1
|
Song Y, Ji J, Liu C, Wang W. Biochemical Analysis of the Regulatory Role of Gα o in the Conformational Transitions of Drosophila Pins. Biochemistry 2024; 63:2759-2767. [PMID: 39441981 DOI: 10.1021/acs.biochem.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Drosophila Pins (and its mammalian homologue LGN) play a crucial role in the process of asymmetric cell division (ACD). Extensive research has established that Pins/LGN functions as a conformational switch primarily through intramolecular interactions involving the N-terminal TPR repeats and the C-terminal GoLoco (GL) motifs. The GL motifs served as binding sites for the α subunit of the trimeric G protein (Gα), which facilitates the release of the autoinhibited conformation of Pins/LGN. While LGN has been observed to specifically bind to Gαi·GDP, Pins has been found to associate with both Drosophila Gαi (dGαi) and Gαo (dGαo) isoforms. Moreover, dGαo was reported to be able to bind Pins in both the GDP- and GTP-bound forms. However, the precise mechanism underlying the influence of dGαo on the conformational states of Pins remains unclear, despite extensive investigations into the Gαi·GDP-mediated regulatory conformational changes in LGN/Pins. In this study, we conducted a comprehensive characterization of the interactions between Pins-GL motifs and dGαo in both GDP- and GTP-loaded forms. Our findings reveal that Pins-GL specifically binds to GDP-loaded dGαo. Through biochemical characterization, we determined that the intramolecular interactions of Pins primarily involve the entire TPR domain and the GL23 motifs. Additionally, we observed that Pins can simultaneously bind three molecules of dGαo·GDP, leading to a partial opening of the autoinhibited conformation. Furthermore, our study presents evidence contrasting with previous observations indicating the absence of binding between dGαi and Pins-GLs, thus implying the pivotal role of dGαo as the principal participant in the ACD pathway associated with Pins.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Chunhua Liu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Montembault E, Deduyer I, Claverie MC, Bouit L, Tourasse NJ, Dupuy D, McCusker D, Royou A. Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division. Nat Commun 2023; 14:3209. [PMID: 37268622 DOI: 10.1038/s41467-023-38912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.
Collapse
Affiliation(s)
- Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Irène Deduyer
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Lou Bouit
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5297, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France
| | - Nicolas J Tourasse
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Denis Dupuy
- University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Derek McCusker
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France.
- CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
| |
Collapse
|
3
|
Daeden A, Mietke A, Derivery E, Seum C, Jülicher F, Gonzalez-Gaitan M. Polarized branched Actin modulates cortical mechanics to produce unequal-size daughters during asymmetric division. Nat Cell Biol 2023; 25:235-245. [PMID: 36747081 PMCID: PMC9928585 DOI: 10.1038/s41556-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2022] [Indexed: 02/08/2023]
Abstract
The control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles. We demonstrate this by mistargeting the machinery for branched Actin dynamics using nanobodies and optogenetics. We can thereby engineer the cell shape with temporal precision and thus the daughter-cell size at different stages of cytokinesis. Most strikingly, inverting cortical Actin asymmetry causes an inversion of daughter-cell sizes. Our findings uncover the physical mechanism by which the sensory organ precursor mother cell controls relative daughter-cell size: polarized cortical Actin modulates the cortical bending rigidity to set the cell surface curvature, stabilize the division and ultimately lead to unequal daughter-cell size.
Collapse
Affiliation(s)
- Alicia Daeden
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Emmanuel Derivery
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Carole Seum
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
5
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
6
|
Manzanero-Ortiz S, de Torres-Jurado A, Hernández-Rojas R, Carmena A. Pilot RNAi Screen in Drosophila Neural Stem Cell Lineages to Identify Novel Tumor Suppressor Genes Involved in Asymmetric Cell Division. Int J Mol Sci 2021; 22:11332. [PMID: 34768763 PMCID: PMC8582830 DOI: 10.3390/ijms222111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.
Collapse
Affiliation(s)
| | | | | | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain; (S.M.-O.); (A.d.T.-J.); (R.H.-R.)
| |
Collapse
|
7
|
Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Dev Biol 2020; 465:89-99. [PMID: 32687894 DOI: 10.1016/j.ydbio.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
8
|
The Integrator Complex Prevents Dedifferentiation of Intermediate Neural Progenitors back into Neural Stem Cells. Cell Rep 2020; 27:987-996.e3. [PMID: 31018143 DOI: 10.1016/j.celrep.2019.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/31/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Mutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development. Loss of intS5, intS8, and intS1 generated ectopic type II neuroblasts. INP-specific knockdown of intS8, intS1, and intS2 resulted in the formation of excess type II neuroblasts, indicating that Integrator prevents INP dedifferentiation. Cell-type-specific DamID analysis identified 1413 IntS5-binding sites in INPs, including zinc-finger transcription factor earmuff (erm). Furthermore, erm expression is lost in intS5 and intS8 mutant neuroblast lineages, and intS8 genetically interacts with erm to suppress the formation of ectopic neuroblasts. Taken together, our data demonstrate that the Drosophila Integrator complex plays a critical role in preventing INP dedifferentiation primarily by regulating a key transcription factor Erm that also suppresses INP dedifferentiation.
Collapse
|
9
|
Abstract
Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.
Collapse
Affiliation(s)
- Bharath Sunchu
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Carmena A. The Case of the Scribble Polarity Module in Asymmetric Neuroblast Division in Development and Tumorigenesis. Int J Mol Sci 2020; 21:ijms21082865. [PMID: 32325951 PMCID: PMC7215838 DOI: 10.3390/ijms21082865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.
