1
|
Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica 2023; 108:1734-1747. [PMID: 36700400 PMCID: PMC10316258 DOI: 10.3324/haematol.2022.282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors composed of α and β chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the β1 family (α2β1, α5β1 and α6β1) or to the β3 family (αIIbβ3 and αvβ3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg.
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg
| |
Collapse
|
2
|
Cygert S, Pastuszak K, Górski F, Sieczczyński M, Juszczyk P, Rutkowski A, Lewalski S, Różański R, Jopek MA, Jassem J, Czyżewski A, Wurdinger T, Best MG, Żaczek AJ, Supernat A. Platelet-Based Liquid Biopsies through the Lens of Machine Learning. Cancers (Basel) 2023; 15:cancers15082336. [PMID: 37190262 DOI: 10.3390/cancers15082336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability to the model. In this work, we have used RNA sequencing data of tumor-educated platelets (TEPs) and performed a binary classification (cancer vs. no-cancer). First, we compiled a large-scale dataset with more than a thousand donors. Further, we used different convolutional neural networks (CNNs) and boosting methods to evaluate the classifier performance. We have obtained an impressive result of 0.96 area under the curve. We then identified different clusters of splice variants using expert knowledge from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Employing boosting algorithms, we identified the features with the highest predictive power. Finally, we tested the robustness of the models using test data from novel hospitals. Notably, we did not observe any decrease in model performance. Our work proves the great potential of using TEP data for cancer patient classification and opens the avenue for profound cancer diagnostics.
Collapse
Affiliation(s)
- Sebastian Cygert
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
- Ideas NCBR, 00-801 Warsaw, Poland
| | - Krzysztof Pastuszak
- Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Franciszek Górski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Michał Sieczczyński
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Piotr Juszczyk
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Antoni Rutkowski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Sebastian Lewalski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | | | - Maksym Albin Jopek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Andrzej Czyżewski
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam University Medical Center, 1081 Amsterdam, The Netherlands
| | - Myron G Best
- Department of Neurosurgery, Amsterdam University Medical Center, 1081 Amsterdam, The Netherlands
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
3
|
Protein tyrosine phosphatase PTPN22 negatively modulates platelet function and thrombus formation. Blood 2022; 140:1038-1051. [PMID: 35767715 DOI: 10.1182/blood.2022015554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is a protein tyrosine phosphatase that negatively regulates T-cell signaling. However, whether it is expressed and functions in platelets remains unknown. Here we investigated the expression and role of PTPN22 in platelet function. We reported PTPN22 expression in both human and mouse platelets. Using PTPN22-/- mice, we showed that PTPN22 deficiency significantly shortened tail-bleeding time and accelerated arterial thrombus formation without affecting venous thrombosis and the coagulation factors VIII and IX. Consistently, PTPN22-deficient platelets exhibited enhanced platelet aggregation, granule secretion, calcium mobilization, lamellipodia formation, spreading, and clot retraction. Quantitative phosphoproteomic analysis revealed the significant difference of phosphodiesterase 5A (PDE5A) phosphorylation in PTPN22-deficient platelets compared with wild-type platelets after collagen-related peptide stimulation, which was confirmed by increased PDE5A phosphorylation (Ser92) in collagen-related peptide-treated PTPN22-deficient platelets, concomitant with reduced level and vasodilator-stimulated phosphoprotein phosphorylation (Ser157/239). In addition, PTPN22 interacted with phosphorylated PDE5A (Ser92) and dephosphorylated it in activated platelets. Moreover, purified PTPN22 but not the mutant form (C227S) possesses intrinsic serine phosphatase activity. Furthermore, inhibition of PTPN22 enhanced human platelet aggregation, spreading, clot retraction, and increased PDE5A phosphorylation (Ser92). In conclusion, our study shows a novel role of PTPN22 in platelet function and arterial thrombosis, identifying new potential targets for future prevention of thrombotic or cardiovascular diseases.
