTPases play a central role in the regulation of neuronal morphogenesis. In growth cones, for example, Rho GTPases transduce extracellular stimuli into structural changes such as filopodia and lamellipodia. Although it is generally accepted that Rac1/Cdc42 and RhoA are positive and negative regulators of neurite outgrowth, respectively, the role of each Rho-family member in neuronal morphogenesis may change according to the cell context. At present, the mechanism underlying this complexity is largely unknown. In growth cones, this is partly due to a lack of information on the distribution of active Rho GTPases. Here, we visualized RhoA/Rac1/Cdc42 activities during laminin-induced growth cone advance of DRG neurons and N1E-115 neuroblastoma cells using probes based on fluorescence/Förster resonance energy transfer. The Rac1 and Cdc42 activities were high in the peripheral domain (P-domain) of growth cones. Active Rac1 was uniformly detected throughout the P-domain, whereas Cdc42 activity increased gradually toward the growth cone edge. Against a model involving RhoA down-regulation at the periphery of protruding growth cones, we found that the RhoA activity was higher in the P-domain than in the central domain and axon shaft, and that a high level of RhoA activity was maintained in the extending part of growth cones. In lysophosphatidic acid-treated N1E-115 cells, well-developed neurites with growth cones showed RhoA activation, but sustained their extended morphology until they were drawn toward the contracting somata. On the other hand, suppression of RhoA activity by C3 exoenzyme led to loss or deformation of actin bundles in the growth cones. Thus, RhoA activation in the shaft results in neurite retraction, whereas high RhoA activity in the P-domain is necessary to retain the spread morphology of nerve growth cone.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
28
|
Forsthoefel DJ, Liebl EC, Kolodziej PA, Seeger MA. The Abelson tyrosine kinase, the Trio GEF and Enabled interact with the Netrin receptor Frazzled in Drosophila. Development 2005; 132:1983-94. [PMID: 15790972 DOI: 10.1242/dev.01736] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The attractive Netrin receptor Frazzled (Fra), and the signaling molecules Abelson tyrosine kinase (Abl), the guanine nucleotide-exchange factor Trio,and the Abl substrate Enabled (Ena), all regulate axon pathfinding at the Drosophila embryonic CNS midline. We detect genetic and/or physical interactions between Fra and these effector molecules that suggest that they act in concert to guide axons across the midline. Mutations in Abland trio dominantly enhance fra and Netrin mutant CNS phenotypes, and fra;Abl and fra;trio double mutants display a dramatic loss of axons in a majority of commissures. Conversely,heterozygosity for ena reduces the severity of the CNS phenotype in fra, Netrin and trio,Abl mutants. Consistent with an in vivo role for these molecules as effectors of Fra signaling, heterozygosity for Abl, trio or ena reduces the number of axons that inappropriately cross the midline in embryos expressing the chimeric Robo-Fra receptor. Fra interacts physically with Abl and Trio in GST-pulldown assays and in co-immunoprecipitation experiments. In addition, tyrosine phosphorylation of Trio and Fra is elevated in S2 cells when Abl levels are increased. Together, these data suggest that Abl, Trio, Ena and Fra are integrated into a complex signaling network that regulates axon guidance at the CNS midline.
Collapse
Affiliation(s)
- David J Forsthoefel
- The Ohio State University, Department of Molecular Genetics and Center for Molecular Neurobiology, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
30
|
Roberts DM, Anderson AL, Hidaka M, Swetenburg RL, Patterson C, Stanford WL, Bautch VL. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol Cell Biol 2004; 24:10515-28. [PMID: 15572660 PMCID: PMC533983 DOI: 10.1128/mcb.24.24.10515-10528.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified Ras guanine-releasing protein 3 (RasGRP3) as a guanine exchange factor expressed in blood vessels via an embryonic stem (ES) cell-based gene trap screen to identify novel vascular genes. RasGRP3 is expressed in embryonic blood vessels, down-regulated in mature adult vessels, and reexpressed in newly formed vessels during pregnancy and tumorigenesis. This expression pattern is consistent with an angiogenic function for RasGRP3. Although a loss-of-function mutation in RasGRP3 did not affect viability, RasGRP3 was up-regulated in response to vascular endothelial growth factor (VEGF) stimulation of human umbilical vein endothelial cells, placing RasGRP3 regulation downstream of VEGF signaling. Phorbol esters mimic the second messenger diacylglycerol (DAG) in activating both protein kinase C (PKC) and non-PKC phorbol ester receptors such as RasGRP3. ES cell-derived wild-type blood vessels exposed to phorbol myristate acetate (PMA) underwent extensive aberrant morphogenesis that resulted in the formation of large endothelial sheets rather than properly branched vessels. This response to PMA was completely dependent on the presence of RasGRP3, as mutant vessels were refractory to the treatment. Taken together, these findings show that endothelial RasGRP3 is up-regulated in response to VEGF stimulation and that RasGRP3 functions as an endothelial cell phorbol ester receptor in a pathway whose stimulation perturbs normal angiogenesis. This suggests that RasGRP3 activity may exacerbate vascular complications in diseases characterized by excess DAG, such as diabetes.