Collapse
Affiliation(s)
- Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
11
|
Nakajima YI, Lee ZT, McKinney SA, Swanson SK, Florens L, Gibson MC. Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. J Cell Biol 2019; 218:1824-1838. [PMID: 31088859 PMCID: PMC6548121 DOI: 10.1083/jcb.201803116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nakajima et al. reveal a novel mechanism of planar spindle alignment through junctional tumor suppressors Scrib/Dlg and 14-3-3 proteins in the Drosophila wing disc epithelium. Their results suggest that 14-3-3 proteins interact with Scrib/Dlg to control planar spindle orientation and maintain epithelial architecture. Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Stowers Institute for Medical Research, Kansas City, MO .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Zachary T Lee
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
12
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
13
|
Koe CT, Tan YS, Lönnfors M, Hur SK, Low CSL, Zhang Y, Kanchanawong P, Bankaitis VA, Wang H. Vibrator and PI4KIIIα govern neuroblast polarity by anchoring non-muscle myosin II. eLife 2018; 7:33555. [PMID: 29482721 PMCID: PMC5828666 DOI: 10.7554/elife.33555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
A central feature of most stem cells is the ability to self-renew and undergo differentiation via asymmetric division. However, during asymmetric division the role of phosphatidylinositol (PI) lipids and their regulators is not well established. Here, we show that the sole type I PI transfer protein, Vibrator, controls asymmetric division of Drosophilaneural stem cells (NSCs) by physically anchoring myosin II regulatory light chain, Sqh, to the NSC cortex. Depletion of vib or disruption of its lipid binding and transfer activities disrupts NSC polarity. We propose that Vib stimulates PI4KIIIα to promote synthesis of a plasma membrane pool of phosphatidylinositol 4-phosphate [PI(4)P] that, in turn, binds and anchors myosin to the NSC cortex. Remarkably, Sqh also binds to PI(4)P in vitro and both Vib and Sqh mediate plasma membrane localization of PI(4)P in NSCs. Thus, reciprocal regulation between Myosin and PI(4)P likely governs asymmetric division of NSCs. Stem cells are cells that can both make copies of themselves and make new cells of various types. They can either divide symmetrically to produce two identical new cells, or they can divide asymmetrically to produce two different cells. Asymmetric division happens because the two new cells contain different molecules. Stem cells drive asymmetric division by moving key molecules to one end of the cell before they divide. Asymmetric division is key to how neural stem cells produce new brain cells. Many studies have used the developing brain of the fruit fly Drosophila melanogaster to understand this process. Errors in asymmetric division can lead to too many stem cells or not enough brain cells. This can contribute to brain tumors and other neurological disorders. Fat molecules called phosphatidylinositol lipids are some of chemicals that cause asymmetry in neural stem cells. Yet, it is not clear how these lipid molecules affect cell behavior to turn stem cells into brain cells. The production of phosphatidylinositol lipids involves proteins called Vibrator and PI4KIIIα. Koe et al. examined the role of these two proteins in asymmetric cell division of neural stem cells in fruit flies. The results show that Vibrator activates PI4KIIIα, which leads to high levels of a phosphatidylinositol lipid called PI(4)P within the cell. These lipids act as an anchor for a group of proteins called myosin, part of the machinery that physically divides the cell. Hence, myosin and phosphatidylinositol lipids together control asymmetric division of neural stem cells. Further experiments used mouse proteins to compensate for defects in the equivalent fly proteins. The results suggest that the same mechanisms are likely to hold true in mammalian brains, although this still needs to be proven. Nevertheless, given that human equivalents of Vibrator and PI4KIIIα are associated with neurodegenerative disorders, schizophrenia or cancers, these new findings are likely to help scientists better to understand several human diseases.
Collapse
Affiliation(s)
- Chwee Tat Koe
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Max Lönnfors
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, United States
| | - Seong Kwon Hur
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, United States
| | | | - Yingjie Zhang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, United States
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Abeysundara N, Simmonds AJ, Hughes SC. Moesin is involved in polarity maintenance and cortical remodeling during asymmetric cell division. Mol Biol Cell 2018; 29:419-434. [PMID: 29282284 PMCID: PMC6014166 DOI: 10.1091/mbc.e17-05-0294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/17/2023] Open
Abstract
An intact actomyosin network is essential for anchoring polarity proteins to the cell cortex and maintaining cell size asymmetry during asymmetric cell division of Drosophila neuroblasts (NBs). However, the mechanisms that control changes in actomyosin dynamics during asymmetric cell division remain unclear. We find that the actin-binding protein, Moesin, is essential for NB proliferation and mitotic progression in the developing brain. During metaphase, phosphorylated Moesin (p-Moesin) is enriched at the apical cortex, and loss of Moesin leads to defects in apical polarity maintenance and cortical stability. This asymmetric distribution of p-Moesin is determined by components of the apical polarity complex and Slik kinase. During later stages of mitosis, p-Moesin localization shifts more basally, contributing to asymmetric cortical extension and myosin basal furrow positioning. Our findings reveal Moesin as a novel apical polarity protein that drives cortical remodeling of dividing NBs, which is essential for polarity maintenance and initial establishment of cell size asymmetry.
Collapse
Affiliation(s)
- Namal Abeysundara
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sarah C Hughes
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
15
|
Carmena A. Compromising asymmetric stem cell division in Drosophila central brain: Revisiting the connections with tumorigenesis. Fly (Austin) 2018; 12:71-80. [PMID: 29239688 DOI: 10.1080/19336934.2017.1416277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.
