1
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Kamalesh K, Segal D, Avinoam O, Schejter ED, Shilo BZ. Structured RhoGEF recruitment drives myosin II organization on large exocytic vesicles. J Cell Sci 2024; 137:jcs261944. [PMID: 38899547 PMCID: PMC11267456 DOI: 10.1242/jcs.261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.
Collapse
Affiliation(s)
- Kumari Kamalesh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dagan Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Ray T, Shi D, Harris TJC. Confinement promotes nematic alignment of spindle-shaped cells during Drosophila embryogenesis. Development 2024; 151:dev202577. [PMID: 38864272 PMCID: PMC11234378 DOI: 10.1242/dev.202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.
Collapse
Affiliation(s)
- Tirthankar Ray
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Damo Shi
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
4
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
5
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
6
|
Tam R, Harris TJC. Reshaping the Syncytial Drosophila Embryo with Cortical Actin Networks: Four Main Steps of Early Development. Results Probl Cell Differ 2024; 71:67-90. [PMID: 37996673 DOI: 10.1007/978-3-031-37936-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Drosophila development begins as a syncytium. The large size of the one-cell embryo makes it ideal for studying the structure, regulation, and effects of the cortical actin cytoskeleton. We review four main steps of early development that depend on the actin cortex. At each step, dynamic remodelling of the cortex has specific effects on nuclei within the syncytium. During axial expansion, a cortical actomyosin network assembles and disassembles with the cell cycle, generating cytoplasmic flows that evenly distribute nuclei along the ovoid cell. When nuclei move to the cell periphery, they seed Arp2/3-based actin caps which grow into an array of dome-like compartments that house the nuclei as they divide at the cell cortex. To separate germline nuclei from the soma, posterior germ plasm induces full cleavage of mono-nucleated primordial germ cells from the syncytium. Finally, zygotic gene expression triggers formation of the blastoderm epithelium via cellularization and simultaneous division of ~6000 mono-nucleated cells from a single internal yolk cell. During these steps, the cortex is regulated in space and time, gains domain and sub-domain structure, and undergoes mesoscale interactions that lay a structural foundation of animal development.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Hernández-López C, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. Proc Natl Acad Sci U S A 2023; 120:e2302879120. [PMID: 37878715 PMCID: PMC10622894 DOI: 10.1073/pnas.2302879120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive and makes a series of predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially while the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | | | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris75005, France
- Department of Physics, University of California, San Diego, CA92075
| |
Collapse
|
8
|
Bakshi A, Iturra FE, Alamban A, Rosas-Salvans M, Dumont S, Aydogan MG. Cytoplasmic division cycles without the nucleus and mitotic CDK/cyclin complexes. Cell 2023; 186:4694-4709.e16. [PMID: 37832525 PMCID: PMC10659773 DOI: 10.1016/j.cell.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.
Collapse
Affiliation(s)
- Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Echegaray Iturra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Chen J, Verissimo AF, Kull AR, He B. Early zygotic gene product Dunk interacts with anillin to regulate Myosin II during Drosophila cleavage. Mol Biol Cell 2023; 34:ar102. [PMID: 37494082 PMCID: PMC10551699 DOI: 10.1091/mbc.e22-02-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Drosophila melanogaster cellularization is a special form of cleavage that converts syncytial embryos into cellular blastoderms by partitioning the peripherally localized nuclei into individual cells. An early event in cellularization is the recruitment of nonmuscle myosin II ("myosin") to the leading edge of cleavage furrows, where myosin forms an interconnected basal array before reorganizing into individual cytokinetic rings. The initial recruitment and organization of basal myosin are regulated by a cellularization-specific gene, dunk, but the underlying mechanism is unclear. Through a genome-wide yeast two-hybrid screen, we identified anillin (Scraps in Drosophila), a conserved scaffolding protein in cytokinesis, as the primary binding partner of Dunk. Dunk colocalizes with anillin and regulates its cortical localization during the formation of cleavage furrows, while the localization of Dunk is independent of anillin. Furthermore, Dunk genetically interacts with anillin to regulate the basal myosin array during cellularization. Similar to Dunk, anillin colocalizes with myosin since the very early stage of cellularization and is required for myosin retention at the basal array, before the well-documented function of anillin in regulating cytokinetic ring assembly. Based on these results, we propose that Dunk regulates myosin recruitment and spatial organization during early cellularization by interacting with and regulating anillin.
Collapse
Affiliation(s)
- Jiayang Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Andreia F. Verissimo
- Institute for Biomolecular Targeting (bioMT), Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Angela R. Kull
- Institute for Biomolecular Targeting (bioMT), Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
10
|
Cazzagon G, Roubinet C, Baum B. Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts. iScience 2023; 26:107129. [PMID: 37434695 PMCID: PMC10331462 DOI: 10.1016/j.isci.2023.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023] Open
Abstract
Although the formin-nucleated actomyosin cortex has been shown to drive the changes in cell shape that accompany animal cell division in both symmetric and asymmetric cell divisions, the mitotic role of cortical Arp2/3-nucleated actin networks remain unclear. Here using asymmetrically dividing Drosophila neural stem cells as a model system, we identify a pool of membrane protrusions that form at the apical cortex of neuroblasts as they enter mitosis. Strikingly, these apically localized protrusions are enriched in SCAR, and depend on SCAR and Arp2/3 complexes for their formation. Because compromising SCAR or the Arp2/3 complex delays the apical clearance of Myosin II at the onset of anaphase and induces cortical instability at cytokinesis, these data point to a role for an apical branched actin filament network in fine-tuning the actomyosin cortex to enable the precise control of cell shape changes during an asymmetric cell division.
