1
|
Li Y, Huang W, Fang S, Li Z, Li Z, Wang F, Cheng X, Cao J, Feng L, Luo J, Wu Y. Zinc pyrithione induced volatile fatty acids promotion derived from sludge anaerobic digestion: Interrelating the affected steps with microbial metabolic regulation and adaptive responses. WATER RESEARCH 2023; 234:119816. [PMID: 36878152 DOI: 10.1016/j.watres.2023.119816] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The massive use of zinc pyrithione (ZPT, as broad-spectrum bactericides) resulted in its high levels in waste activated sludge (WAS) and affected subsequent WAS treatment. This work revealed the effects of ZPT on the volatile fatty acids (VFAs) during WAS anaerobic digestion, in which VFAs yield was enhanced by approximately 6-9 folds (from 353 mg COD/L in control to 2526-3318 mg COD/L with low level of ZPT (20-50 mg/g TSS)). The ZPT occurred in WAS enabled the acceleration of solubilization, hydrolysis and acidification processes while inhibited the methanogenesis. Also, the low ZPT contributed to the enrichment of functional hydrolytic-acidifying microorganisms (e.g., Ottowia and Acinetobacter) but caused the reduction of methanogens (e.g., Methanomassiliicoccus and Methanothrix). Meta-transcriptomic analysis demonstrated that the critical genes relevant to extracellular hydrolysis (i.e. CLPP and ZapA), membrane transport (i.e. gltI, and gltL), substrates metabolisms (i.e. fadj, and acd), and VFAs biosynthesis (i.e. porB and porD) were all upregulated by 25.1-701.3% with low level of ZPT. Specifically, the ZPT stimulus on amino acids metabolism for VFAs transformation was prominent over carbohydrates. Moreover, the functional species enabled to regulate the genes in QS and TCS systems to maintain favorable cell chemotaxis to adapt the ZPT stress. The cationic antimicrobial peptide resistance pathway was upregulated to blunt ZPT with the secretion of more lipopolysaccharide and activate proton pumps to maintain ions homeostasis to antagonize the ZPT toxicity for high microbial activities, the abundance of related genes was up-regulated by 60.5 to 524.5%. This work enlightened environmental behaviors of emerging pollutants on WAS anaerobic digestion process with interrelations of microbial metabolic regulation and adaptive responses.
Collapse
Affiliation(s)
- Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zhenzhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Ziyu Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Single-molecule and super-resolved imaging deciphers membrane behavior of onco-immunogenic CCR5. iScience 2022; 25:105675. [PMID: 36561885 PMCID: PMC9763858 DOI: 10.1016/j.isci.2022.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
The ability of tumors to establish a pro-tumorigenic microenvironment is an important point of investigation in the search for new therapeutics. Tumors form microenvironments in part by the "education" of immune cells attracted via chemotactic axes such as that of CCR5-CCL5. Further, CCR5 upregulation by cancer cells, coupled with its association with pro-tumorigenic features such as drug resistance and metastasis, has suggested CCR5 as a therapeutic target. However, with several conformational "pools" being reported, phenotypic investigations must be capable of unveiling conformational heterogeneity. Addressing this challenge, we performed super-resolution structured illumination microscopy (SIM) and single molecule partially TIRF-coupled HILO (PaTCH) microscopy of CCR5 in fixed cells. SIM data revealed a non-random spatial distribution of CCR5 assemblies, while Intensity-tracking of CCR5 assemblies from PaTCH images indicated dimeric sub-units independent of CCL5 perturbation. These biophysical methods can provide important insights into the structure and function of onco-immunogenic receptors and many other biomolecules.
Collapse
|
3
|
Wang ZJ, Thomson M. Localization of signaling receptors maximizes cellular information acquisition in spatially structured natural environments. Cell Syst 2022; 13:530-546.e12. [PMID: 35679857 DOI: 10.1016/j.cels.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
Cells in natural environments, such as tissue or soil, sense and respond to extracellular ligands with intricately structured and non-monotonic spatial distributions, sculpted by processes such as fluid flow and substrate adhesion. In this work, we show that spatial sensing and navigation can be optimized by adapting the spatial organization of signaling pathways to the spatial structure of the environment. We develop an information-theoretic framework for computing the optimal spatial organization of a sensing system for a given signaling environment. We find that receptor localization previously observed in cells maximizes information acquisition in simulated natural contexts, including tissue and soil. Specifically, information acquisition is maximized when receptors form localized patches at regions of maximal ligand concentration. Receptor localization extends naturally to produce a dynamic protocol for continuously redistributing signaling receptors, which when implemented using simple feedback, boosts cell navigation efficiency by 30-fold.