Collapse
Affiliation(s)
- Ana Carmena
- a Departamento de Neurobiología del Desarrollo , Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Sant Joan d'Alacant , Alicante , Spain
| |
Collapse
|
16
|
Rives-Quinto N, Franco M, de Torres-Jurado A, Carmena A. Synergism between canoe and scribble mutations causes tumor-like overgrowth via Ras activation in neural stem cells and epithelia. Development 2017; 144:2570-2583. [PMID: 28619817 DOI: 10.1242/dev.148171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade an intriguing connection between asymmetric cell division, stem cells and tumorigenesis has emerged. Neuroblasts, which are the neural stem cells of the Drosophila central nervous system, divide asymmetrically and constitute an excellent paradigm for investigating this connection further. Here we show that the simultaneous loss of the asymmetric cell division regulators Canoe (afadin in mammals) and Scribble in neuroblast clones leads to tumor-like overgrowth through both a severe disruption of the asymmetric cell division process and canoe loss-mediated Ras-PI3K-Akt activation. Moreover, canoe loss also interacts synergistically with scribble loss to promote overgrowth in epithelial tissues, here just by activating the Ras-Raf-MAPK pathway. discs large 1 and lethal (2) giant larvae, which are functionally related to scribble, contribute to repress the Ras-MAPK signaling cascade in epithelia. Hence, our work uncovers novel cooperative interactions between all these well-conserved tumor suppressors that ensure tight regulation of the Ras signaling pathway.
Collapse
Affiliation(s)
- Noemí Rives-Quinto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana de Torres-Jurado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
17
|
Bergstralh DT, Dawney NS, St Johnston D. Spindle orientation: a question of complex positioning. Development 2017; 144:1137-1145. [DOI: 10.1242/dev.140764] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.
Collapse
Affiliation(s)
- Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
18
|
Inscuteable maintains type I neuroblast lineage identity via Numb/Notch signaling in the Drosophila larval brain. J Genet Genomics 2017; 44:151-162. [DOI: 10.1016/j.jgg.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/11/2023]
|
19
|
Schwabe T, Li X, Gaul U. Dynamic analysis of the mesenchymal-epithelial transition of blood-brain barrier forming glia in Drosophila. Biol Open 2017; 6:232-243. [PMID: 28108476 PMCID: PMC5312092 DOI: 10.1242/bio.020669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During development, many epithelia are formed by a mesenchymal-epithelial transition (MET). Here, we examine the major stages and underlying mechanisms of MET during blood-brain barrier formation in Drosophila. We show that contact with the basal lamina is essential for the growth of the barrier-forming subperineurial glia (SPG). Septate junctions (SJs), which provide insulation of the paracellular space, are not required for MET, but are necessary for the establishment of polarized SPG membrane compartments. In vivo time-lapse imaging reveals that the Moody GPCR signaling pathway regulates SPG cell growth and shape, with different levels of signaling causing distinct phenotypes. Timely, well-coordinated SPG growth is essential for the uniform insertion of SJs and thus the insulating function of the barrier. To our knowledge, this is the first dynamic in vivo analysis of all stages in the formation of a secondary epithelium, and of the key role trimeric G protein signaling plays in this important morphogenetic process. Summary: This study examines the major steps and underlying mechanisms of mesenchymal-epithelial transition of the blood-brain-barrier forming glia in Drosophila, including the role of basal lamina, septate junctions and of trimeric G protein signaling.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| | - Xiaoling Li
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany.,Rockefeller University, 1230 York Ave, New York, 10065-6399 NY, USA
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| |
Collapse
|
20
|
Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results Probl Cell Differ 2017; 61:183-210. [PMID: 28409305 DOI: 10.1007/978-3-319-53150-2_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.
Collapse
|
21
|
Keder A, Rives-Quinto N, Aerne BL, Franco M, Tapon N, Carmena A. The hippo pathway core cassette regulates asymmetric cell division. Curr Biol 2015; 25:2739-2750. [PMID: 26592338 DOI: 10.1016/j.cub.2015.08.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022]
Abstract
Asymmetric cell division (ACD) is a crucial process during development, homeostasis, and cancer. Stem and progenitor cells divide asymmetrically, giving rise to two daughter cells, one of which retains the parent cell self-renewal capacity, while the other is committed to differentiation. Any imbalance in this process can induce overgrowth or even a cancer-like state. Here, we show that core components of the Hippo signaling pathway, an evolutionarily conserved organ growth regulator, modulate ACD in Drosophila. Hippo pathway inactivation disrupts the asymmetric localization of ACD regulators, leading to aberrant mitotic spindle orientation and defects in the generation of unequal-sized daughter cells. The Hippo pathway downstream kinase Warts, LATS1-2 in mammals, associates with the ACD modulators Inscuteable and Bazooka in vivo and phosphorylates Canoe, the ortholog of Afadin/AF-6, in vitro. Moreover, phosphosite mutant Canoe protein fails to form apical crescents in dividing neuroblasts in vivo, and the lack of Canoe phosphorylation by Warts leads to failures of Discs Large apical localization in metaphase neuroblasts. Given the relevance of ACD in stem cells during tissue homeostasis, and the well-documented role of the Hippo pathway as a tumor suppressor, these results represent a potential route for perturbations in the Hippo signaling to induce tumorigenesis via aberrant stem cell divisions.