Collapse
Affiliation(s)
- David M Roberts
- Curriculum in Genetics and Molecular Biology, Department of Biology, CB#3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
McGovern VL, Pacak CA, Sewell ST, Turski ML, Seeger MA. A targeted gain of function screen in the embryonic CNS of Drosophila. Mech Dev 2004; 120:1193-207. [PMID: 14568107 DOI: 10.1016/s0925-4773(03)00159-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to identify genes involved in the development of the central nervous system (CNS) we have undertaken a gain of function screen in the embryonic CNS of Drosophila. Transposable P-elements and the UAS/GAL4 system were used to initiate transcription of genes in a pan-neural pattern using scaGAL4. Over 4100 individual P-element insertion lines were screened with monoclonal antibodies BP102 and 1D4 to visualize axon pathways. Twenty-five P-element insertions corresponding to 18 genes resulted in aberrant CNS axon pathfinding when misexpressed with scaGAL4. Genes involved in axon guidance, embryonic patterning, and cell cycle regulation were isolated. In addition, we identified several zinc finger transcription factors not previously implicated in axon guidance or CNS development. This group includes Squeeze, Kruppel homolog-1, Hepatocyte nuclear factor 4, and two uncharacterized genes, CG11966 and CG9650. Calnexin99A, a putative molecular chaperone, was isolated as well.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Molecular Genetics and The Center for Molecular Neurobiology, 125 Rightmire Hall, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
32
|
Raymond K, Bergeret E, Avet-Rochex A, Griffin-Shea R, Fauvarque MO. A screen for modifiers of RacGAP(84C) gain-of-function in theDrosophilaeye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis. J Cell Sci 2004; 117:2777-89. [PMID: 15169836 DOI: 10.1242/jcs.01123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila, RotundRacGAP/RacGAP(84C) is critical to retinal organisation and spermatogenesis. We show that eye-directed expression of RacGAP(84C) or its GTPase activating protein (GAP) domain induces a dominant rough eye phenotype which we used as a starting point in a gain-of-function screen to identify new partners of RacGAP(84C). Proteins known to function in Ras, Rho and Rac signalling were identified confirming the essential role of RacGAP(84C) in crosstalk between GTPases. Other potential RacGAP(84C) partners identified by the screen are implicated in signal transduction, DNA remodelling, cytoskeletal organisation, membrane trafficking and spermatogenesis. This latter class includes the serine/threonine kinase Center divider (Cdi), which is homologous to the human LIM kinase, Testis specific kinase 1 (TESK1), involved in cytoskeleton control through Cofilin phosphorylation. Eye-directed expression of cdi strongly suppressed the phenotypes induced by either RacGAP(84C) gain-of-function or by the dominant negative form of Rac1, Rac1N17. These results are consistent with Cdi being a specific downstream target of Rac1. We showed that Rac1 and cdi are both expressed in Drosophila testis and that homozygous Rac1 mutants exhibit poor fertility that is further reduced by introducing a cdi loss-of-function mutation in trans. Thus, results from a misexpression screen in the eye led us to a putative novel Rac1-Cdi-Cofilin pathway, regulated by RacGAP(84C), coordinating Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Karine Raymond
- CEA-Grenoble, Département de Réponse et Dynamique Cellulaires, UMR 5092, 17 rue des Martyrs, 38054 Grenoble CEDEX 9, France
| | | | | | | | | |
Collapse
|
33
|
Smallhorn M, Murray MJ, Saint R. The epithelial-mesenchymal transition of theDrosophilamesoderm requires the Rho GTP exchange factor Pebble. Development 2004; 131:2641-51. [PMID: 15128661 DOI: 10.1242/dev.01150] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drosophila pebble (pbl) encodes a Rho-family GTP exchange factor (GEF) required for cytokinesis. The accumulation of high levels of PBL protein during interphase and the developmentally regulated expression of pbl in mesodermal tissues suggested that the primary cytokinetic mutant phenotype might be masking other roles. Using various muscle differentiation markers, we found that Even skipped (EVE) expression in the dorsal mesoderm is greatly reduced in pbl mutant embryos. EVE expression in the dorsalmost mesodermal cells is induced in response to DPP secreted by the dorsal epidermal