Collapse
Affiliation(s)
- Giulia Cazzagon
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Chantal Roubinet
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
11
|
LaFoya B, Prehoda KE. Consumption of a polarized membrane reservoir drives asymmetric membrane expansion during the unequal divisions of neural stem cells. Dev Cell 2023; 58:993-1003.e3. [PMID: 37116487 PMCID: PMC10247545 DOI: 10.1016/j.devcel.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/23/2022] [Accepted: 04/05/2023] [Indexed: 04/30/2023]
Abstract
The asymmetric divisions of Drosophila neural stem cells (NSCs) produce unequally sized siblings, with most volume directed into the sibling that retains the NSC fate. Sibling size asymmetry results from the preferential expansion of the NSC sibling surface during division. Here, we show that a polarized membrane reservoir constructed by the NSC in early mitosis provides the source for expansion. The reservoir is formed from membrane domains that contain folds and microvilli that become polarized by apically directed cortical flows of actomyosin early in mitosis. When furrow ingression begins and internal pressure increases, the stores of membrane within the apical reservoir are rapidly consumed. Expansion is substantially diminished in NSCs that lack a reservoir, and membrane expansion equalizes when the reservoir is not polarized. Our results suggest that the cortical flows that remodel the plasma membrane during asymmetric cell division function to satisfy the dynamic surface area requirements of unequally dividing cells.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
12
|
Montembault E, Deduyer I, Claverie MC, Bouit L, Tourasse NJ, Dupuy D, McCusker D, Royou A. Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division. Nat Commun 2023; 14:3209. [PMID: 37268622 DOI: 10.1038/s41467-023-38912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.
Collapse
Affiliation(s)
- Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Irène Deduyer
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Lou Bouit
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5297, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France
| | - Nicolas J Tourasse
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Denis Dupuy
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Derek McCusker
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France.
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
| |
Collapse
|
13
|
López CH, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532979. [PMID: 36993669 PMCID: PMC10055070 DOI: 10.1101/2023.03.16.532979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive, and makes a series of new predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially whilst the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid, and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | - Alberto Puliafito
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy
| | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Massimo Vergassola
- École Normale Supérieure, 75005 Paris, France
- Department of Physics, University of California San Diego, San Diego, CA 92075, USA
| |
Collapse
|
14
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Lefebvre MF, Claussen NH, Mitchell NP, Gustafson HJ, Streichan SJ. Geometric control of myosin II orientation during axis elongation. eLife 2023; 12:78787. [PMID: 36715100 PMCID: PMC9940909 DOI: 10.7554/elife.78787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
The actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of large-scale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in Drosophila melanogaster embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II. Cell-scale analysis of protein localization in fixed embryos suggests that gene expression patterns govern myosin anisotropy via complex rules. However, technical limitations have impeded quantitative and dynamic studies of this process at the whole embryo level, leaving the role of geometry open. Here, we combine in toto live imaging with quantitative analysis of molecular dynamics to characterize the distribution of myosin anisotropy and the corresponding genetic patterning. We found pair rule gene expression continuously deformed, flowing with the tissue frame. In contrast, myosin anisotropy orientation remained approximately static and was only weakly deflected from the stationary dorsal-ventral axis of the embryo. We propose that myosin is recruited by a geometrically defined static source, potentially related to the embryo-scale epithelial tension, and account for transient deflections by cytoskeletal turnover and junction reorientation by flow. With only one parameter, this model quantitatively accounts for the time course of myosin anisotropy orientation in wild-type, twist, and even-skipped embryos, as well as embryos with perturbed egg geometry. Geometric patterning of the cytoskeleton suggests a simple physical strategy to ensure a robust flow and formation of shape.
Collapse
Affiliation(s)
- Matthew F Lefebvre
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nikolas H Claussen
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Noah P Mitchell
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Hannah J Gustafson
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Biomolecular Science and Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
16
|
Bagnat M, Daga B, Di Talia S. Morphogenetic Roles of Hydrostatic Pressure in Animal Development. Annu Rev Cell Dev Biol 2022; 38:375-394. [PMID: 35804476 PMCID: PMC9675319 DOI: 10.1146/annurev-cellbio-120320-033250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
17
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|
18
|
Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat Commun 2022; 13:3889. [PMID: 35794113 PMCID: PMC9259616 DOI: 10.1038/s41467-022-31212-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities. Early in insect embryo development, many nuclei share one large cell, travel varied paths and self-organize into a single layer. Donoughe et al. illuminate this process with live-imaging, modeling, and experimental changes to the embryo’s shape.
Collapse
|
19
|
Inhibition of negative feedback for persistent epithelial cell-cell junction contraction by p21-activated kinase 3. Nat Commun 2022; 13:3520. [PMID: 35725726 PMCID: PMC9209458 DOI: 10.1038/s41467-022-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate protrusive and contractile dynamics, the latter of which are induced in concert with myosin II bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular deformation. Here, we show that contractile dynamics can eventually disturb cell–cell junction contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility induces the formation of abnormal actin protrusions at the shortening junctions, which causes decrease in E-cadherin levels at the adherens junctions and mislocalization of myosin II at the junctions before they enough shorten, compromising completion of junction shortening. Overexpressing E-cadherin restores myosin II distribution closely placed at the junctions and junction contraction. Our results suggest that contractility both induces and perturbs junction contraction and that the attenuation of such perturbations by Pak3 facilitates persistent junction shortening. Actin and myosin operate at cell–cell junctions during junctional shortening. Here the authors show that prolonged actomyosin contractility can compromise junctional shortening, and that Pak3 is required for attenuation of abnormal active protrusive structure and thus keeps junction contraction, appropriate E-cadherin distribution, and junction shortening in Drosophila.