Collapse
Affiliation(s)
- Alyona Keder
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Noemí Rives-Quinto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Birgit L Aerne
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Nicolas Tapon
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
22
|
Huang R, Zhao J, Ju L, Wen Y, Xu Q. The influence of GAP-43 on orientation of cell division through G proteins. Int J Dev Neurosci 2015; 47:333-9. [PMID: 26380950 DOI: 10.1016/j.ijdevneu.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Williams SE, Ratliff LA, Postiglione MP, Knoblich JA, Fuchs E. Par3-mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Nat Cell Biol 2014; 16:758-69. [PMID: 25016959 DOI: 10.1038/ncb3001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/30/2014] [Indexed: 12/14/2022]
Abstract
Asymmetric cell divisions allow stem cells to balance proliferation and differentiation. During embryogenesis, murine epidermis expands rapidly from a single layer of unspecified basal layer progenitors to a stratified, differentiated epithelium. Morphogenesis involves perpendicular (asymmetric) divisions and the spindle orientation protein LGN, but little is known about how the apical localization of LGN is regulated. Here, we combine conventional genetics and lentiviral-mediated in vivo RNAi to explore the functions of the LGN-interacting proteins Par3, mInsc and Gαi3. Whereas loss of each gene alone leads to randomized division angles, combined loss of Gnai3 and mInsc causes a phenotype of mostly planar divisions, akin to loss of LGN. These findings lend experimental support for the hitherto untested model that Par3-mInsc and Gαi3 act cooperatively to polarize LGN and promote perpendicular divisions. Finally, we uncover a developmental switch between delamination-driven early stratification and spindle-orientation-dependent differentiation that occurs around E15, revealing a two-step mechanism underlying epidermal maturation.
Collapse
Affiliation(s)
- Scott E Williams
- 1] Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology &Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, New York 10065, USA [2] Department of Pathology &Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Lyndsay A Ratliff
- Department of Pathology &Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Maria Pia Postiglione
- 1] Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria [2]
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology &Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, New York 10065, USA
| |
Collapse
|
25
|
Drosophila mbm is a nucleolar myc and casein kinase 2 target required for ribosome biogenesis and cell growth of central brain neuroblasts. Mol Cell Biol 2014; 34:1878-91. [PMID: 24615015 DOI: 10.1128/mcb.00658-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper cell growth is a prerequisite for maintaining repeated cell divisions. Cells need to translate information about intracellular nutrient availability and growth cues from energy-sensing organs into growth-promoting processes, such as sufficient supply with ribosomes for protein synthesis. Mutations in the mushroom body miniature (mbm) gene impair proliferation of neural progenitor cells (neuroblasts) in the central brain of Drosophila melanogaster. Yet the molecular function of Mbm has so far been unknown. Here we show that mbm does not affect the molecular machinery controlling asymmetric cell division of neuroblasts but instead decreases their cell size. Mbm is a nucleolar protein required for small ribosomal subunit biogenesis in neuroblasts. Accordingly, levels of protein synthesis are reduced in mbm neuroblasts. Mbm expression is transcriptionally regulated by Myc, which, among other functions, relays information from nutrient-dependent signaling pathways to ribosomal gene expression. At the posttranslational level, Mbm becomes phosphorylated by casein kinase 2 (CK2), which has an impact on localization of the protein. We conclude that Mbm is a new part of the Myc target network involved in ribosome biogenesis, which, together with CK2-mediated signals, enables neuroblasts to synthesize sufficient amounts of proteins required for proper cell growth.
Collapse
|
26
|
Bergstralh DT, Haack T, St Johnston D. Epithelial polarity and spindle orientation: intersecting pathways. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130291. [PMID: 24062590 PMCID: PMC3785970 DOI: 10.1098/rstb.2013.0291] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.
Collapse
Affiliation(s)
- Dan T Bergstralh
- The Gurdon Institute and the Department of Genetics, University of Cambridge, , Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
27
|
Sathyanesan A, Feijoo AA, Mehta ST, Nimarko AF, Lin W. Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia. Front Cell Neurosci 2013; 7:84. [PMID: 23759900 PMCID: PMC3671183 DOI: 10.3389/fncel.2013.00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022] Open
Abstract
Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expression analysis to identify Gβ and Gγ subunit gene transcripts in the mouse main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Our reverse transcriptase PCR (RT-PCR) and realtime qPCR analyses of all known Gβ (β1,2,3,4,5) and Gγ (γ1,2,2t,3,4,5,7,8,10,11,12,13) subunits indicate presence of multiple Gβ and Gγ subunit gene transcripts in the MOE and the VNO at various expression levels. These results are supported by our RNA in situ hybridization (RISH) experiments, which reveal the expression patterns of two Gβ subunits and four Gγ subunits in the MOE as well as one Gβ and four Gγ subunits in the VNO. Using double-probe fluorescence RISH and line intensity scan analysis of the RISH signals of two dominant Gβγ subunits, we show that Gγ13 is expressed in mature olfactory sensory neurons (OSNs), while Gβ1 is present in both mature and immature OSNs. Interestingly, we also found Gβ1 to be the dominant Gβ subunit in the VNO and present throughout the sensory epithelium. In contrast, we found diverse expression of Gγ subunit gene transcripts with Gγ2, Gγ3, and Gγ13 in the Gαi2-expressing neuronal population, while Gγ8 is expressed in both layers. Further, we determined the expression of these Gβγ gene transcripts in three post-natal developmental stages (p0, 7, and 14) and found their cell-type specific expression remains largely unchanged, except the transient expression of Gγ2 in a single basal layer of cells in the MOE during P7 and P14. Taken together, our comprehensive expression analyses reveal cell-type specific gene expression of multiple Gβ and Gγ in sensory neurons of the olfactory system.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore MD, USA
| | | | | | | | | |
Collapse
|
28
|
Melzer J, Kraft KF, Urbach R, Raabe T. The p21-activated kinase Mbt is a component of the apical protein complex in central brain neuroblasts and controls cell proliferation. Development 2013; 140:1871-81. [PMID: 23571212 DOI: 10.1242/dev.088435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The final size of the central nervous system is determined by precisely controlled generation, proliferation and death of neural stem cells. We show here that the Drosophila PAK protein Mushroom bodies tiny (Mbt) is expressed in central brain progenitor cells (neuroblasts) and becomes enriched to the apical cortex of neuroblasts in a cell cycle- and Cdc42-dependent manner. Using mushroom body neuroblasts as a model system, we demonstrate that in the absence of Mbt function, neuroblasts and their progeny are correctly specified and are able to generate different neuron subclasses as in the wild type, but are impaired in their proliferation activity throughout development. In general, loss of Mbt function does not interfere with establishment or maintenance of cell polarity, orientation of the mitotic spindle and organization of the actin or tubulin cytoskeleton in central brain neuroblasts. However, we show that mbt mutant neuroblasts are significantly reduced in cell size during different stages of development, which is most pronounced for mushroom body neuroblasts. This phenotype correlates with reduced mitotic activity throughout development. Additionally, postembryonic neuroblasts are lost prematurely owing to apoptosis. Yet, preventing apoptosis did not rescue the loss of neurons seen in the adult mushroom body of mbt mutants. From these results, we conclude that Mbt is part of a regulatory network that is required for neuroblast growth and thereby allows proper proliferation of neuroblasts throughout development.