cells. Further analysis revealed that this phenotype is likely to be a consequence of an earlier defect. pblmutant mesodermal cells fail to undergo the normal epithelial-mesenchymal transition (EMT) and dorsal migration that follows ventral furrow formation. This phenotype is not a secondary consequence of failed cytokinesis, as it is rescued by a mutant form of pbl that does not rescue the cytokinetic defect. In wild-type embryos, newly invaginated cells at the lateral edges of the mesoderm extend numerous protrusions. In pbl mutant embryos,however, cells appear more tightly adhered to their neighbours and extend very few protrusions. Consistent with the dependence of the mesoderm EMT and cytokinesis on actin organisation, the GTP exchange function of the PBL RhoGEF is required for both processes. By contrast, the N-terminal BRCT domains of PBL are required only for the cytokinetic function of PBL. These studies reveal that a novel PBL-mediated intracellular signalling pathway operates in mesodermal cells during the transition from an epithelial to migratory mesenchymal morphology during gastrulation.
Collapse
Affiliation(s)
- Masha Smallhorn
- Centre for the Molecular Genetics of Development and Research School of Biological Sciences, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | |
Collapse
|
34
|
Matyash A, Chung HR, Jäckle H. Genome-wide mapping of in vivo targets of the Drosophila transcription factor Kruppel. J Biol Chem 2004; 279:30689-96. [PMID: 15131112 DOI: 10.1074/jbc.m403345200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel (Kr), a member of the gap class of Drosophila segmentation genes, encodes a DNA binding zinc finger-type transcription factor. In addition to its segmentation function at the blastoderm stage, Krüppel also plays a critical role in organ formation during later stages of embryogenesis. To systematically identify in vivo target genes of Krüppel, we isolated DNA fragments from the Krüppel-associated portion of chromatin and used them to find and map Krüppel-dependent cis-acting regulatory sites in the Drosophila genome. We show that Krüppel binding sites are not enriched in Krüppel-associated chromatin and that the clustering of Krüppel binding sites, as found in the cis-acting elements of Krüppel-dependent segmentation genes used for in silico searches of Krüppel target genes, is not a prerequisite for the in vivo binding of Krüppel to its regulatory elements. Results obtained with the newly identified target gene ken and barbie (ken) indicate that Krüppel represses transcription and thereby restricts the spatial expression pattern of ken during blastoderm and gastrulation.
Collapse
Affiliation(s)
- Alexey Matyash
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
35
|
Pettigrew JD, Sand O, Gynther I. Error rate of axons at the owl's optic chiasm. Clin Exp Optom 2004; 87:93-6. [PMID: 15040775 DOI: 10.1111/j.1444-0938.2004.tb03154.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 12/15/2003] [Accepted: 12/24/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In owls, the visual pathways from the retina are totally crossed. Attempts to find ganglion cells with uncrossed axons have failed consistently, when retrograde labeling with HRP is used for their identification. In the present investigation we have used retrograde fluorescent tracers of complementary colour in each optic tectum to demonstrate a tiny population of ipsilaterally-projecting retinal ganglion cells in the owl. METHODS We studied two species, one from each of the two important owl families: the Southern boobook owl, Ninox boobook: (Family Strigidae); and the Barn Owl, Tyto alba: (Family Tytonidae). RESULTS The small numbers, random distribution and heterogeneity of the mis-projecting ganglion cells, taken together, argue against a functional role for them. Instead, they appear to be the result of developmental errors in the specification of laterality. At a number of different eccentricities and ganglion cell densities, the error rate was roughly a constant fraction of the neurons involved, at around 10-4 for the tytonid owl (lacking a fovea) and around 10-5 for the strigid owl (which has a fovea and a higher overall density of ganglion cells). CONCLUSIONS These values are close to the error rates of replicating enzymes, such as nucleic acid polymerases. The evolution of a higher retinal ganglion cell density and a fovea in the Strigidae appears to be accompanied by an improvement in the error rate.