Collapse
Affiliation(s)
- Zitong Jerry Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett 2021; 752:135841. [PMID: 33766733 PMCID: PMC8802533 DOI: 10.1016/j.neulet.2021.135841] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
Abstract
Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH, 43205, United States.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
5
|
Li G, Hu X, Nie P, Mang D, Jiao S, Zhang S, Roy SR, Yukawa S, Asahina S, Sugasawa H, Cortes W, Zhou Z, Zhang Y. Lipid-Raft-Targeted Molecular Self-Assembly Inactivates YAP to Treat Ovarian Cancer. NANO LETTERS 2021; 21:747-755. [PMID: 33356330 DOI: 10.1021/acs.nanolett.0c04435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.
Collapse
Affiliation(s)
- Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shunsuke Asahina
- SM Application Group, JEOL Ltd., Akishima, Tokyo 196-8558, Japan
| | - Hiroaki Sugasawa
- Asylum Research Oxford Instruments, Nihonbashi Laboratory, Chuo-ku, Tokyo 103-0006, Japan
| | - William Cortes
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
7
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
8
|
Jin J, Zhao Q. Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics 2020; 10:6231-6244. [PMID: 32483450 PMCID: PMC7255024 DOI: 10.7150/thno.45219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, cell-based anti-tumor immunotherapy emerged and it has provided us with a large amount of knowledge. Upon chemokines recognition, immune cells undergo rapid trafficking and activation in disease milieu, with immune cells chemotaxis being accompanied by activation of diverse intercellular signal transduction pathways. The outcome of chemokines-mediated immune cells chemotaxis interacts with the cue of mammalian target of rapamycin (mTOR) in the tumor microenvironment (TME). Indeed, the mTOR cascade in immune cells involves migration and infiltration. In this review, we summarize the available mTOR-related chemokines, as well as the characterized upstream regulators and downstream targets in immune cells chemotaxis and assign potential underlying mechanisms in each evaluated chemokine. Specifically, we focus on the involvement of mTOR in chemokine-mediated immune related cells in the balance between tumor immunity and malignancy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
9
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Tang CX, Luan L, Zhang L, Wang Y, Liu XF, Wang J, Xiong Y, Wang D, Huang LY, Gao DS. Golgin-160 and GMAP210 play an important role in U251 cells migration and invasion initiated by GDNF. PLoS One 2019; 14:e0211501. [PMID: 30695072 PMCID: PMC6351060 DOI: 10.1371/journal.pone.0211501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Gliomas are the most common malignant tumors of the brain and are characteristic of severe migration and invasion. Glial cell line-derived neurotrophic factor (GDNF) promotes glioma development process. However, the regulatory mechanisms of promoting occurrence and development of glioma have not yet been clearly elucidated. In the present study, the mechanism by which GDNF promotes glioma cell migration and invasion through regulating the dispersion and location of the Golgi apparatus (GA) is described. Following GDNF treatment, a change in the volume and position of GA was observed. The stack area of the GA was enlarged and it was more concentrated near the nucleus. Golgin-160 and Golgi microtubule-associated protein 210 (GMAP210) were identified as target molecules regulating GA positioning. In the absence of either golgin-160 or GMAP210 using lentivirus, the migration and invasion of U251 cells were decreased, while it was increased following GDNF. It was also found that the GA was decreased in size and dispersed following golgin-160 or GMAP210 knockdown, as determined by GA green fluorescence assay. Once GDNF was added, the above phenomenon would be twisted, and the concentrated location and volume of the GA was restored. In combination, the present data suggested that the regulation of the position and size of the GA by golgin-160 and GMAP210 play an important role in U251 cell migration and invasion.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lan Luan
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Zhang
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Feng Liu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ye Xiong
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Wang
- School of Medicine information, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin-Yan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
11
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
12
|
Golbert DCF, Santana-Van-Vliet E, Ribeiro-Alves M, Fonsêca MMBD, Lepletier A, Mendes-da-Cruz DA, Loss G, Cotta-de-Almeida V, Vasconcelos ATR, Savino W. Small interference ITGA6 gene targeting in the human thymic epithelium differentially regulates the expression of immunological synapse-related genes. Cell Adh Migr 2018; 12:152-167. [PMID: 28494186 DOI: 10.1080/19336918.2017.1327513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The thymus supports differentiation of T cell precursors. This process requires relocation of developing thymocytes throughout multiple microenvironments of the organ, mainly with thymic epithelial cells (TEC), which control intrathymic T cell differentiation influencing the formation and maintenance of the immunological synapse. In addition to the proteins of the major histocompatibility complex (MHC), this structure is supported by several adhesion molecules. During the process of thymopoiesis, we previously showed that laminin-mediated interactions are involved in the entrance of T-cell precursors into the thymus, as well as migration of differentiating thymocytes within the organ. Using small interference RNA strategy, we knocked-down the ITGA6 gene (which encodes the CD49f integrin α-chain) in cultured human TEC, generating a decrease in the expression of the corresponding CD49f subunit, in addition to modulation in several other genes related to cell adhesion and migration. Thymocyte adhesion to TEC was significantly impaired, comprising both immature and mature thymocyte subsets. Moreover, we found a modulation of the MHC, with a decrease in membrane expression of HLA-ABC, in contrast with increase in the expression of HLA-DR. Interestingly, the knockdown of the B2M gene (encoding the β-2 microglobulin of the HLA-ABC complex) increased CD49f expression levels, thus unraveling the existence of a cross-talk event in the reciprocal control of CD49f and HLA-ABC. Our data suggest that the expression levels of CD49f may be relevant in the general control of MHC expression by TEC and consequently the corresponding synapse with developing thymocytes mediated by the T-cell receptor.