Collapse
Affiliation(s)
- Juliane Melzer
- Universität Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstrasse 5, Würzburg, Germany
| | | | | | | |
Collapse
|
29
|
Hartenstein V, Wodarz A. Initial neurogenesis in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:701-21. [PMID: 24014455 DOI: 10.1002/wdev.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Structural and biochemical characterization of the interaction between LGN and Frmpd1. J Mol Biol 2013; 425:1039-49. [PMID: 23318951 DOI: 10.1016/j.jmb.2013.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 11/21/2022]
Abstract
The tetratricopeptide repeat (TPR) motif-containing protein LGN binds multiple targets and regulates their subcellular localizations and functions during both asymmetric and symmetric cell divisions. Here, we characterized the interaction between LGN-TPR motifs and FERM and PDZ domain containing 1 (Frmpd1) and reported the crystal structure of the complex at 2.4Å resolution. A highly conserved fragment at the center of Frmpd1 of ~20 residues was found to be necessary and sufficient to bind to LGN-TPR. This Frmpd1 fragment forms an extended structure and runs along the concave channel of the TPR superhelix in an antiparallel manner in the complex. Structural comparisons and biochemical studies of LGN/Frmpd1 and other known LGN/target interactions demonstrate that the LGN-TPR motifs are versatile and capable of recognizing multiple targets via diverse binding modes. Nevertheless, a conserved "E/QxEx4-5E/D/Qx1-2K/R" motif in LGN/Pins (partner of inscuteable) TPR binding proteins has been identified.
Collapse
|
31
|
Sousa-Nunes R, Somers WG. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:79-102. [PMID: 23696353 DOI: 10.1007/978-94-007-6621-1_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila central nervous system develops from polarised asymmetric divisions of precursor cells, called neuroblasts. Decades of research on neuroblasts have resulted in a substantial understanding of the factors and molecular events responsible for fate decisions of neuroblasts and their progeny. Furthermore, the cell-cycle dependent mechanisms responsible for asymmetric cortical protein localisation, resulting in the unequal partitioning between daughters, are beginning to be exposed. Disruption to the appropriate partitioning of proteins between neuroblasts and differentiation-committed daughters can lead to supernumerary neuroblast-like cells and the formation of tumours. Many of the factors responsible for regulating asymmetric division of Drosophila neuroblasts are evolutionarily conserved and, in many cases, have been shown to play a functionally conserved role in mammalian neurogenesis. Recent genome-wide studies coupled with advancements in live-imaging technologies have opened further avenues of research into neuroblast biology. We review our current understanding of the molecular mechanisms regulating neuroblast divisions, a powerful system to model mammalian neurogenesis and tumourigenesis.
Collapse
Affiliation(s)
- Rita Sousa-Nunes
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK.
| | | |
Collapse
|
32
|
Kanesaki T, Hirose S, Grosshans J, Fuse N. Heterotrimeric G protein signaling governs the cortical stability during apical constriction in Drosophila gastrulation. Mech Dev 2012; 130:132-42. [PMID: 23085574 DOI: 10.1016/j.mod.2012.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022]
Abstract
During gastrulation in Drosophila melanogaster, coordinated apical constriction of the cellular surface drives invagination of the mesoderm anlage. Forces generated by the cortical cytoskeletal network have a pivotal role in this cellular shape change. Here, we show that the organisation of cortical actin is essential for stabilisation of the cellular surface against contraction. We found that mutation of genes related to heterotrimeric G protein (HGP) signaling, such as Gβ13F, Gγ1, and ric-8, results in formation of blebs on the ventral cellular surface. The formation of blebs is caused by perturbation of cortical actin and induced by local surface contraction. HGP signaling mediated by two Gα subunits, Concertina and G-iα65A, constitutively regulates actin organisation. We propose that the organisation of cortical actin by HGP is required to reinforce the cortex so that the cells can endure hydrostatic stress during tissue folding.
Collapse
Affiliation(s)
- Takuma Kanesaki
- Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | | | | | | |
Collapse
|
33
|
Jiang Y, Reichert H. Analysis of neural stem cell self-renewal and differentiation by transgenic RNAi in Drosophila. Arch Biochem Biophys 2012; 534:38-43. [PMID: 22906721 DOI: 10.1016/j.abb.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 12/21/2022]
Abstract
The fruit fly, Drosophila melanogaster, has proved to be a useful model organism for studying the biology of neural stem cells. Notably, significant progress has been made in identifying the molecular mechanisms that regulate the asymmetric cell divisions of the neural stem cell-like neuroblasts during brain development. Recently, the emerging technology of genome-wide transgenic RNA interference (RNAi), which makes it possible to analyze complicated developmental processes in a targeted, tissue-specific way, has been used for the analysis of gene function in Drosophila neuroblasts. Here, we review the key molecular mechanisms that regulate the asymmetric cell divisions of neuroblasts during brain development in Drosophila. We then summarize recent genome-wide transgenic RNAi screens in Drosophila and report on the identification of new regulators and gene networks that are required in balancing neuroblast self-renewal and differentiation.