Collapse
Affiliation(s)
- John D Pettigrew
- Vision Touch and Hearing Research Centre, The University of Queensland, Australia
| | | | | |
Collapse
|
36
|
Matsuura R, Tanaka H, Go MJ. Distinct functions of Rac1 and Cdc42 during axon guidance and growth cone morphogenesis in Drosophila. Eur J Neurosci 2004; 19:21-31. [PMID: 14750960 DOI: 10.1046/j.1460-9568.2003.03084.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rho family small GTPases are thought to be key molecules in the regulation of cytoskeletal organization, especially for actin filaments. In order to examine the functions of Rac1 and Cdc42 in axon guidance at the midline of the central nervous system in Drosophila embryos, we either activated or inactivated Rac1 and Cdc42 in all postmitotic neurons. We found that the phenotypes of Cdc42 activation and Rac1 inactivation were similar to those of roundabout mutants, in that many extra axons crossed the midline. We also found that Rac1 inactivation is dominant over Roundabout receptor activation. Our observations indicate that Rac1 and Cdc42 have distinct functions in downstream signalling events triggered by Roundabout receptors. In order to further examine the functional difference between Rac1 and Cdc42 in the growth cone morphogenesis, we used primary embryonic cultures to closely observe neurite formation. We showed that activation of Rac1 and Cdc42 has distinct effects on neurite formation, particularly on growth cone morphology and the actin filaments within. Both Rac1 and Cdc42 activation induced large growth cones and long filopodia, but Cdc42 did so more efficiently than Rac1. Only Rac1 activation, however, induced thick actin bundles in the filopodia. We also found a clear difference between Rac1 and Cdc42 in terms of the response to an inhibitor of actin polymerization. Our results suggest that Cdc42 is specifically involved in the regulation of actin filaments in growth cones, whereas Rac1 is involved in additional functions.
Collapse
Affiliation(s)
- Ryouta Matsuura
- Department of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | |
Collapse
|
37
|
Rougon G, Hobert O. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 2003; 26:207-38. [PMID: 12598678 DOI: 10.1146/annurev.neuro.26.041002.131014] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulin superfamily (IgSF) proteins are implicated in diverse steps of brain development, including neuronal migration, axon pathfinding, target recognition and synapse formation, as well as in the maintenance and function of neuronal networks in the adult. We provide here a review of recent findings on the diversity and the role of transmembrane and secreted members of IgSF proteins in the nervous system. We illustrate that the complexity of IgSF protein function results from various different levels of regulation including regulation of gene expression, protein localization, and protein interactions.
Collapse
Affiliation(s)
- Genevieve Rougon
- Laboratoire NMDA CNRS UMR 6156, Universite de la Mediterranee, Institut de Biologie du Developpement (IBDM), Marseille Cedex 9, 13288 France.