Collapse
|
4
|
More than reverting tyrosine kinases. Blood 2022; 140:939-941. [PMID: 36048474 DOI: 10.1182/blood.2022017208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022] Open
|
5
|
González Wusener AE, González Á, Perez Collado ME, Maza MR, General IJ, Arregui CO. Protein tyrosine phosphatase 1B targets focal adhesion kinase and paxillin in cell-matrix adhesions. J Cell Sci 2021; 134:272564. [PMID: 34553765 DOI: 10.1242/jcs.258769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Collapse
Affiliation(s)
- Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - María E Perez Collado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Melina R Maza
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Ignacio J General
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
6
|
Joy-Immediato M, Ramirez MJ, Cerda M, Toyama Y, Ravasio A, Kanchanawong P, Bertocchi C. Junctional ER Organization Affects Mechanotransduction at Cadherin-Mediated Adhesions. Front Cell Dev Biol 2021; 9:669086. [PMID: 34222239 PMCID: PMC8247578 DOI: 10.3389/fcell.2021.669086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cadherin-mediated adhesions (also known as adherens junctions) are adhesive complexes that connect neighboring cells in a tissue. While the role of the actin cytoskeleton in withstanding tension at these sites of contact is well documented, little is known about the involvement of microtubules and the associated endoplasmic reticulum (ER) network in cadherin mechanotransduction. Therefore, we investigated how the organization of ER extensions in close proximity of cadherin-mediated adhesions can affect such complexes, and vice versa. Here, we show that the extension of the ER to cadherin-mediated adhesions is tension dependent and appears to be cadherin-type specific. Furthermore, the different structural organization of the ER/microtubule network seems to affect the localization of ER-bound PTP1B at cadherin-mediated adhesions. This phosphatase is involved in the modulation of vinculin, a molecular clutch which enables differential engagement of the cadherin-catenin layer with the actomyosin cytoskeleton in response to tension. This suggests a link between structural organization of the ER/microtubule network around cadherin-specific adhesions, to control the mechanotransduction of adherens junctions by modulation of vinculin conformational state.
Collapse
Affiliation(s)
- Michelle Joy-Immediato
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramirez
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
8
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118927. [PMID: 33310067 DOI: 10.1016/j.bbamcr.2020.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
9
|
De Kock L, Freson K. The (Patho)Biology of SRC Kinase in Platelets and Megakaryocytes. ACTA ACUST UNITED AC 2020; 56:medicina56120633. [PMID: 33255186 PMCID: PMC7759910 DOI: 10.3390/medicina56120633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Proto-oncogene tyrosine-protein kinase SRC (SRC), as other members of the SRC family kinases (SFK), plays an important role in regulating signal transduction by different cell surface receptors after changes in the cellular environment. Here, we reviewed the role of SRC in platelets and megakaryocytes (MK). In platelets, inactive closed SRC is coupled to the β subunit of integrin αIIbβ3 while upon fibrinogen binding during platelet activation, αIIbβ3-mediated outside-in signaling is initiated by activation of SRC. Active open SRC now further stimulates many downstream effectors via tyrosine phosphorylation of enzymes, adaptors, and especially cytoskeletal components. Functional platelet studies using SRC knockout mice or broad spectrum SFK inhibitors pointed out that SRC mediates their spreading on fibrinogen. On the other hand, an activating pathological SRC missense variant E527K in humans that causes bleeding inhibits collagen-induced platelet activation while stimulating platelet spreading. The role of SRC in megakaryopoiesis is much less studied. SRC knockout mice have a normal platelet count though studies with SFK inhibitors point out that SRC could interfere with MK polyploidization and proplatelet formation but these inhibitors are not specific. Patients with the SRC E527K variant have thrombocytopenia due to hyperactive SRC that inhibits proplatelet formation after increased spreading of MK on fibrinogen and enhanced formation of podosomes. Studies in humans have contributed significantly to our understanding of SRC signaling in platelets and MK.
Collapse
|
10
|
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219:211512. [PMID: 33119040 PMCID: PMC7604772 DOI: 10.1083/jcb.202001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin β cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin β1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.