Collapse
Affiliation(s)
- Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
34
|
Neural stem cells in Drosophila: molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells Int 2012; 2012:486169. [PMID: 22737173 PMCID: PMC3377361 DOI: 10.1155/2012/486169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/31/2012] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisions are key features of this proliferation. The molecular mechanisms that underlie the asymmetric cell divisions by which these neuroblasts self-renew and generate lineages of differentiating progeny have been studied extensively and involve two major protein complexes, the apical complex which maintains polarity and controls spindle orientation and the basal complex which is comprised of cell fate determinants and their adaptors that are segregated into the differentiating daughter cells during mitosis. Recent molecular genetic work has established Drosophila neuroblasts as a model for neural stem cell-derived tumors in which perturbation of key molecular mechanisms that control neuroblast proliferation and the asymmetric segregation of cell fate determinants lead to brain tumor formation. Identification of novel candidate genes that control neuroblast self-renewal and differentiation as well as functional analysis of these genes in normal and tumorigenic conditions in a tissue-specific manner is now possible through genome-wide transgenic RNAi screens. These cellular and molecular findings in Drosophila are likely to provide valuable genetic links for analyzing mammalian neural stem cells and tumor biology.
Collapse
|
35
|
Guilgur LG, Prudêncio P, Ferreira T, Pimenta-Marques AR, Martinho RG. Drosophila aPKC is required for mitotic spindle orientation during symmetric division of epithelial cells. Development 2012; 139:503-13. [DOI: 10.1242/dev.071027] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) is important for the planar orientation of the mitotic spindle in dividing epithelial cells. Yet, in chicken neuroepithelial cells, aPKC is not required in vivo for spindle orientation, and it has been proposed that the polarization cues vary between different epithelial cell types and/or developmental processes. In order to investigate whether Drosophila aPKC is required for spindle orientation during symmetric division of epithelial cells, we took advantage of a previously isolated temperature-sensitive allele of aPKC. We showed that Drosophila aPKC is required in vivo for spindle planar orientation and apical exclusion of Pins (Raps). This suggests that the cortical cues necessary for spindle orientation are not only conserved between Drosophila and mammalian cells, but are also similar to those required for spindle apicobasal orientation during asymmetric cell division.
Collapse
Affiliation(s)
- Leonardo G. Guilgur
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Pedro Prudêncio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Tânia Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | | | - Rui Gonçalo Martinho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, and IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
36
|
Abstract
In the Drosophila embryonic central nervous system, the neural precursor cells called neuroblasts undergo a number of asymmetric divisions along the apical-basal axis to give rise to different daughter cells of distinct fates. This review summarizes recent progress in understanding the mechanisms of these asymmetric cell divisions. We discuss proteins that are localized at distinct domains of cortex in the neuroblasts and their role in generating asymmetry. We also review uniformly cortical localized factors and actin cytoskeleton-associated motor proteins with regard to their potential role to serve as a link between distinct cortical domains in the neuroblasts. In this review, asymmetric divisions of sensory organ precursor and larval neuroblasts are also briefly discussed.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604
| | | |
Collapse
|
37
|
Notch Signaling and the Generation of Cell Diversity in Drosophila Neuroblast Lineages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:47-60. [DOI: 10.1007/978-1-4614-0899-4_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Yoshiura S, Ohta N, Matsuzaki F. Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 2011; 22:79-91. [PMID: 22178499 DOI: 10.1016/j.devcel.2011.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/14/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022]
Abstract
During development, directional cell division is a major mechanism for establishing the orientation of tissue growth. Drosophila neuroblasts undergo asymmetric divisions perpendicular to the overlying epithelium to produce descendant neurons on the opposite side, thereby orienting initial neural tissue growth. However, the mechanism remains elusive. We provide genetic evidence that extrinsic GPCR signaling determines the orientation of cortical polarity underlying asymmetric divisions of neuroblasts relative to the epithelium. The GPCR Tre1 activates the G protein oα subunit in neuroblasts by interacting with the epithelium to recruit Pins, which regulates spindle orientation. Because Pins associates with the Par-complex via Inscuteable, Tre1 consequently recruits the polarity complex to orthogonally orient the polarity axis to the epithelium. Given the universal role of the Par complex in cellular polarization, we propose that the GPCR-Pins system is a comprehensive mechanism controlling tissue polarity by orienting polarized stem cells and their divisions.
Collapse
Affiliation(s)
- Shigeki Yoshiura
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
39
|
Wang C, Li S, Januschke J, Rossi F, Izumi Y, Garcia-Alvarez G, Gwee SSL, Soon SB, Sidhu HK, Yu F, Matsuzaki F, Gonzalez C, Wang H. An ana2/ctp/mud complex regulates spindle orientation in Drosophila neuroblasts. Dev Cell 2011; 21:520-33. [PMID: 21920316 DOI: 10.1016/j.devcel.2011.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/26/2011] [Accepted: 08/01/2011] [Indexed: 12/11/2022]
Abstract
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to orient the mitotic spindle during NB asymmetric division.