Collapse
Affiliation(s)
- Daiane Cristina F Golbert
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Eliane Santana-Van-Vliet
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marcelo Ribeiro-Alves
- d Evandro Chagas Research Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marbella Maria B da Fonsêca
- e Nuffield Department of Clinical Medicine, Structural Genomics Consortium , University of Oxford, UK, Structural Genomics Consortium , Old Road Campus, Headington , Oxford , England
| | - Ailin Lepletier
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Daniella Arêas Mendes-da-Cruz
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Guilherme Loss
- c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Ana Tereza R Vasconcelos
- c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Wilson Savino
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
13
|
D'Auria L, Bongarzone ER. Fluid levity of the cell: Role of membrane lipid architecture in genetic sphingolipidoses. J Neurosci Res 2017; 94:1019-24. [PMID: 27638586 DOI: 10.1002/jnr.23750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Sphingolipidoses arise from inherited loss of function of key enzymes regulating the sphingolipid (SL) metabolism and the accumulation of large quantities of these lipids in affected cells. Most frequently, toxicity is manifested in the nervous system, where survival and function of neurons and glial cells are most affected. Although detailed information is available on neuroglial alterations during terminal stages of the disease, the initial pathogenic mechanisms triggering neuropathology are largely unclear. Because they are key components of biological membranes, changes in the local concentration of SLs are likely to impact the organization of membrane domains and functions. This Commentary proposes that SL toxicity involves initial defects in the integrity of lipid domains, membrane fluidity, and membrane bending, leading to membrane deformation and deregulation of cell signaling and function. Understanding how SLs alter membrane architecture may provide breakthroughs for more efficient treatment of sphingolipidoses. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ludovic D'Auria
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois.
| |
Collapse
|
14
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
15
|
Richter R, Forssmann W, Henschler R. Current Developments in Mobilization of Hematopoietic Stem and Progenitor Cells and Their Interaction with Niches in Bone Marrow. Transfus Med Hemother 2017. [PMID: 28626366 DOI: 10.1159/000477262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The clinical application of hematopoietic stem and progenitor cells (HSPCs) has evolved from a highly experimental stage in the 1980s to a currently clinically established treatment for more than 20,000 patients annually who suffer from hematological malignancies and other severe diseases. Studies in numerous murine models have demonstrated that HSPCs reside in distinct niches within the bone marrow environment. Whereas transplanted HSPCs travel through the bloodstream and home to sites of hematopoiesis, HSPCs can be mobilized from these niches into the blood either physiologically or induced by pharmaceutical drugs. Firstly, this review aims to give a synopsis of milestones defining niches and mobilization pathways for HSPCs, including the identification of several cell types involved such as osteoblasts, adventitial reticular cells, endothelial cells, monocytic cells, and granulocytic cells. The main factors that anchor HSPCs in the niche, and/or induce their quiescence are vascular cell adhesion molecule(VCAM)-1, CD44, hematopoietic growth factors, e.g. stem cell factor (SCF) and FLT3 Ligand, chemokines including CXCL12, growth-regulated protein beta and IL-8, proteases, peptides, and other chemical transmitters such as nucleotides. In the second part of the review, we revise the current understanding of HSPC mobilization. Here, we discuss which mechanisms found to be active in HSPC mobilization correspond to the mechanisms relevant for HSPC interaction with niche cells, but also deal with other mediators and signals that target individual cell types and receptors to mobilize HSPCs. A multitude of questions remain to be addressed for a better understanding of HSPC biology and its implications for therapy, including more comprehensive concepts for regulatory circuits such as calcium homeostasis and parathormone, metabolic regulation such as by leptin, the significance of autonomic nervous system, the consequences of alteration of niches in aged patients, or the identification of more easily accessible markers to better predict the efficiency of HSPC mobilization.