Collapse
|
20
|
Matsuda M, Chu CW, Sokol SY. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022; 149:275389. [PMID: 35451459 PMCID: PMC9188752 DOI: 10.1242/dev.200236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Hayden L, Chao A, Deneke VE, Vergassola M, Puliafito A, Di Talia S. Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis. Curr Biol 2022; 32:2084-2092.e4. [PMID: 35334230 PMCID: PMC9090985 DOI: 10.1016/j.cub.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid division cycles that pause before gastrulation at the midblastula transition (MBT).1 These cleavage divisions are accompanied by cytoskeletal rearrangements that ensure proper nuclear positioning. However, the molecular mechanisms controlling nuclear positioning are not fully elucidated. In Drosophila, early embryogenesis unfolds in a multinucleated syncytium. Nuclei rapidly move across the anterior-posterior (AP) axis at cell cycles 4-6 in a process driven by actomyosin contractility and cytoplasmic flows.2,3 In shackleton (shkl) mutants, this axial spreading is impaired.4 Here, we show that shkl mutants carry mutations in the cullin-5 (cul-5) gene. Live imaging experiments show that Cul-5 is downstream of the cell cycle but is required for cortical actomyosin contractility. The nuclear spreading phenotype of cul-5 mutants can be rescued by reducing Src activity, suggesting that a major target of cul-5 is Src kinase. cul-5 mutants display gradients of nuclear density across the AP axis that we exploit to study cell-cycle control as a function of the N/C ratio. We found that the N/C ratio is sensed collectively in neighborhoods of about 100 μm, and such collective sensing is required for a precise MBT, in which all the nuclei in the embryo pause their division cycle. Moreover, we found that the response to the N/C ratio is slightly graded along the AP axis. These two features can be linked to Cdk1 dynamics. Collectively, we reveal a new pathway controlling nuclear positioning and provide a dissection of how nuclear cycles respond to the N/C ratio.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Chao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Alberto Puliafito
- Candiolo Cancer Institute, FPO-IRCCS, Laboratory of Cell Migration, 10060 Candiolo, Italy; Department of Oncology, Università di Torino, 10060 Candiolo, Italy
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Guo H, Huang S, He B. Evidence for a Role of the Lateral Ectoderm in Drosophila Mesoderm Invagination. Front Cell Dev Biol 2022; 10:867438. [PMID: 35547820 PMCID: PMC9081377 DOI: 10.3389/fcell.2022.867438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
The folding of two-dimensional epithelial sheets into specific three-dimensional structures is a fundamental tissue construction mechanism in animal development. A common mechanism that mediates epithelial folding is apical constriction, the active shrinking of cell apices driven by actomyosin contractions. It remains unclear whether cells outside of the constriction domain also contribute to folding. During Drosophila mesoderm invagination, ventrally localized mesoderm epithelium undergoes apical constriction and subsequently folds into a furrow. While the critical role of apical constriction in ventral furrow formation has been well demonstrated, it remains unclear whether, and if so, how the laterally localized ectodermal tissue adjacent to the mesoderm contributes to furrow invagination. In this study, we combine experimental and computational approaches to test the potential function of the ectoderm in mesoderm invagination. Through laser-mediated, targeted disruption of cell formation prior to gastrulation, we found that the presence of intact lateral ectoderm is important for the effective transition between apical constriction and furrow invagination in the mesoderm. In addition, using a laser-ablation approach widely used for probing tissue tension, we found that the lateral ectodermal tissues exhibit signatures of tissue compression when ablation was performed shortly before the onset of mesoderm invagination. These observations led to the hypothesis that in-plane compression from the surrounding ectoderm facilitates mesoderm invagination by triggering buckling of the mesoderm epithelium. In support of this notion, we show that the dynamics of tissue flow during mesoderm invagination displays characteristic of elastic buckling, and this tissue dynamics can be recapitulated by combining local apical constriction and global compression in a simulated elastic monolayer. We propose that Drosophila mesoderm invagination is achieved through epithelial buckling jointly mediated by apical constriction in the mesoderm and compression from the neighboring ectoderm.