Collapse
Affiliation(s)
- Cheng Wang
- Neuroscience & Behavioral Disorder Program, Duke-National University of Singapore Graduate Medical School Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith NR, Prehoda KE. Robust spindle alignment in Drosophila neuroblasts by ultrasensitive activation of pins. Mol Cell 2011; 43:540-9. [PMID: 21855794 DOI: 10.1016/j.molcel.2011.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/16/2011] [Accepted: 06/21/2011] [Indexed: 12/21/2022]
Abstract
Cellular signaling pathways exhibit complex response profiles with features such as thresholds and steep activation (i.e., ultrasensitivity). In a reconstituted mitotic spindle orientation pathway, activation of Drosophila Pins (LGN in mammals) by Gαi is ultrasensitive (apparent Hill coefficient of 3.1), such that Pins recruitment of the microtubule binding protein Mud (NuMA) occurs over a very narrow Gαi concentration range. Ultrasensitivity is required for Pins function in neuroblasts as a nonultrasensitive Pins mutant fails to robustly couple spindle position to cell polarity. Pins contains three Gαi binding GoLoco domains (GLs); Gαi binding to GL3 activates Pins, whereas GLs 1 and 2 shape the response profile. Although cooperative binding is one mechanism for generating ultrasensitivity, we find GLs 1 and 2 act as "decoys" that compete against activation at GL3. Many signaling proteins contain multiple protein interaction domains, and the decoy mechanism may be a common method for generating ultrasensitivity in regulatory pathways.
Collapse
Affiliation(s)
- Nicholas R Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
41
|
Reichert H. Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ 2011; 53:529-546. [PMID: 21630158 DOI: 10.1007/978-3-642-19065-0_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The wealth of neurons that make up the brain are generated through the proliferative activity of neural stem cells during development. This neurogenesis activity involves complex cell cycle control of proliferative self-renewal, differentiation, and termination processes in these cells. Considerable progress has been made in understanding these processes in the neural stem cell-like neuroblasts which generate the brain in the genetic model system Drosophila. Neuroblasts in the developing fly brain generate neurons through repeated series of asymmetrical cell divisions, which balance self-renewal of the neuroblast with generation of differentiated progeny through the segregation of cell fate determinants such as Numb, Prospero, and Brat to the neural progeny. A number of classical cell cycle regulators such as cdc2/CDK1, Polo, Aurora A, and cyclin E are implicated in the control of asymmetric divisions in neuroblasts linking the cell cycle to the asymmetrical division machinery. The cellular and molecular identity of the postmitotic neurons produced by proliferating neuroblasts is influenced by the timing of their exit from the cell cycle through the action of a temporal expression series of transcription factors, which include Hunchback, Kruppel, Pdm, and Castor. This temporal series is also implicated in the control of termination of neuroblast proliferation which is effected by two different cell cycle exit strategies, terminal differentiative division or programmed cell death of the neuroblast. Defects in the asymmetric division machinery which interfere with the termination of proliferation can result in uncontrolled tumorigenic overgrowth. These findings in Drosophila brain development are likely to have general relevance in neural stem cell biology and may apply to cell cycle control in mammalian brain development as well.
Collapse
Affiliation(s)
- Heinrich Reichert
- University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
42
|
Chang KC, Garcia-Alvarez G, Somers G, Sousa-Nunes R, Rossi F, Lee YY, Soon SB, Gonzalez C, Chia W, Wang H. Interplay between the transcription factor Zif and aPKC regulates neuroblast polarity and self-renewal. Dev Cell 2010; 19:778-85. [PMID: 21074726 DOI: 10.1016/j.devcel.2010.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/17/2010] [Accepted: 09/14/2010] [Indexed: 12/14/2022]
Abstract
How a cell decides to self-renew or differentiate is a critical issue in stem cell and cancer biology. Atypical protein kinase C (aPKC) promotes self-renewal of Drosophila larval brain neural stem cells, neuroblasts. However, it is unclear how aPKC cortical polarity and protein levels are regulated. Here, we have identified a zinc-finger protein, Zif, which is required for the expression and asymmetric localization of aPKC. aPKC displays ectopic cortical localization with upregulated protein levels in dividing zif mutant neuroblasts, leading to neuroblast overproliferation. We show that Zif is a transcription factor that directly represses aPKC transcription. We further show that Zif is phosphorylated by aPKC both in vitro and in vivo. Phosphorylation of Zif by aPKC excludes it from the nucleus, leading to Zif inactivation in neuroblasts. Thus, reciprocal repression between Zif and aPKC act as a critical regulatory mechanism for establishing cell polarity and controlling neuroblast self-renewal.
Collapse
Affiliation(s)
- Kai Chen Chang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Prehoda KE. Polarization of Drosophila neuroblasts during asymmetric division. Cold Spring Harb Perspect Biol 2010; 1:a001388. [PMID: 20066083 DOI: 10.1101/cshperspect.a001388] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During Drosophila development, neuroblasts divide to generate progeny with two different fates. One daughter cell self-renews to maintain the neuroblast pool, whereas the other differentiates to populate the central nervous system. The difference in fate arises from the asymmetric distribution of proteins that specify either self-renewal or differentiation, which is brought about by their polarization into separate apical and basal cortical domains during mitosis. Neuroblast symmetry breaking is regulated by numerous proteins, many of which have only recently been discovered. The atypical protein kinase C (aPKC) is a broad regulator of polarity that localizes to the neuroblast apical cortical region and directs the polarization of the basal domain. Recent work suggests that polarity can be explained in large part by the mechanisms that restrict aPKC activity to the apical domain and those that couple asymmetric aPKC activity to the polarization of downstream factors. Polarized aPKC activity is created by a network of regulatory molecules, including Bazooka/Par-3, Cdc42, and the tumor suppressor Lgl, which represses basal recruitment. Direct phosphorylation by aPKC leads to cortical release of basal domain factors, preventing them from occupying the apical domain. In this framework, neuroblast polarity arises from a complex system that orchestrates robust aPKC polarity, which in turn polarizes substrates by coupling phosphorylation to cortical release.