Collapse
Affiliation(s)
- Rudolf Richter
- Department of Internal Medicine, Clinic of Immunology, Hanover Medical School, Hanover, Germany.,MVZ Labor PD Dr. Volkmann & Kollegen, Karlsruhe, Germany
| | - Wolfgang Forssmann
- Department of Internal Medicine, Clinic of Immunology, Hanover Medical School, Hanover, Germany
| | - Reinhard Henschler
- Swiss Red Cross Blood Transfusion Services Zurich and Chur, Zurich, Switzerland
| |
Collapse
|
16
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
18
|
CXCR4 signaling in health and disease. Immunol Lett 2016; 177:6-15. [PMID: 27363619 DOI: 10.1016/j.imlet.2016.06.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022]
Abstract
Chemokines and chemokine receptors regulate multiple processes such morphogenesis, angiogenesis and immune responses. Among the chemokine receptors, CXCR4 stands out for its pleiotropic roles as well as for its involvement in several pathological conditions, including immune diseases, viral infections and cancer. For these reasons, CXCR4 represents a crucial target in drug development. In this review, we discuss of CXCR4 receptor properties and signaling in health and diseases, focusing on the WHIM syndrome, an inherited immunodeficiency caused by mutations of the CXCR4 gene.
Collapse
|
19
|
Rhoden JJ, Dyas GL, Wroblewski VJ. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets. J Biol Chem 2016; 291:11337-47. [PMID: 27022022 DOI: 10.1074/jbc.m116.714287] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts.
Collapse
Affiliation(s)
- John J Rhoden
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Gregory L Dyas
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Victor J Wroblewski
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|
20
|
Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild Heat Treatment Primes Human CD34(+) Cord Blood Cells for Migration Toward SDF-1α and Enhances Engraftment in an NSG Mouse Model. Stem Cells 2016; 33:1975-84. [PMID: 25753525 DOI: 10.1002/stem.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/23/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
Simple efforts are needed to enhance cord blood (CB) transplantation. We hypothesized that short-term exposure of CD34(+) CB cells to 39.5°C would enhance their response to stromal-derived factor-1 (SDF-1), by increasing lipid raft aggregation and CXCR4 expression, thus leading to enhanced engraftment. Mild hyperthermia (39.5°C) significantly increased the percent of CD34(+) CB that migrated toward SDF-1. This was associated with increased expression of CXCR4 on the cells. Mechanistically, mild heating increased the percent of CD34(+) cells with aggregated lipid rafts and enhanced colocalization of CXCR4 within lipid raft domains. Using methyl-β-cyclodextrin (MβCD), an agent that blocks lipid raft aggregation, it was determined that this enhancement in chemotaxis was dependent upon lipid raft aggregation. Colocalization of Rac1, a GTPase crucial for cell migration and adhesion, with CXCR4 to the lipid raft was essential for the effects of heat on chemotaxis, as determined with an inhibitor of Rac1 activation, NSC23766. Application-wise, mild heat treatment significantly increased the percent chimerism as well as homing and engraftment of CD34(+) CB cells in sublethally irradiated non-obese diabetic severe combined immunodeficiency IL-2 receptor gamma chain d (NSG) mice. Mild heating may be a simple and inexpensive means to enhance engraftment following CB transplantation in patients.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Betulinic acid enhances TGF-β signaling by altering TGF-β receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J Biomed Sci 2016; 23:30. [PMID: 26922801 PMCID: PMC4769553 DOI: 10.1186/s12929-016-0229-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background TGF-β is a key modulator in the regulation of cell proliferation and migration, and is also involved in the process of cancer development and progression. Previous studies have indicated that TGF-β responsiveness is determined by TGF-β receptor partitioning between lipid raft/caveolae-mediated and clathrin-mediated endocytosis. Lipid raft/caveolae-mediated endocytosis facilitates TGF-β degradation and thus suppressing TGF-β responsiveness. By contrast, clathrin-mediated endocytosis results in Smad2/3-dependent endosomal signaling, thereby promoting TGF-β responsiveness. Because betulinic acid shares a similar chemical structure with cholesterol and has been reported to insert into the plasma membrane, we speculate that betulinic acid changes the fluidity of the plasma membrane and modulates the signaling pathway associated with membrane microdomains. We propose that betulinic acid modulates TGF-β responsiveness by changing the partitioning of TGF-β receptor between lipid-raft/caveolae and non-caveolae microdomain on plasma membrane. Methods We employed sucrose-density gradient ultracentrifugation and confocal microscopy to determine membrane localization of TGF-β receptors and used a luciferase assay to examine the effects of betulinic acid in TGF-β-stimulated promoter activation. In addition, we perform western blotting to test TGF-β-induced Smad2 phosphorylation and fibronectin production. Results and conclusions Betulinic acid induces translocation of TGF-β receptors from lipid raft/caveolae to non-caveolae microdomains without changing total level of TGF-β receptors. The betulinic acid-induced TGF-β receptors translocation is rapid and correlate with the TGF-β-induced PAI-1 reporter gene activation and growth inhibition in Mv1Lu cells. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0229-4) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 2015; 62:1-24. [PMID: 26738447 DOI: 10.1016/j.plipres.2015.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ludovic D'Auria
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
23
|
van Gijsel-Bonnello M, Acar N, Molino Y, Bretillon L, Khrestchatisky M, de Reggi M, Gharib B. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration. J Cell Physiol 2015; 230:2415-25. [PMID: 25728249 DOI: 10.1002/jcp.24971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Abstract
Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.