Collapse
Affiliation(s)
| | | | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
23
|
Gao L, Meiring JCM, Varady A, Ruider IE, Heise C, Wranik M, Velasco CD, Taylor JA, Terni B, Weinert T, Standfuss J, Cabernard CC, Llobet A, Steinmetz MO, Bausch AR, Distel M, Thorn-Seshold J, Akhmanova A, Thorn-Seshold O. In Vivo Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. J Am Chem Soc 2022; 144:5614-5628. [PMID: 35290733 PMCID: PMC8972266 DOI: 10.1021/jacs.2c01020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoswitchable reagents are powerful tools for high-precision studies in cell biology. When these reagents are globally administered yet locally photoactivated in two-dimensional (2D) cell cultures, they can exert micron- and millisecond-scale biological control. This gives them great potential for use in biologically more relevant three-dimensional (3D) models and in vivo, particularly for studying systems with inherent spatiotemporal complexity, such as the cytoskeleton. However, due to a combination of photoswitch isomerization under typical imaging conditions, metabolic liabilities, and insufficient water solubility at effective concentrations, the in vivo potential of photoswitchable reagents addressing cytosolic protein targets remains largely unrealized. Here, we optimized the potency and solubility of metabolically stable, druglike colchicinoid microtubule inhibitors based on the styrylbenzothiazole (SBT) scaffold that are nonresponsive to typical fluorescent protein imaging wavelengths and so enable multichannel imaging studies. We applied these reagents both to 3D organoids and tissue explants and to classic model organisms (zebrafish, clawed frog) in one- and two-protein imaging experiments, in which spatiotemporally localized illuminations allowed them to photocontrol microtubule dynamics, network architecture, and microtubule-dependent processes in vivo with cellular precision and second-level resolution. These nanomolar, in vivo capable photoswitchable reagents should open up new dimensions for high-precision cytoskeleton research in cargo transport, cell motility, cell division, and development. More broadly, their design can also inspire similarly capable optical reagents for a range of cytosolic protein targets, thus bringing in vivo photopharmacology one step closer to general realization.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht CH 3584, Netherlands
| | - Adam Varady
- St. Anna Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Iris E Ruider
- Physics Department and Center for Protein Assemblies CPA, Technical University of Munich, Garching 85747, Germany
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Cecilia D Velasco
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Jennifer A Taylor
- Department of Biology, University of Washington, Seattle, Washington 98195, United States
| | - Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Clemens C Cabernard
- Department of Biology, University of Washington, Seattle, Washington 98195, United States
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Andreas R Bausch
- Physics Department and Center for Protein Assemblies CPA, Technical University of Munich, Garching 85747, Germany
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna 1090, Austria
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht CH 3584, Netherlands
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| |
Collapse
|
24
|
Fuentes MA, He B. The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination. Development 2022; 149:274757. [PMID: 35302584 PMCID: PMC8977094 DOI: 10.1242/dev.200468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
Epithelial folding mediated by apical constriction serves as a fundamental mechanism to convert flat epithelial sheets into multilayered structures. It remains unknown whether additional mechanical inputs are required for apical constriction-mediated folding. Using Drosophila mesoderm invagination as a model, we identified an important role for the non-constricting, lateral mesodermal cells adjacent to the constriction domain ('flanking cells') in facilitating epithelial folding. We found that depletion of the basolateral determinant Dlg1 disrupts the transition between apical constriction and invagination without affecting the rate of apical constriction. Strikingly, the observed delay in invagination is associated with ineffective apical myosin contractions in the flanking cells that lead to overstretching of their apical domain. The defects in the flanking cells impede ventral-directed movement of the lateral ectoderm, suggesting reduced mechanical coupling between tissues. Specifically disrupting the flanking cells in wild-type embryos by laser ablation or optogenetic depletion of cortical actin is sufficient to delay the apical constriction-to-invagination transition. Our findings indicate that effective mesoderm invagination requires intact flanking cells and suggest a role for tissue-scale mechanical coupling during epithelial folding.
Collapse
Affiliation(s)
- Melisa A Fuentes
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Bing He
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J 2022; 41:e109992. [PMID: 35262206 PMCID: PMC9194749 DOI: 10.15252/embj.2021109992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | | | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Guo H, Swan M, He B. Optogenetic inhibition of actomyosin reveals mechanical bistability of the mesoderm epithelium during Drosophila mesoderm invagination. eLife 2022; 11:e69082. [PMID: 35195065 PMCID: PMC8896829 DOI: 10.7554/elife.69082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/05/2022] Open
Abstract
Apical constriction driven by actin and non-muscle myosin II (actomyosin) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-the-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of actomyosin, we find that during Drosophila mesoderm invagination, actomyosin contractility is critical to prevent tissue relaxation during the early, 'priming' stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration. This binary response suggests that Drosophila mesoderm is mechanically bistable during gastrulation. Computer modeling analysis demonstrates that the binary tissue response to actomyosin inhibition can be recapitulated in the simulated epithelium that undergoes buckling-like deformation jointly mediated by apical constriction in the mesoderm and in-plane compression generated by apicobasal shrinkage of the surrounding ectoderm. Interestingly, comparison between wild-type and snail mutants that fail to specify the mesoderm demonstrates that the lateral ectoderm undergoes apicobasal shrinkage during gastrulation independently of mesoderm invagination. We propose that Drosophila mesoderm invagination is achieved through an interplay between local apical constriction and mechanical bistability of the epithelium that facilitates epithelial buckling.
Collapse
Affiliation(s)
- Hanqing Guo
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Michael Swan
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Bing He
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| |
Collapse
|
27
|
Wen FL, Kwan CW, Wang YC, Shibata T. Autonomous epithelial folding induced by an intracellular mechano-polarity feedback loop. PLoS Comput Biol 2021; 17:e1009614. [PMID: 34871312 PMCID: PMC8675927 DOI: 10.1371/journal.pcbi.1009614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/16/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano-biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano-polarity coupling.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| |
Collapse
|
28
|
Oon CH, Prehoda KE. Phases of cortical actomyosin dynamics coupled to the neuroblast polarity cycle. eLife 2021; 10:66574. [PMID: 34779402 PMCID: PMC8641948 DOI: 10.7554/elife.66574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Par complex dynamically polarizes to the apical cortex of asymmetrically dividing Drosophila neuroblasts where it directs fate determinant segregation. Previously, we showed that apically directed cortical movements that polarize the Par complex require F-actin (Oon and Prehoda, 2019). Here, we report the discovery of cortical actomyosin dynamics that begin in interphase when the Par complex is cytoplasmic but ultimately become tightly coupled to cortical Par dynamics. Interphase cortical actomyosin dynamics are unoriented and pulsatile but rapidly become sustained and apically-directed in early mitosis when the Par protein aPKC accumulates on the cortex. Apical actomyosin flows drive the coalescence of aPKC into an apical cap that depolarizes in anaphase when the flow reverses direction. Together with the previously characterized role of anaphase flows in specifying daughter cell size asymmetry, our results indicate that multiple phases of cortical actomyosin dynamics regulate asymmetric cell division.