Collapse
Affiliation(s)
- Kenneth E Prehoda
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
44
|
Cabernard C, Prehoda KE, Doe CQ. A spindle-independent cleavage furrow positioning pathway. Nature 2010; 467:91-4. [PMID: 20811457 PMCID: PMC4028831 DOI: 10.1038/nature09334] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 06/28/2010] [Indexed: 11/24/2022]
Abstract
The mitotic spindle determines the cleavage furrow site during metazoan cell division1,2, but whether other mechanisms exist remains unknown. Here we identify a spindle-independent mechanism for cleavage furrow positioning in Drosophila neuroblasts. We show that early and late furrow proteins (Pavarotti, Anillin, and Myosin) are localized to the neuroblast basal cortex at anaphase onset by a Pins cortical polarity pathway, and can induce a basally-displaced furrow even in the complete absence of a mitotic spindle. Rotation or displacement of the spindle results in two furrows: an early polarity-induced basal furrow and a later spindle-induced furrow. This spindle-independent cleavage furrow mechanism may be relevant to other highly polarized mitotic cells, such as mammalian neural progenitors.
Collapse
Affiliation(s)
- Clemens Cabernard
- Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
45
|
Boyle MJ, French RL, Cosand KA, Dorman JB, Kiehart DP, Berg CA. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube. Dev Biol 2010; 346:68-79. [PMID: 20659448 DOI: 10.1016/j.ydbio.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.
Collapse
Affiliation(s)
- Michael J Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kitajima A, Fuse N, Isshiki T, Matsuzaki F. Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development. Dev Biol 2010; 347:9-23. [PMID: 20599889 DOI: 10.1016/j.ydbio.2010.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.
Collapse
Affiliation(s)
- Atsushi Kitajima
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
47
|
Januschke J, Gonzalez C. The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. ACTA ACUST UNITED AC 2010; 188:693-706. [PMID: 20194641 PMCID: PMC2835941 DOI: 10.1083/jcb.200905024] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The orientation of stem cell divisions is maintained beyond one cell cycle thanks to microtubule polymerization and apical centrosome positioning. The mechanisms that maintain the orientation of cortical polarity and asymmetric division unchanged in consecutive mitoses in Drosophila melanogaster neuroblasts (NBs) are unknown. By studying the effect of transient microtubule depolymerization and centrosome mutant conditions, we have found that such orientation memory requires both the centrosome-organized interphase aster and centrosome-independent functions. We have also found that the span of such memory is limited to the last mitosis. Furthermore, the orientation of the NB axis of polarity can be reset to any angle with respect to the surrounding tissue and is, therefore, cell autonomous.
Collapse
Affiliation(s)
- Jens Januschke
- Cell Division Group, Institute for Research in Biomedicine Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
48
|
Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23:2675-99. [PMID: 19952104 DOI: 10.1101/gad.1850809] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division is commonly thought to involve the equal distribution of cellular components into the two daughter cells. During many cell divisions, however, proteins, membrane compartments, organelles, or even DNA are asymmetrically distributed between the two daughter cells. Here, we review the various types of asymmetries that have been described in yeast and in animal cells. Asymmetric segregation of protein determinants is particularly relevant for stem cell biology. We summarize the relevance of asymmetric cell divisions in various stem cell systems and discuss why defects in asymmetric cell division can lead to the formation of tumors.
Collapse
Affiliation(s)
- Ralph A Neumüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | | |
Collapse
|
49
|
Albertson R, Casper-Lindley C, Cao J, Tram U, Sullivan W. Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue. J Cell Sci 2009; 122:4570-83. [PMID: 19934219 DOI: 10.1242/jcs.054981] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wolbachia are maternally inherited bacterial endosymbionts that occupy many but not all tissues of adult insects. During the initial mitotic divisions in Drosophila embryogenesis, Wolbachia exhibit a symmetric pattern of segregation. Wolbachia undergo microtubule-dependent and cell-cycle-regulated movement between centrosomes. Symmetric segregation occurs during late anaphase when Wolbachia cluster around duplicated and separating centrosomes. This centrosome association is microtubule-dependent and promotes an even Wolbachia distribution throughout the host embryo. By contrast, during the later embryonic and larval neuroblast divisions, Wolbachia segregate asymmetrically with the apical self-renewing neuroblast. During these polarized asymmetric neuroblast divisions, Wolbachia colocalize with the apical centrosome and apically localized Par complex. This localization depends on microtubules, but not the cortical actin-based cytoskeleton. We also found that Wolbachia concentrate in specific regions of the adult brain, which might be a direct consequence of the asymmetric Wolbachia segregation in the earlier neuroblast divisions. Finally, we demonstrate that the fidelity of asymmetric segregation to the self-renewing neuroblast is lower in the virulent Popcorn strain of Wolbachia.
Collapse
|
50
|
Johnston CA, Hirono K, Prehoda KE, Doe CQ. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 2009; 138:1150-63. [PMID: 19766567 DOI: 10.1016/j.cell.2009.07.041] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/19/2009] [Accepted: 07/02/2009] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this method to characterize Partner of Inscuteable (Pins; LGN/AGS3 in mammals) -dependent spindle orientation. We identify a previously unrecognized evolutionarily conserved Pins domain (Pins(LINKER)) that requires Aurora-A phosphorylation to recruit Discs large (Dlg; PSD-95/hDlg in mammals) and promote partial spindle orientation. The well-characterized Pins(TPR) domain has no function alone, but placing the Pins(TPR) in cis to the Pins(LINKER) gives dynein-dependent precise spindle orientation. This "induced cortical polarity" assay is suitable for rapid identification of the proteins, domains, and amino acids regulating spindle orientation or cell polarity.
Collapse
|