Collapse
Affiliation(s)
| | - Niyazi Acar
- INRA UMR 6265, University of Burgundy, Dijon, France
| | - Yves Molino
- Vect-Horus, 51 Boulevard Pierre Dramard, Marseille, France
| | | | | | - Max de Reggi
- Aix Marseille University, CNRS, NICN UMR 7259, Marseille, France
| | - Bouchra Gharib
- Aix Marseille University, CNRS, NICN UMR 7259, Marseille, France
| |
Collapse
|
24
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
25
|
The nanoscale organization of signaling domains at the plasma membrane. CURRENT TOPICS IN MEMBRANES 2015; 75:125-65. [PMID: 26015282 DOI: 10.1016/bs.ctm.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we present an overview of the role of the nanoscale organization of signaling domains in regulating key cellular processes. In particular, we illustrate the importance of protein and lipid nanodomains as triggers and mediators of cell signaling. As particular examples, we summarize the state of the art of understanding the role of nanodomains in the mounting of an immune response, cellular adhesion, intercellular communication, and cell proliferation. Thus, this chapter underlines the essential role the nanoscale organization of key signaling proteins and lipid domains. We will also see how nanodomains play an important role in the lifecycle of many pathogens relevant to human disease and therefore illustrate how these structures may become future therapeutic targets.
Collapse
|
26
|
Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 2015; 460:255-60. [PMID: 25772616 DOI: 10.1016/j.bbrc.2015.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022]
Abstract
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified.
Collapse
|
27
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
28
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Wang MJ, Artemenko Y, Cai WJ, Iglesias PA, Devreotes PN. The directional response of chemotactic cells depends on a balance between cytoskeletal architecture and the external gradient. Cell Rep 2014; 9:1110-21. [PMID: 25437564 DOI: 10.1016/j.celrep.2014.09.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/29/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022] Open
Abstract
Polarized migrating cells display signal transduction events, such as activation of phosphatidylinositol 3-kinase (PI3K) and Scar/Wave, and respond more readily to chemotactic stimuli at the leading edge. We sought to determine the basis of this polarized sensitivity. Inhibiting actin polymerization leads to uniform sensitivity. However, when human neutrophils were "stalled" by simultaneously blocking actin and myosin dynamics, they maintained the gradient of responsiveness to chemoattractant and also displayed noise-driven PIP3 flashes on the basal membrane, localized toward the front. Thus, polarized sensitivity does not require migration or cytoskeletal dynamics. The threshold for response is correlated with the static F-actin distribution, but not cell shape or volume changes, membrane fluidity, or the preexisting distribution of PI3K. The kinetics of responses to temporal and spatial stimuli were consistent with the local excitation global inhibition model, but the overall direction of the response was biased by the internal axis of polarity.