Collapse
Affiliation(s)
- Tanja M. Grimm
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nina I. Dierdorf
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Karin Betz
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Lehrstuhl Zelluläre Chemie, Fachbereich Chemie, Universität Konstanz, Konstanz, Germany
| | - Christoph Paone
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Correspondence to Christof R. Hauck:
| |
Collapse
|
11
|
Heinzmann AC, Karel MF, Coenen DM, Vajen T, Meulendijks NM, Nagy M, Suylen DP, Cosemans JM, Heemskerk JW, Hackeng TM, Koenen RR. Complementary roles of platelet αIIbβ3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis 2020; 310:17-25. [DOI: 10.1016/j.atherosclerosis.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
|
12
|
Luo K, Tang Y, Gao X, Tan J, Yu B, Xu J, Luo F. Inhibition of protein-tyrosine phosphatase 1B phosphorylation enhances early adhesion of mesenchymal stem cells to facilitate fabrication of tissue-engineered bone. J Tissue Eng Regen Med 2020; 14:575-587. [PMID: 32061178 DOI: 10.1002/term.3021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Enhancement of cell-matrix adhesion is preferable and crucial in various fields of tissue engineering. Integrins are important receptors that facilitate cell-matrix adhesion, mediated by intracellular molecules and crosstalk with the cadherin adhesion pathway, which mainly facilitates cell-cell adhesion. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a pivot in the crosstalk between the cadherin adhesion pathway and the integrin adhesion pathway. The phosphorylation state of PTP1B tyrosine-152 (Y152) plays a central role in balancing the two different cell adhesion forms. In this study, a PTP1B Y152 region mimicking (152RM) peptide was designed to decrease the phosphorylation of PTP1B Y152 via competitive inhibition. As a result, the dissociation of cadherin complexes and the release of PTP1B from cadherin had sharply increased, and Src, an important intracellular component of integrin, was activated, indicating that the cadherin adhesion pathway was inhibited, whereas the integrin adhesion pathway was enhanced. Moreover, upon treatment with the 152RM peptide, we observed that the early adhesion of human bone marrow-derived mesenchymal stem cells (MSCs) was accelerated and the anchoring of MSCs on the surface of integrin ligands was enhanced by an enhanced matrix adhesion ability of MSCs themselves. Importantly, the 152RM peptide significantly promoted the adhesion efficiency of MSCs in the selective cell retention technology, which fabricates instant bone implants in clinical settings, to stimulate osteogenesis in vivo.
Collapse
Affiliation(s)
- Keyu Luo
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Xiaoliang Gao
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Bo Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| |
Collapse
|
13
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
14
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Choi JH, Kim S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Naik MU, Naik TU, Summer R, Naik UP. Binding of CIB1 to the αIIb tail of αIIbβ3 is required for FAK recruitment and activation in platelets. PLoS One 2017; 12:e0176602. [PMID: 28542214 PMCID: PMC5443481 DOI: 10.1371/journal.pone.0176602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 12/03/2022] Open
Abstract
Background It is believed that activation of c-Src bound to the integrin β3 subunit initiates outside-in signaling. The involvement of αIIb in outside-in signaling is poorly understood. Objectives We have previously shown that CIB1 specifically interacts with the cytoplasmic domain of αIIb and is required for αIIbβ3 outside-in signaling. Here we evaluated the role of CIB1 in regulating outside-in signaling in the absence of inside-out signaling. Methods We used αIIb cytoplasmic domain peptide and CIB1-function blocking antibody to inhibit interaction of CIB1 with αIIb subunit as well as Cib1-/- platelets to evaluate the consequence of CIB1 interaction with αIIb on outside-in signaling. Results Fibrinogen binding to αIIbβ3 results in calcium-dependent interaction of CIB1 with αIIb, which is not required for filopodia formation. Dynamic rearrangement of cytoskeleton results in CIB1-dependent recruitment of FAK to the αIIb complex and its activation. Disruption of the association of CIB1 and αIIb by incorporation of αIIb peptide or anti-CIB1 inhibited both FAK association and activation. Furthermore, FAK recruitment to the integrin complex was required for c-Src activation. Inhibition of c-Src had no effect on CIB1 accumulation with the integrin at the filopodia, suggesting that c-Src activity is not required for the formation of CIB1-αIIb-FAK complex. Conclusion Our results suggest that interaction of CIB1 with αIIb is one of the early events occurring during outside-in signaling. Furthermore, CIB1 recruits FAK to the αIIbβ3 complex at the filopodia where FAK is activated, which in turn activates c-Src, resulting in propagation of outside-in signaling leading to platelet spreading.