Collapse
Affiliation(s)
- Chet Huan Oon
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| |
Collapse
|
29
|
Wu X, Kong K, Xiao W, Liu F. Attractive internuclear force drives the collective behavior of nuclear arrays in Drosophila embryos. PLoS Comput Biol 2021; 17:e1009605. [PMID: 34797833 PMCID: PMC8641897 DOI: 10.1371/journal.pcbi.1009605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 12/03/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
The collective behavior of the nuclear array in Drosophila embryos during nuclear cycle (NC) 11 to NC14 is crucial in controlling cell size, establishing developmental patterns, and coordinating morphogenesis. After live imaging on Drosophila embryos with light sheet microscopy, we extract the nuclear trajectory, speed, and internuclear distance with an automatic nuclear tracing method. We find that the nuclear speed shows a period of standing waves along the anterior-posterior (AP) axis after each metaphase as the nuclei collectively migrate towards the embryo poles and partially move back. And the maximum nuclear speed dampens by 28-45% in the second half of the standing wave. Moreover, the nuclear density is 22-42% lower in the pole region than the middle of the embryo during the interphase of NC12-14. To find mechanical rules controlling the collective motion and packing patterns of the nuclear array, we use a deep neural network (DNN) to learn the underlying force field from data. We apply the learned spatiotemporal attractive force field in the simulations with a particle-based model. And the simulations recapitulate nearly all the observed characteristic collective behaviors of nuclear arrays in Drosophila embryos.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Wenlei Xiao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Feng Liu
- Center for Quantitative Biology, Peking University, Beijing, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
30
|
Schmidt A, Li L, Lv Z, Yan S, Großhans J. Dia- and Rok-dependent enrichment of capping proteins in a cortical region. J Cell Sci 2021; 134:272429. [PMID: 34633047 PMCID: PMC8627554 DOI: 10.1242/jcs.258973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/24/2021] [Indexed: 01/30/2023] Open
Abstract
Rho signaling with its major targets the formin Dia, Rho kinase (Rok) and non-muscle myosin II (MyoII, encoded by zip in flies) control turnover, amount and contractility of actomyosin. Much less investigated has been a potential function for the distribution of F-actin plus and minus ends. In syncytial Drosophila embryos, Rho1 signaling is high between actin caps, i.e. the cortical intercap region. Capping protein binds to free plus ends of F-actin to prevent elongation of the filament. Capping protein has served as a marker to visualize the distribution of F-actin plus ends in cells and in vitro. In the present study, we probed the distribution of plus ends with capping protein in syncytial Drosophila embryos. We found that capping proteins are specifically enriched in the intercap region similar to Dia and MyoII but distinct from overall F-actin. The intercap enrichment of Capping protein was impaired in dia mutants and embryos, in which Rok and MyoII activation was inhibited. Our observations reveal that Dia and Rok-MyoII control Capping protein enrichment and support a model that Dia and Rok-MyoII control the organization of cortical actin cytoskeleton downstream of Rho1 signaling. This article has an associated First Person interview with the first authors of the paper. Summary: Plus ends of actin filaments are enriched at cortical regions rich in Rho signaling in syncytial Drosophila embryos depending on the actin regulator Dia and Rho kinase.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Long Li
- Department of Biology/FB17, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Zhiyi Lv
- Department of Biology/FB17, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Shuling Yan
- Department of Biology/FB17, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Jörg Großhans
- Department of Biology/FB17, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| |
Collapse
|
31
|
Thomas A, Gallaud E, Pascal A, Serre L, Arnal I, Richard-Parpaillon L, Savoian MS, Giet R. Peripheral astral microtubules ensure asymmetric furrow positioning in neural stem cells. Cell Rep 2021; 37:109895. [PMID: 34706235 DOI: 10.1016/j.celrep.2021.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated. A leading pool is located at the basal cleavage site and a second pool accumulates at the midzone before traveling to the cleavage site. The cortical centralspindlin population requires peripheral astral microtubules and the chromosome passenger complex for efficient recruitment. Loss of this pool does not prevent cytokinesis but enhances centralspindlin signaling at the midzone, leading to equatorial furrow repositioning and decreased size asymmetry. These data show that basal furrow positioning in neuroblasts results from a competition between different centralspindlin pools in which the cortical pool is dominant.