Collapse
Affiliation(s)
- Ming-Jie Wang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yulia Artemenko
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Jie Cai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Basic Medicine, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization. Anal Bioanal Chem 2014; 406:6993-7002. [DOI: 10.1007/s00216-014-7998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
|
31
|
Belousov VV, Enikolopov GN, Mishina NM. [Compartmentalization of ROS-mediated signal transduction]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 39:383-99. [PMID: 24707719 DOI: 10.1134/s1068162013040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The localization of signaling molecules close to their targets is the central principle of cell signaling. The colocalization of multicomponent signaling complexes is realized through protein scaffolds that provide better specificity than undirected diffusion ofthe same components. ROS-generating complexes have been suggested to follow this principle by specific intracellular localization of ROS production and the limitation of ROS diffusion distances. However, the lack of adequate methods did not allow direct detection of local ROS production to confirm the model ofredox signaling compartmentalization. Nevertheless, evidences of local ROS production and restriction of diffusion were provided by kinetic modeling and data on the subcellular localization of NADPH-oxidase isoforms, their adapter proteins and local restriction of ROS diffusion. Here we shall discuss the properties of antioxidant system which prevents uncontrolled ROS diffusion from the sites of generation to the adjacent subcellular compartments; the current data of the specific localization NADPH-oxidases activity and its influence on intracellular processes; the recent evidences of the ROS diffusion restriction.
Collapse
|
32
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
33
|
Flanagan CA. Receptor Conformation and Constitutive Activity in CCR5 Chemokine Receptor Function and HIV Infection. ADVANCES IN PHARMACOLOGY 2014; 70:215-63. [DOI: 10.1016/b978-0-12-417197-8.00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Owen DM, Gaus K. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. FRONTIERS IN PLANT SCIENCE 2013; 4:503. [PMID: 24376453 PMCID: PMC3859905 DOI: 10.3389/fpls.2013.00503] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/24/2013] [Indexed: 05/08/2023]
Abstract
The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.
Collapse
Affiliation(s)
- Dylan M. Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King’s College LondonLondon, UK
| | - Katharina Gaus
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South WalesSydney, NSW, Australia
- *Correspondence: Katharina Gaus, Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052, Australia e-mail:
| |
Collapse
|
36
|
Tolosa EJ, Jaurena MB, Zanin JP, Battiato NL, Rovasio RA. In situhybridization of chemotactically bioactive molecules on cultured chick embryo. J Histotechnol 2013. [DOI: 10.1179/2046023612y.0000000008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Zanin JP, Battiato NL, Rovasio RA. Neurotrophic factor NT-3 displays a non-canonical cell guidance signaling function for cephalic neural crest cells. Eur J Cell Biol 2013; 92:264-79. [PMID: 24252516 DOI: 10.1016/j.ejcb.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/13/2013] [Indexed: 12/30/2022] Open
Abstract
Chemotactic cell migration is triggered by extracellular concentration gradients of molecules segregated by target fields. Neural crest cells (NCCs), paradigmatic as an accurately moving cell population, undergo wide dispersion along multiple pathways, invading with precision defined sites of the embryo to differentiate into many derivatives. This report addresses the involvement of NT-3 in early colonization by cephalic NCCs invading the optic vesicle region. The results of in vitro and in vivo approaches showed that NCCs migrate directionally up an NT-3 concentration gradient. We also demonstrated the expression of NT-3 in the ocular region as well as their functional TrkB, TrkC and p75 receptors on cephalic NCCs. On whole-mount embryo, a perturbed distribution of NCCs colonizing the optic vesicle target field was shown after morpholino cancelation of cephalic NT-3 or TrkC receptor on NCCs, as well as in situ blocking of TrkC receptor of mesencephalic NCCs by specific antibody released from inserted microbeads. The present results strongly suggest that, among other complementary cell guidance factor(s), the chemotactic response of NCCs toward the ocular region NT-3 gradient is essential for spatiotemporal cell orientation, amplifying the functional scope of this neurotrophic factor as a molecular guide for the embryo cells, besides its well-known canonical functions.
Collapse
Affiliation(s)
- Juan P Zanin
- Center for Cellular and Molecular Biology - IIBYT (CONICET, UNC), FCEFN, National University of Cordoba, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | | | | |
Collapse
|
38
|
He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJA, Chen J, Wang F. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 2013; 24:3369-80. [PMID: 24006489 PMCID: PMC3814157 DOI: 10.1091/mbc.e13-07-0405] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), controls neutrophil chemotaxis by regulating the dynamics of the actin cytoskeleton via Rac and Cdc42. This function of Rictor is independent of mTORC2 and the kinase activity of mTOR. Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase–independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:486-97. [PMID: 23384085 DOI: 10.1111/tpj.12139] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/29/2013] [Accepted: 01/31/2012] [Indexed: 05/06/2023]
Abstract
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)-anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C-terminal hydrophobic residues. GPI-anchored proteins are widespread cell sensors in mammals, especially during egg-sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell-cell communications in plants.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, Sochacki AL, Faber MS, Hazra S, Duclos S, Guberski D, Reid GE, Grant MB, Busik JV. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One 2013; 8:e55177. [PMID: 23383097 PMCID: PMC3558503 DOI: 10.1371/journal.pone.0055177] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/19/2012] [Indexed: 11/23/2022] Open
Abstract
Objective The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs). We propose that n-3 polyunsaturated fatty acid (PUFA) deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM) and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs. Research Design and Methods Type 2 diabetic rats on control or docosahexaenoic acid (DHA)-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL)-1β, IL-6, intracellular adhesion molecule (ICAM)-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined. Results DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation. Conclusions In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.