Collapse
Affiliation(s)
- Meghna U. Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tejal U. Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ross Summer
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ulhas P. Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016; 8:144-55. [PMID: 26727074 DOI: 10.1039/c5mt00251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn(2+)) is acknowledged as an important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the influence of Zn(2+) on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous and intracellular Zn(2+) to platelet function and assesses the potential pathophysiological implications of Zn(2+) signalling. We also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- K A Taylor
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - N Pugh
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
18
|
Singh R. Central role of PI3K-SYK interaction in fibrinogen-induced lamellipodia and filopodia formation in platelets. FEBS Open Bio 2016; 6:1285-1296. [PMID: 28255536 PMCID: PMC5324771 DOI: 10.1002/2211-5463.12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
The WAVE complex‐1, a complex of WAVE, Abi1, NAP1, PIR121, HSPC300, RacGTP and Arp2/3 proteins, and WASP complex‐1, a complex of WASP, Cdc42, PIP2, and Arp2/3 proteins, are involved in lamellipodia and filopodia formation, respectively. It is known that the two complexes have opposite dynamics. Furthermore, Rac has two guanine nucleotide exchange factors, Vav and Sos, whose role in activating Rac is not well understood. In this work, by the construction of signaling network, analysis, and mathematical modeling, I show that Sos generates a pulse of WAVE complex‐1, decreasing the response time of WAVE complex‐1 formation upon the stimulation of platelets by fibrinogen. Furthermore, I also show that the dynamics of WAVE and WASP complexes depends on PI3K–SYK interaction. In the absence of this interaction, the WAVE complex‐1 does not form and the WASP complex‐1 remains at the initial, sustained level. Thus, I show the significance of the two protein/protein complexes: Sos and PI3K–SYK interaction, in fibrinogen‐induced lamellipodia and filopodia formation in platelets.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering Indian Institute of Technology Kanpur India
| |
Collapse
|
19
|
Eshkiki ZS, Ghahremani MH, Shabani P, Firuzjaee SG, Sadeghi A, Ghanbarian H, Meshkani R. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells. Mol Cell Biochem 2016; 425:95-102. [PMID: 27826746 DOI: 10.1007/s11010-016-2865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.
Collapse
Affiliation(s)
- Zahra Shokati Eshkiki
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Shabani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical sciences, Tehran, Islamic Republic of Iran
| | - Asie Sadeghi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
20
|
González Wusener AE, González Á, Nakamura F, Arregui CO. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility. Biol Open 2015; 5:32-44. [PMID: 26700725 PMCID: PMC4728310 DOI: 10.1242/bio.015883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. Summary: Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to transiently repress RhoA-myosin-dependent contractility, stimulating adhesion and lamellipodium assembly during cell spreading and migration.
Collapse
Affiliation(s)
- Ana E González Wusener
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Ángela González
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Fumihiko Nakamura
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Carlos O Arregui
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Platelets and physics: How platelets “feel” and respond to their mechanical microenvironment. Blood Rev 2015; 29:377-86. [DOI: 10.1016/j.blre.2015.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/08/2023]
|
22
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
23
|
Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015; 23:2786-97. [PMID: 25921264 PMCID: PMC4451376 DOI: 10.1016/j.bmc.2015.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 11/26/2022]
Abstract
Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy.
Collapse
Affiliation(s)
- Lutz Tautz
- NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Yotis A Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
Martin-Granados C, Prescott AR, Le Sommer S, Klaska IP, Yu T, Muckersie E, Giuraniuc CV, Grant L, Delibegovic M, Forrester JV. A key role for PTP1B in dendritic cell maturation, migration, and T cell activation. J Mol Cell Biol 2015; 7:517-28. [PMID: 26063615 DOI: 10.1093/jmcb/mjv032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/08/2015] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DC) are the major antigen-presenting cells bridging innate and adaptive immunity, a function they perform by converting quiescent DC to active, mature DC with the capacity to activate naïve T cells. They do this by migrating from the tissues to the T cell area of the secondary lymphoid tissues. Here, we demonstrate that myeloid cell-specific genetic deletion of PTP1B (LysM PTP1B) leads to defects in lipopolysaccharide-driven bone marrow-derived DC (BMDC) activation associated with increased levels of phosphorylated Stat3. We show that myeloid cell-specific PTP1B deletion also causes decreased migratory capacity of epidermal DC, as well as reduced CCR7 expression and chemotaxis to CCL19 by BMDC. PTP1B deficiency in BMDC also impairs their migration in vivo. Further, immature LysM PTP1B BMDC display fewer podosomes, increased levels of phosphorylated Src at tyrosine 527, and loss of Src localization to podosome puncta. In co-culture with T cells, LysM PTP1B BMDC establish fewer and shorter contacts than control BMDC. Finally, LysM PTP1B BMDC fail to present antigen to T cells as efficiently as control BMDC. These data provide first evidence for a key regulatory role for PTP1B in mediating a central DC function of initiating adaptive immune responses in response to innate immune cell activation.