Collapse
Affiliation(s)
- Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Laurence Serre
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Arnal
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Matthew Scott Savoian
- School of Fundamental Sciences, Massey University, 4410 Palmerston North, New Zealand
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France.
| |
Collapse
|
32
|
Deshpande O, Telley IA. Nuclear positioning during development: Pushing, pulling and flowing. Semin Cell Dev Biol 2021; 120:10-21. [PMID: 34642103 DOI: 10.1016/j.semcdb.2021.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/13/2023]
Abstract
The positioning of the nucleus, the central organelle of the cell, is an active and regulated process crucially linked to cell cycle, differentiation, migration, and polarity. Alterations in positioning have been correlated with cell and tissue function deficiency and genetic or chemical manipulation of nuclear position is embryonic lethal. Nuclear positioning is a precursor for symmetric or asymmetric cell division which is accompanied by fate determination of the daughter cells. Nuclear positioning also plays a key role during early embryonic developmental stages in insects, such as Drosophila, where hundreds of nuclei divide without cytokinesis and are distributed within the large syncytial embryo at roughly regular spacing. While the cytoskeletal elements and the linker proteins to the nucleus are fairly well characterised, including some of the force generating elements driving nuclear movement, there is considerable uncertainty about the biophysical mechanism of nuclear positioning, while the field is debating different force models. In this review, we highlight the current body of knowledge, discuss cell context dependent models of nuclear positioning, and outline open questions.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
33
|
Abstract
Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.
Collapse
Affiliation(s)
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
34
|
Blackie L, Tozluoglu M, Trylinski M, Walther RF, Schweisguth F, Mao Y, Pichaud F. A combination of Notch signaling, preferential adhesion and endocytosis induces a slow mode of cell intercalation in the Drosophila retina. Development 2021; 148:264928. [PMID: 33999996 PMCID: PMC8180261 DOI: 10.1242/dev.197301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Movement of epithelial cells in a tissue occurs through neighbor exchange and drives tissue shape changes. It requires intercellular junction remodeling, a process typically powered by the contractile actomyosin cytoskeleton. This has been investigated mainly in homogeneous epithelia, where intercalation takes minutes. However, in some tissues, intercalation involves different cell types and can take hours. Whether slow and fast intercalation share the same mechanisms remains to be examined. To address this issue, we used the fly eye, where the cone cells exchange neighbors over ∼10 h to shape the lens. We uncovered three pathways regulating this slow mode of cell intercalation. First, we found a limited requirement for MyosinII. In this case, mathematical modeling predicts an adhesion-dominant intercalation mechanism. Genetic experiments support this prediction, revealing a role for adhesion through the Nephrin proteins Roughest and Hibris. Second, we found that cone cell intercalation is regulated by the Notch pathway. Third, we show that endocytosis is required for membrane removal and Notch activation. Taken together, our work indicates that adhesion, endocytosis and Notch can direct slow cell intercalation during tissue morphogenesis.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Melda Tozluoglu
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - Mateusz Trylinski
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France
| | - Rhian F Walther
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
35
|
Lv Z, de-Carvalho J, Telley IA, Großhans J. Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo. J Cell Sci 2021; 134:134/4/jcs246496. [PMID: 33597155 DOI: 10.1242/jcs.246496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell and tissue functions rely on the genetic programmes and cascades of biochemical signals. It has become evident during the past decade that the physical properties of soft material that govern the mechanics of cells and tissues play an important role in cellular function and morphology. The biophysical properties of cells and tissues are determined by the cytoskeleton, consisting of dynamic networks of F-actin and microtubules, molecular motors, crosslinkers and other associated proteins, among other factors such as cell-cell interactions. The Drosophila syncytial embryo represents a simple pseudo-tissue, with its nuclei orderly embedded in a structured cytoskeletal matrix at the embryonic cortex with no physical separation by cellular membranes. Here, we review the stereotypic dynamics and regulation of the cytoskeleton in Drosophila syncytial embryos and how cytoskeletal dynamics underlies biophysical properties and the emergence of collective features. We highlight the specific features and processes of syncytial embryos and discuss the applicability of biophysical approaches.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Jörg Großhans
- Fachbereich Biologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
36
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
37
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Fraschini R, Giansanti MG. A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in Drosophila. J Cell Sci 2020; 133:jcs252965. [PMID: 33037125 DOI: 10.1242/jcs.252965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
In animal cell cytokinesis, interaction of non-muscle myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that celibe (cbe) is a missense allele of zipper, which encodes the Drosophila Myosin heavy chain. Mutation of cbe impairs binding of Zipper protein to the regulatory light chain Spaghetti squash (Sqh). In dividing spermatocytes from cbe males, Sqh fails to concentrate at the equatorial cortex, resulting in thin actomyosin rings that are unable to constrict. We show that cbe mutation impairs localization of the phosphatidylinositol 4-phosphate [PI(4)P]-binding protein Golgi phosphoprotein 3 (GOLPH3, also known as Sauron) and maintenance of centralspindlin at the cell equator of telophase cells. Our results further demonstrate that GOLPH3 protein associates with Sqh and directly binds the centralspindlin subunit Pavarotti. We propose that during cytokinesis, the reciprocal dependence between Myosin and PI(4)P-GOLPH3 regulates centralspindlin stabilization at the invaginating plasma membrane and contractile ring assembly.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
38
|
Chowdhary S, Madan S, Tomer D, Mavrakis M, Rikhy R. Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization. Mol Biol Cell 2020; 31:2331-2347. [PMID: 32755438 PMCID: PMC7851960 DOI: 10.1091/mbc.e20-03-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Somya Madan
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Darshika Tomer
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Manos Mavrakis
- Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Richa Rikhy
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
39
|
Chanet S, Huynh JR. Collective Cell Sorting Requires Contractile Cortical Waves in Germline Cells. Curr Biol 2020; 30:4213-4226.e4. [PMID: 32916115 DOI: 10.1016/j.cub.2020.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
Encapsulation of germline cells by layers of somatic cells forms the basic unit of female reproduction called primordial follicles in mammals and egg chambers in Drosophila. How germline and somatic tissues are coordinated for the morphogenesis of each separated unit remains poorly understood. Here, using improved live imaging of Drosophila ovaries, we uncovered periodic actomyosin waves at the cortex of germ cells. These contractile waves are associated with pressure release blebs, which project from germ cells into somatic cells. We demonstrate that these cortical activities, together with cadherin-based adhesion, are required to sort each germline cyst as one collective unit. Genetic perturbations of cortical contractility, bleb protrusion, or adhesion between germline and somatic cells induced encapsulation defects resulting from failures to encapsulate any germ cells, or the inclusion of too many germ cells per egg chamber, or even the mechanical split of germline cysts. Live-imaging experiments revealed that reducing contractility or adhesion in the germline reduced the stiffness of germline cysts and their proper anchoring to the somatic cells. Germline cysts can then be squeezed and passively pushed by constricting surrounding somatic cells, resulting in cyst splitting and cyst collisions during encapsulation. Increasing germline cysts activity or blocking somatic cell constriction movements can reveal active forward migration of germline cysts. Our results show that germ cells play an active role in physical coupling with somatic cells to produce the female gamete.