Collapse
Affiliation(s)
- Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergio Li Calzi
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Bozack
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrew L. Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Matthew S. Faber
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Sugata Hazra
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Shane Duclos
- Biomedical Research Models, Inc., Worcester, Massachusetts, United States of America
| | - Dennis Guberski
- Biomedical Research Models, Inc., Worcester, Massachusetts, United States of America
| | - Gavin E. Reid
- Department of Chemistry and Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Maria B. Grant
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Somodi S, Balajthy A, Szilágyi O, Pethő Z, Harangi M, Paragh G, Panyi G, Hajdu P. Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cell Immunol 2013; 281:20-6. [PMID: 23416720 DOI: 10.1016/j.cellimm.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 12/22/2012] [Accepted: 01/12/2013] [Indexed: 11/18/2022]
Abstract
Atherosclerosis involves immune mechanisms: T lymphocytes are found in atherosclerotic plaques, suggesting their activation during atherogenesis. The predominant voltage-gated potassium channel of T cells, Kv1.3 is a key regulator of the Ca(2+)-dependent activation pathway. In the present experiments we studied the proliferation capacity and functional changes of Kv1.3 channels in T cells from healthy and hypercholestaeremic patients. By means of CFSE-assay (carboxyfluorescein succinimidyl ester) we showed that spontaneous activation rate of lymphocytes in hypercholesterolemia was elevated and the antiCD3/antiCD28 co-stimulation was less effective as compared to the healthy group. Using whole-cell patch-clamping we obtained that the activation and deactivation kinetics of Kv1.3 channels were faster in hypercholesterolemic state but no change in other parameters of Kv1.3 were found (inactivation kinetics, steady-state activation, expression level). We suppose that incorporation of oxLDL species via its raft-rupturing effect can modify proliferative rate of T cells as well as the gating of Kv1.3 channels.
Collapse
Affiliation(s)
- Sándor Somodi
- 1st Department of Internal Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ratajczak MZ, Serwin K, Schneider G. Innate immunity derived factors as external modulators of the CXCL12-CXCR4 axis and their role in stem cell homing and mobilization. Am J Cancer Res 2013; 3:3-10. [PMID: 23382780 PMCID: PMC3563075 DOI: 10.7150/thno.4621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/11/2012] [Indexed: 01/01/2023] Open
Abstract
The α-chemokine CXCL12 (stromal derived factor-1; SDF-1) and its corresponding GαI protein-coupled CXCR4 receptor axis play an important role in retention of hematopoietic stem progenitor cells (HSPCs) in bone marrow (BM) stem cell niches. CXCL12 has also been identified as a strong chemoattractant for HSPCs and implicated both in homing of HSPCs to BM after transplantation and in egress of these cells from BM into peripheral blood (PB). However, since CXCL12, as a peptide, is highly susceptible to degradation by proteolytic enzymes, its real biological availability in biological fluids may be somewhat limited. In this review, we will present data demonstrating that the CXCL12-CXCR4 axis is positively modulated by innate immunity-derived several external factors, ensuring that even low (near threshold) doses of CXCL12 still exert a robust chemotactic influence on HSPCs.
Collapse
|
43
|
Runne C, Chen S. WD40-repeat proteins control the flow of Gβγ signaling for directional cell migration. Cell Adh Migr 2013; 7:214-8. [PMID: 23302952 DOI: 10.4161/cam.22940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of cells to generate a highly polarized intracellular signal through G protein-coupled receptors (GPCRs) is essential for their migration toward chemoattractants. The Gβγ subunits of heterotrimeric G proteins play a critical role in transmitting chemotactic signals from GPCRs via the activation of diverse effectors, including PLCβ and PI3K, primarily at the leading edge of cells. Although Gβγ can directly activate many of these effectors through protein-protein interactions in vitro, it remains unclear how Gβγ spatially and temporally orchestrates the activation of these effectors in vivo. A yeast two-hybrid screen for Gβ interacting proteins identified two WD40-repeat domain containing proteins, RACK1 and WDR26, which are predicted to serve as scaffolding/adaptor proteins. Previous data indicates that RACK1 negatively regulates Gβγ-mediated leukocyte migration by inhibiting Gβγ-stimulated PLCβ and PI3K activities. In contrast, recently published work by Sun et al. indicates that WDR26 promotes leukocyte migration by enhancing Gβγ-mediated signal transduction. These findings reveal a novel mechanism regulating Gβγ signaling during chemotaxis, namely through the positive and negative regulation of WDR26 and RACK1 on Gβγ to promote and fine tune Gβγ-mediated effector activation, ultimately governing the ability of cells to polarize and migrate toward a chemoattractant gradient.