| | | |
Collapse
|
38
|
Araújo SJ, Tear G. Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 2003; 4:910-22. [PMID: 14595402 DOI: 10.1038/nrn1243] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sofia J Araújo
- Molecular Neurobiology Department, Medical Research Council Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College, London, SE1 1UL, UK
| | | |
Collapse
|
39
|
Hsouna A, Kim YS, VanBerkum MFA. Abelson tyrosine kinase is required to transduce midline repulsive cues. JOURNAL OF NEUROBIOLOGY 2003; 57:15-30. [PMID: 12973825 DOI: 10.1002/neu.10232] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tyrosine phosphorylation-dependent signaling cascades play key roles in determining the formation of an axon pathway. The cytoplasmic Abelson tyrosine kinase participate in several signaling pathways that orchestrate both growth cone advance and steering in response to guidance cues. Here, a genetic approach is used to evaluate the role for Abelson in growth cones during a decision to cross or not to cross the Drosophila embryonic midline. Our data indicate that both loss- and gain-of-function conditions for Abl cause neurons within the pCC/MP2 pathway to project across the midline incorrectly. The frequency of abnormal crossovers is enhanced by mutations in the genes encoding the midline repellent, Slit, or its receptor, Roundabout. In comm mutants, where repulsive signals remain elevated, increasing or decreasing Abl activity partially rescues commissure formation. Thus, both too much and too little Abl activity causes axons to cross the midline inappropriately, indicating that Abl plays a critical role in transducing midline repulsive cues. How Abl functions in this role is not yet clear, but we suggest that Abl may help regulate cytoskeletal dynamics underlying a growth cone's response to midline cues.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
40
|
Matsuo N, Terao M, Nabeshima YI, Hoshino M. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology. Mol Cell Neurosci 2003; 24:69-81. [PMID: 14550769 DOI: 10.1016/s1044-7431(03)00122-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Rho family GTPases are suggested to be pivotal for growth cone behavior, but regulation of their activities in response to environmental cues remains elusive. Here, we describe roles of STEF and Tiam1, guanine nucleotide exchange factors for Rac1, in neurite growth and growth cone remodeling. We reveal that, in primary hippocampal neurons, STEF/Tiam1 are localized within growth cones and essential for formation of growth cone lamellipodia, eventually contributing to neurite growth. Furthermore, experiments using a dominant-negative form demonstrate that STEF/Tiam1 mediate extracellular laminin signals to activate Rac1, promoting neurite growth in N1E-115 neuroblastoma cells. STEF/Tiam1 are revealed to mediate Cdc42 signal to activate Rac1 during lamellipodial formation. We also show that RhoA inhibits the STEF/Tiam1-Rac1 pathway. These data are used to propose a model that extracellular and intracellular information is integrated by STEF/Tiam1 to modulate the balance of Rho GTPase activities in the growth cone and, consequently, to control growth cone behavior.
Collapse
Affiliation(s)
- Naoki Matsuo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
The study of dendritic development in CNS neurons has been hampered by a lack of complex dendritic structures that can be studied in a tractable genetic system. In an effort to develop such a system, we recently characterized the highly complex dendrites of the vertical system (VS) neurons in the Drosophila visual system. Using VS neurons as a model system, we show here using loss-of-function mutations that endogenous Cdc42, a member of Rho family of small GTPases, is required for multiple aspects of dendritic morphogenesis. Cdc42-mutant VS neurons display normal complexity but increased dendritic length compared with wild type and have defects in dendrite caliber and stereotyped dendritic branch positions. Remarkably, Cdc42 mutant neurons also show a 50% reduction in dendritic spine density. These results demonstrate that Cdc42 is a regulator for multiple aspects of dendritic development.
Collapse
|
42
|
Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S. Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 2003; 161:381-91. [PMID: 12707308 PMCID: PMC2172896 DOI: 10.1083/jcb.200210149] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rho-GTPase has been implicated in axon outgrowth. However, not all of the critical steps controlled by Rho have been well characterized. Using cultured cerebellar granule neurons, we show here that stromal cell-derived factor (SDF)-1alpha, a neural chemokine, is a physiological ligand that can turn on two distinct Rho-dependent pathways with opposite consequences. A low concentration of the ligand stimulated a Rho-dependent pathway that mediated facilitation of axon elongation. In contrast, Rho/ROCK activation achieved by a higher concentration of SDF-1alpha caused repression of axon formation and induced no more increase in axon length. However, even at this higher concentration a Rho-dependent axon elongating activity could be recovered upon removal of ROCK activity using Y-27632. SDF-1alpha-induced axon elongating activity under ROCK inhibition was replicated by the dominant-active form of the mammalian homologue of the Drosophila gene Diaphanous (mDia)1 and counteracted by its dominant-negative form. Furthermore, RNAi knockdown of mDia1 abolished SDF-1alpha-induced axon elongation. Together, our results support a critical role for an SDF-1alpha/Rho/mDia1 pathway in mediating axon elongation.