Collapse
Affiliation(s)
- Soline Chanet
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS/UMR 7241 - INSERM U1050, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS/UMR 7241 - INSERM U1050, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
40
|
Lin B, Luo J, Lehmann R. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nat Commun 2020; 11:4477. [PMID: 32901019 PMCID: PMC7479147 DOI: 10.1038/s41467-020-18185-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Individual cells detach from cohesive ensembles during development and can inappropriately separate in disease. Although much is known about how cells separate from epithelia, it remains unclear how cells disperse from clusters lacking apical-basal polarity, a hallmark of advanced epithelial cancers. Here, using live imaging of the developmental migration program of Drosophila primordial germ cells (PGCs), we show that cluster dispersal is accomplished by stabilizing and orienting migratory forces. PGCs utilize a G protein coupled receptor (GPCR), Tre1, to guide front-back migratory polarity radially from the cluster toward the endoderm. Posteriorly positioned myosin-dependent contractile forces pull on cell-cell contacts until cells release. Tre1 mutant cells migrate randomly with transient enrichment of the force machinery but fail to separate, indicating a temporal contractile force threshold for detachment. E-cadherin is retained on the cell surface during cell separation and augmenting cell-cell adhesion does not impede detachment. Notably, coordinated migration improves cluster dispersal efficiency by stabilizing cell-cell interfaces and facilitating symmetric pulling. We demonstrate that guidance of inherent migratory forces is sufficient to disperse cell clusters under physiological settings and present a paradigm for how such events could occur across development and disease.
Collapse
Affiliation(s)
- B Lin
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - J Luo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - R Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
41
|
Blackie L, Walther RF, Staddon MF, Banerjee S, Pichaud F. Cell-type-specific mechanical response and myosin dynamics during retinal lens development in Drosophila. Mol Biol Cell 2020; 31:1355-1369. [PMID: 32320320 PMCID: PMC7353141 DOI: 10.1091/mbc.e19-09-0523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/11/2022] Open
Abstract
During organogenesis, different cell types need to work together to generate functional multicellular structures. To study this process, we made use of the genetically tractable fly retina, with a focus on the mechanisms that coordinate morphogenesis between the different epithelial cell types that make up the optical lens. Our work shows that these epithelial cells present contractile apical-medial MyosinII meshworks, which control the apical area and junctional geometry of these cells during lens development. Our study also suggests that these MyosinII meshworks drive cell shape changes in response to external forces, and thus they mediate part of the biomechanical coupling that takes place between these cells. Importantly, our work, including mathematical modeling of forces and material stiffness during lens development, raises the possibility that increased cell stiffness acts as a mechanism for limiting this mechanical coupling. We propose this might be required in complex tissues, where different cell types undergo concurrent morphogenesis and where averaging out of forces across cells could compromise individual cell apical geometry and thereby organ function.