Collapse
Affiliation(s)
- Caitlin Runne
- Department of Pharmacology; Roy J. and Lucille A. Carver College of Medicine; University of Iowa; Iowa City, IA USA
| | | |
Collapse
|
44
|
Ratajczak MZ, Kim C, Ratajczak J, Janowska-Wieczorek A. Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:219-32. [PMID: 23402030 DOI: 10.1007/978-1-4614-4118-2_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first step that precedes hematopoietic transplantation is elimination of pathological hematopoiesis by administration of myeloablative doses of radiochemotherapy. This eliminates hematolymphopoietic cells and at the same time damages hematopoietic microenvironment in bone marrow (BM). The damage of BM tissue leads to activation of complement cascade (CC), and bioactive CC cleavage fragments modulate several steps of BM recovery after transplantation of hematopoietic stem progenitor cells (HSPCs). Accordingly, C3 cleavage fragments (soluble C3a/desArgC3a and solid phase iC3b) and generation of soluble form of C5b-C9 also known as membrane attack complex (MAC) as well as release of antimicrobial cationic peptides from stromal cells (cathelicidin or LL-37 and beta-2 defensin) promote homing of HSPCs. To support this, C3 cleavage fragments and antimicrobial cationic peptides increase homing responsiveness of transplanted HSPCs to stroma-derived factor-1 (SDF-1) gradient. Furthermore, damaged BM cells release several other chemoattractants for HSPCs such as bioactive lipids sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) and chemotactic purines (ATP and UTP). In this chapter, we will discuss the current view on homing of transplanted HSPCs into BM that in addition to SDF-1 is orchestrated by CC, antimicrobial cationic peptides, and several other prohoming factors. We also propose modulation of CC as a novel strategy to optimize/accelerate homing of HSPCs.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
45
|
Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 2012; 64:97-107. [PMID: 22820274 DOI: 10.1016/j.neuropharm.2012.06.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules. Accumulating evidence has shown that both the pre-synaptic and post-synaptic sites are highly enriched in lipid rafts, which are likely to organize and maintain synaptic proteins in their precise localization. Here we review recent studies highlighting the importance of lipid rafts for synaptic function and plasticity, as well as their relevance for age or disease-related cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
46
|
Görgens A, Beckmann J, Ludwig AK, Möllmann M, Dürig J, Horn PA, Rajendran L, Giebel B. Lipid raft redistribution and morphological cell polarization are separable processes providing a basis for hematopoietic stem and progenitor cell migration. Int J Biochem Cell Biol 2012; 44:1121-32. [DOI: 10.1016/j.biocel.2012.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
47
|
O'Grady SM. Purinergic signaling and immune cell chemotaxis. Focus on "the UDP-sugar-sensing P2Y14 receptor promotes Rho-mediated signaling and chemotaxis in human neutrophils". Am J Physiol Cell Physiol 2012; 303:C486-7. [PMID: 22673620 DOI: 10.1152/ajpcell.00184.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Ratajczak MZ, Kim C, Janowska-Wieczorek A, Ratajczak J. The expanding family of bone marrow homing factors for hematopoietic stem cells: stromal derived factor 1 is not the only player in the game. ScientificWorldJournal 2012; 2012:758512. [PMID: 22701372 PMCID: PMC3373139 DOI: 10.1100/2012/758512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/29/2012] [Indexed: 01/03/2023] Open
Abstract
The α-chemokine stromal derived factor 1 (SDF-1), which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP) and adenosine triphosphate (ATP). Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin) as well as prostaglandin E2 (PGE2). Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
49
|
Insights into Stem Cell Factor chemotactic guidance of neural crest cells revealed by a real-time directionality-based assay. Eur J Cell Biol 2012; 91:375-90. [DOI: 10.1016/j.ejcb.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
|
50
|
Glycohydrolases β-hexosaminidase and β-galactosidase are associated with lipid microdomains of Jurkat T-lymphocytes. Biochimie 2012; 94:684-94. [DOI: 10.1016/j.biochi.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
|