Collapse
Affiliation(s)
- Cristina Martin-Granados
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Alan R Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Samantha Le Sommer
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Tian Yu
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Elizabeth Muckersie
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Claudiu V Giuraniuc
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Louise Grant
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Aberdeen AB25 2ZD, UK Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| |
Collapse
|
25
|
Fernández-Ruiz R, Pino M, Hurtado B, García de Frutos P, Caballo C, Escolar G, Gomis R, Diaz-Ricart M. Role of sodium tungstate as a potential antiplatelet agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2777-86. [PMID: 26060394 PMCID: PMC4454192 DOI: 10.2147/dddt.s77221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Methods Wild-type (WT) and PTP1B knockout (PTP1B−/−) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. Results In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B−/− mice (5.0±0.3 mg). Treatment of the PTP1B−/− mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Conclusion Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded.
Collapse
Affiliation(s)
- Rebeca Fernández-Ruiz
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosellón, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Marc Pino
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Begoña Hurtado
- Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, Spain
| | - Pablo García de Frutos
- Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, Spain
| | - Carolina Caballo
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Ginés Escolar
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Ramón Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosellón, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain ; Hospital Clinic, Universitat de Barcelona, Villarroel, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| |
Collapse
|
26
|
Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets. J Biol Chem 2015; 290:15825-15834. [PMID: 25947380 DOI: 10.1074/jbc.m115.648428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 01/13/2023] Open
Abstract
It is currently believed that inactive tyrosine kinase c-Src in platelets binds to the cytoplasmic tail of the β3 integrin subunit via its SH3 domain. Although a recent NMR study supports this contention, it is likely that such binding would be precluded in inactive c-Src because an auto-inhibitory linker physically occludes the β3 tail binding site. Accordingly, we have re-examined c-Src binding to β3 by immunoprecipitation as well as NMR spectroscopy. In unstimulated platelets, we detected little to no interaction between c-Src and β3. Following platelet activation, however, c-Src was co-immunoprecipitated with β3 in a time-dependent manner and underwent progressive activation as well. We then measured chemical shift perturbations in the (15)N-labeled SH3 domain induced by the C-terminal β3 tail peptide NITYRGT and found that the peptide interacted with the SH3 domain RT-loop and surrounding residues. A control peptide whose last three residues where replaced with those of the β1 cytoplasmic tail induced only small chemical shift perturbations on the opposite face of the SH3 domain. Next, to mimic inactive c-Src, we found that the canonical polyproline peptide RPLPPLP prevented binding of the β3 peptide to the RT- loop. Under these conditions, the β3 peptide induced chemical shift perturbations similar to the negative control. We conclude that the primary interaction of c-Src with the β3 tail occurs in its activated state and at a site that overlaps with PPII binding site in its SH3 domain. Interactions of inactive c-Src with β3 are weak and insensitive to β3 tail mutations.
Collapse
Affiliation(s)
- Yibing Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Lisa M Span
- Departments of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Patrik Nygren
- Departments of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hua Zhu
- Departments of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David T Moore
- Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Cheng
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Heinrich Roder
- Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Joel S Bennett
- Departments of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
27
|
Fang XQ, Liu XF, Yao L, Chen CQ, Lin JF, Gu ZD, Ni PH, Zheng XM, Fan QS. Focal adhesion kinase regulates the phosphorylation protein tyrosine phosphatase-α at Tyr789 in breast cancer cells. Mol Med Rep 2015; 11:4303-8. [PMID: 25625869 DOI: 10.3892/mmr.2015.3262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)‑α regulates the phosphorylation of focal adhesion kinase (FAK), which is important in cellular signal transduction and integration of proteins. It has been demonstrated that a FAK‑Del33 mutation (deletion of exon 33; KF437463) in breast cancer tissues regulates cell migration through FAK/Src signaling activation. However, the detailed pathway for Src activation with FAK‑Del33 remains to be elucidated. The present study used a retroviral expression system to examine changes in PTPα phosphorylation affected by the FAK‑Del33 protein in breast cancer cells. Small interfering (si)RNA targeting PTPα interfered with the phosphorylation of Src. Wound‑healing and migration assays were performed to identify cell morphology and quantitative analysis was performed by examining band color depth in western blot analysis. Significant differences were observed in the phosphorylation level of PTPα at Tyr789 between the FAK‑Del33 and the wild‑type breast cancer cells, suggesting that FAK regulated the phosphorylation level of PTPα at Tyr789 in breast cancer mutant FAK‑Del33 cells. The gene expression profile with FAK siRNA did not alter the levels of phosphorylation in other mutants, including autophosphorylation disability (Y397F), ATP kinase dominant negative (K454R) and protein 4.1, ezrin, radixin, moesin domain attenuate (Δ375). FAK RNAi inhibited the activity of the FAK‑Del33 at the Src site and rescued the elevated cell migration and invasion. The present study demonstrated for the first time, to the best of our knowledge, an increase in the phosphorylation level of PTPα‑Tyr789 by its upstream activator, FAK‑Del33, leading to Src activation in certain breast cancer cells, which has significant implications for metastatic potential.