Collapse
Affiliation(s)
| | | | - Michael F Staddon
- Department of Physics and Astronomy, and
- Institute for the Physics of Living Systems, University College London, WC1E 6BT London, UK
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, and
- Institute for the Physics of Living Systems, University College London, WC1E 6BT London, UK
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, University College London, WC1E 6BT London, UK
| |
Collapse
|
42
|
Sherlekar A, Mundhe G, Richa P, Dey B, Sharma S, Rikhy R. F-BAR domain protein Syndapin regulates actomyosin dynamics during apical cap remodeling in syncytial Drosophila embryos. J Cell Sci 2020; 133:jcs235846. [PMID: 32327556 DOI: 10.1242/jcs.235846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Branched actin networks driven by Arp2/3 interact with actomyosin filaments in processes such as cell migration. Similar interactions occur in the syncytial Drosophila blastoderm embryo where expansion of apical caps by Arp2/3-driven actin polymerization occurs in interphase, and cap buckling at contact edges by Myosin II to form furrows takes place in metaphase. Here, we study the role of Syndapin (Synd), an F-BAR domain-containing protein, in apical cap remodeling prior to furrow extension. We found that depletion of synd resulted in larger apical caps. Super-resolution and TIRF microscopy showed that control embryos had long apical actin protrusions in caps during interphase and short protrusions during metaphase, whereas synd depletion led to formation of sustained long protrusions, even during metaphase. Loss of Arp2/3 function in synd mutants partly reverted defects in apical cap expansion and protrusion remodeling. Myosin II levels were decreased in synd mutants, an observation consistent with the expanded cap phenotype previously reported for Myosin II mutant embryos. We propose that Synd function limits branching activity during cap expansion and affects Myosin II distribution in order to bring about a transition in actin remodeling activity from apical cap expansion to lateral furrow extension.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gayatri Mundhe
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Prachi Richa
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Bipasha Dey
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Swati Sharma
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
43
|
Dey B, Rikhy R. DE-cadherin and Myosin II balance regulates furrow length for onset of polygon shape in syncytial Drosophila embryos. J Cell Sci 2020; 133:jcs240168. [PMID: 32265269 DOI: 10.1242/jcs.240168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/26/2020] [Indexed: 08/31/2023] Open
Abstract
Cell shape morphogenesis, from spherical to polygonal, occurs in epithelial cell formation in metazoan embryogenesis. In syncytial Drosophila embryos, the plasma membrane incompletely surrounds each nucleus and is organized as a polygonal epithelial-like array. Each cortical syncytial division cycle shows a circular to polygonal plasma membrane transition along with furrow extension between adjacent nuclei from interphase to metaphase. In this study, we assess the relative contribution of DE-cadherin (also known as Shotgun) and Myosin II (comprising Zipper and Spaghetti squash in flies) at the furrow to polygonal shape transition. We show that polygonality initiates during each cortical syncytial division cycle when the furrow extends from 4.75 to 5.75 μm. Polygon plasma membrane organization correlates with increased junctional tension, increased DE-cadherin and decreased Myosin II mobility. DE-cadherin regulates furrow length and polygonality. Decreased Myosin II activity allows for polygonality to occur at a lower length than controls. Increased Myosin II activity leads to loss of lateral furrow formation and complete disruption of the polygonal shape transition. Our studies show that DE-cadherin-Myosin II balance regulates an optimal lateral membrane length during each syncytial cycle for polygonal shape transition.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bipasha Dey
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
44
|
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding. Dev Cell 2020; 53:212-228.e12. [PMID: 32169160 DOI: 10.1016/j.devcel.2020.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.
Collapse
|
45
|
Ko CS, Kalakuntla P, Martin AC. Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. Mol Biol Cell 2020; 31:1663-1674. [PMID: 32129704 PMCID: PMC7521848 DOI: 10.1091/mbc.e19-12-0673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled nonmitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.
Collapse
Affiliation(s)
- Clint S Ko
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Prateek Kalakuntla
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
46
|
Kakanj P, Eming SA, Partridge L, Leptin M. Long-term in vivo imaging of Drosophila larvae. Nat Protoc 2020; 15:1158-1187. [DOI: 10.1038/s41596-019-0282-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
47
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Gottardo M, Burla R, Di Francesco L, Szafer-Glusman E, Schininà E, Fuller MT, Saggio I, Riparbelli MG, Callaini G, Giansanti MG. Drosophila Doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development 2019; 146:dev.183053. [PMID: 31645358 DOI: 10.1242/dev.183053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA-binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement of dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Marco Gottardo
- Dipartimento di Scienze della Vita, Università di Siena, 53100 Siena, Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Di Francesco
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Edith Szafer-Glusman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Eugenia Schininà
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | | | - Giuliano Callaini
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
48
|
Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A, Suga H, Bråte J, Ruiz-Trillo I. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 2019; 8:49801. [PMID: 31647412 PMCID: PMC6855841 DOI: 10.7554/elife.49801] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arthur Ab Haraldsen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
49
|
Jiang T, Harris TJC. Par-1 controls the composition and growth of cortical actin caps during Drosophila embryo cleavage. J Cell Biol 2019; 218:4195-4214. [PMID: 31641019 PMCID: PMC6891076 DOI: 10.1083/jcb.201903152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/21/2019] [Accepted: 09/22/2019] [Indexed: 11/22/2022] Open
Abstract
The cell cortex is populated by various proteins, but it is unclear how they interact to change cell shape. Jiang and Harris find that the kinase Par-1 is required for Diaphanous-based actin bundles, and that these bundles intersperse with separately induced Arp2/3 networks to form an actin cap that grows into a metaphase compartment of the syncytial Drosophila embryo. Cell structure depends on the cortex, a thin network of actin polymers and additional proteins underlying the plasma membrane. The cell polarity kinase Par-1 is required for cells to form following syncytial Drosophila embryo development. This requirement stems from Par-1 promoting cortical actin caps that grow into dome-like metaphase compartments for dividing syncytial nuclei. We find the actin caps to be a composite material of Diaphanous (Dia)-based actin bundles interspersed with independently formed, Arp2/3-based actin puncta. Par-1 and Dia colocalize along extended regions of the bundles, and both are required for the bundles and for each other’s bundle-like localization, consistent with an actin-dependent self-reinforcement mechanism. Par-1 helps establish or maintain these bundles in a cortical domain with relatively low levels of the canonical formin activator Rho1-GTP. Arp2/3 is required for displacing the bundles away from each other and toward the cap circumference, suggesting interactions between these cytoskeletal components could contribute to the growth of the cap into a metaphase compartment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Johnson HE, Toettcher JE. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell 2019; 48:361-370.e3. [PMID: 30753836 DOI: 10.1016/j.devcel.2019.01.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
Collapse
Affiliation(s)
- Heath E Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|