Collapse
Affiliation(s)
- Yoshiki Arakawa
- Dept. of Pharmacology, Kyoto University Faculty of Medicine, Yoshida, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scott EK, Reuter JE, Luo L. Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J Neurosci 2003; 23:3118-23. [PMID: 12716918 PMCID: PMC6742332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The study of dendritic development in CNS neurons has been hampered by a lack of complex dendritic structures that can be studied in a tractable genetic system. In an effort to develop such a system, we recently characterized the highly complex dendrites of the vertical system (VS) neurons in the Drosophila visual system. Using VS neurons as a model system, we show here using loss-of-function mutations that endogenous Cdc42, a member of Rho family of small GTPases, is required for multiple aspects of dendritic morphogenesis. Cdc42-mutant VS neurons display normal complexity but increased dendritic length compared with wild type and have defects in dendrite caliber and stereotyped dendritic branch positions. Remarkably, Cdc42 mutant neurons also show a 50% reduction in dendritic spine density. These results demonstrate that Cdc42 is a regulator for multiple aspects of dendritic development.
Collapse
Affiliation(s)
- Ethan K Scott
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
44
|
Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 2003; 22:319-30. [PMID: 12691734 DOI: 10.1016/s1044-7431(02)00035-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axons fail to regenerate in the central nervous system after injury. Chondroitin sulfate proteoglycans (CSPG) expressed in the scar significantly contribute to the nonpermissive properties of the central nervous system environment. To examine the inhibitory activity of a CSPG mixture on retina ganglion cell (RGC) axon growth, we employed both a stripe assay and a nerve fiber outgrowth assay. We show that the inhibition exerted by CSPGs in vitro can be blocked by application of either C3 transferase, a specific inhibitor of the Rho GTPase, or Y27632, a specific inhibitor of the Rho kinase. These results demonstrate that CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK signaling pathway. Consistent with these results, we found that retina ganglion cell axon growth on glial scar tissue was enhanced in the presence of C3 transferase and Y27632, respectively. In addition, we show that the recently identified inhibitory CSPG Te38 is upregulated in the lesioned spinal cord.
Collapse
|
45
|
Abstract
To construct the intricate network of connections that supports the functions of an adult nervous system, neurons must form highly elaborate processes, extending in the appropriate direction across long distances to form synapses with their partners. As the nervous system takes shape, the process of neuronal morphogenesis is controlled by a broad repertoire of cellular signals. These extracellular cues and cellular interactions are translated by receptors at the cell surface into physical forces that control the dynamic architecture of the neuron as it explores the surrounding terrain. The interpretation of these cues involves a large set of intracellular proteins, whose functional logic we are just beginning to appreciate. We shall consider the basic mechanics of neuronal morphogenesis and some of the emerging pathways that seem to link the outer and inner worlds of the neuron.
Collapse
Affiliation(s)
- Haeryun Lee
- Department of Cell Biology, Program in Neuroscience, and Harvard Center for Neurodegeneration and Repair, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 2003; 5:38-45. [PMID: 12510192 DOI: 10.1038/ncb895] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 07/02/2002] [Accepted: 11/15/2002] [Indexed: 11/08/2022]
Abstract
Axon extension during development of the nervous system is guided by many factors, but the signalling mechanisms responsible for triggering this extension remain mostly unknown. Here we have examined the role of Rho family small guanosine triphosphatases (GTPases) in mediating axon guidance by diffusible factors. Expression of either dominant-negative or constitutively active Cdc42 in cultured Xenopus laevis spinal neurons, at a concentration that does not substantially affect filopodial formation and neurite extension, abolishes the chemoattractive growth cone turning induced by a gradient of brain-derived neurotrophic factor that can activate Cdc42 and Rac in cultured neurons. Chemorepulsion induced by a gradient of lysophosphatidic acid is also abolished by the expression of dominant-negative RhoA. We also show that an asymmetry in Rho kinase or filopodial initiation across the growth cone is sufficient to trigger the turning response and that there is a crosstalk between the Cdc42 and RhoA pathways through their converging actions on the myosin activity essential for growth cone chemorepulsion.
Collapse
Affiliation(s)
- Xiao-bing Yuan
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Fritz JL, VanBerkum MFA. Regulation of rho family GTPases is required to prevent axons from crossing the midline. Dev Biol 2002; 252:46-58. [PMID: 12453459 DOI: 10.1006/dbio.2002.0842] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho family GTPases are ideal candidates to regulate aspects of cytoskeletal dynamics downstream of axon guidance receptors. To examine the in vivo role of Rho GTPases in midline guidance, dominant negative (dn) and constitutively active (ct) forms of Rho, Drac1, and Dcdc42 are expressed in the Drosophila CNS. When expressed alone, only ctDrac and ctDcdc42 cause axons in the pCC/MP2 pathway to cross the midline inappropriately. Heterozygous loss of Roundabout enhances the ctDrac phenotype and causes errors in embryos expressing dnRho or ctRho. Homozygous loss of Son-of-Sevenless (Sos) also enhances the ctDrac phenotype and causes errors in embryos expressing either dnRho or dnDrac. CtRho suppresses the midline crossing errors caused by loss of Sos. CtDrac and ctDcdc42 phenotypes are suppressed by heterozygous loss of Profilin, but strongly enhanced by coexpression of constitutively active myosin light chain kinase (ctMLCK), which increases myosin II activity. Expression of ctMLCK also causes errors in embryos expressing either dnRho or ctRho. Our data confirm that Rho family GTPases are required for regulation of actin polymerization and/or myosin activity and that this is critical for the response of growth cones to midline repulsive signals. Midline repulsion appears to require down-regulation of Drac1 and Dcdc42 and activation of Rho.
Collapse
Affiliation(s)
- Janice L Fritz
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
48
|
Meyer G, Feldman EL. Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 2002; 83:490-503. [PMID: 12390511 DOI: 10.1046/j.1471-4159.2002.01185.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.
Collapse
Affiliation(s)
- Gary Meyer
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
49
|
Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MFA. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4:798-805. [PMID: 12360290 DOI: 10.1038/ncb858] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 07/16/2002] [Accepted: 08/21/2002] [Indexed: 11/08/2022]
Abstract
The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.
Collapse
Affiliation(s)
- Jinseol Rhee
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rümenapp U, Freichel-Blomquist A, Wittinghofer B, Jakobs KH, Wieland T. A mammalian Rho-specific guanine-nucleotide exchange factor (p164-RhoGEF) without a pleckstrin homology domain. Biochem J 2002; 366:721-8. [PMID: 12071859 PMCID: PMC1222833 DOI: 10.1042/bj20020654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Revised: 06/07/2002] [Accepted: 06/19/2002] [Indexed: 11/17/2022]
Abstract
Rho GTPases, which are activated by specific guanine-nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a recently cloned human cDNA, namely KIAA0337, encoding a protein containing 1510 amino acids (p164). It contains a RhoGEF-specific Dbl homology (DH) domain but lacks their typical pleckstrin homology domain. The expression of the mRNA encoding p164 was found to be at least 4-fold higher in the heart than in other tissues. Recombinant p164 interacted with and induced GDP/GTP exchange at RhoA but not at Rac1 or Cdc42. p164-DeltaC and p164-DeltaN are p164 mutants that are truncated at the C- and N-termini respectively but contain the DH domain. In contrast with the full-length p164, expression of p164-DeltaC and p164-DeltaN strongly induced actin stress fibre formation and activated serum response factor-mediated and Rho-dependent gene transcription. Interestingly, p164-DeltaN2, a mutant containing the C-terminus but having a defective DH domain, bound to p164-DeltaC and suppressed the p164-DeltaC-induced gene transcription. Overexpression of the full-length p164 inhibited M(3) muscarinic receptor-induced gene transcription, whereas co-expression with Gbeta(1)gamma(2) dimers induced transcriptional activity. It is concluded that p164-RhoGEF is a Rho-specific GEF with novel structural and regulatory properties and predominant expression in the heart. Apparently, its N- and C-termini interact with each other, thereby inhibiting its GEF activity.
Collapse
Affiliation(s)
- Ulrich Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, Germany
| | | | | | | | | |
Collapse
|