Collapse
Affiliation(s)
- Xu-Qian Fang
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiang-Fan Liu
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling Yao
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Chang-Qiang Chen
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Jia-Fei Lin
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhi-Dong Gu
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei-Hua Ni
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xin-Min Zheng
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Qi-Shi Fan
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
28
|
Karshovska E, Zhao Z, Blanchet X, Schmitt MMN, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JMEM, Megens RTA, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2014; 116:587-99. [PMID: 25472975 DOI: 10.1161/circresaha.116.304035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. CONCLUSIONS Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.
Collapse
Affiliation(s)
- Ela Karshovska
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Zhen Zhao
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Xavier Blanchet
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Martin M N Schmitt
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Kiril Bidzhekov
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Philipp von Hundelshausen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Nadine J Mattheij
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Judith M E M Cosemans
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Thomas A Koeppel
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Andreas Schober
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Tilman M Hackeng
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Rory R Koenen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.).
| |
Collapse
|
29
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
30
|
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 2014; 20:2528-40. [PMID: 24093153 PMCID: PMC4025609 DOI: 10.1089/ars.2013.5337] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The collagen-stimulated generation of reactive oxygen species (ROS) regulates signal transduction in platelets, although the mechanism is unclear. The major targets of ROS include protein tyrosine phosphatases (PTPs). ROS-mediated oxidation of the active cysteine site in PTPs abrogates the PTP catalytic activity. The aim of this study was to elucidate whether collagen-induced ROS generation leads to PTP oxidation, which promotes platelet stimulation. RESULTS SH2 domain-containing PTP-2 (SHP-2) is oxidized in platelets by ROS produced upon collagen stimulation. The oxidative inactivation of SHP-2 leads to the enhanced tyrosine phosphorylation of spleen tyrosine kinase (Syk), Vav1, and Bruton's tyrosine kinase (Btk) in the linker for the activation of T cells signaling complex, which promotes the tyrosine phosphorylation-mediated activation of phospholipase Cγ2 (PLCγ2). Moreover, we found that, relative to wild-type platelets, platelets derived from glutathione peroxidase 1 (GPx1)/catalase double-deficient mice showed enhanced cellular ROS levels, oxidative inactivation of SHP-2, and tyrosine phosphorylation of Syk, Vav1, Btk, and PLCγ2 in response to collagen, which subsequently led to increased intracellular calcium levels, degranulation, and integrin αIIbβ3 activation. Consistent with these findings, GPx1/catalase double-deficiency accelerated the thrombotic response in FeCl3-injured carotid arteries. INNOVATION The present study is the first to demonstrate that SHP-2 is targeted by ROS produced in collagen-stimulated platelets and suggests that a novel mechanism for the regulation of platelet activation by ROS is due to oxidative inactivation of SHP-2. CONCLUSION We conclude that collagen-induced ROS production leads to SHP-2 oxidation, which promotes platelet activation by upregulating tyrosine phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Ji Yong Jang
- 1 Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de Witt SM, Verdoold R, Cosemans JM, Heemskerk JW. Insights into platelet-based control of coagulation. Thromb Res 2014; 133 Suppl 2:S139-48. [DOI: 10.1016/s0049-3848(14)50024-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Involvement of neutrophils in thrombus formation in living mice. ACTA ACUST UNITED AC 2014; 62:1-9. [PMID: 24485849 DOI: 10.1016/j.patbio.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022]
Abstract
Thrombosis is one of the major causes of human death worldwide. Identification of the cellular and molecular mechanisms leading to thrombus formation is thus crucial for the understanding of the thrombotic process. To examine thrombus formation in a living mouse, new technologies have been developed. Digital intravital microscopy allows to visualize the development of thrombosis and generation of fibrin in real-time within living animal in a physiological context. This specific system allowed the identification of new cellular partners involved in platelet adhesion and activation. Furthermore, it improved, especially, the knowledge of the early phase of thrombus formation and fibrin generation in vivo. Until now, platelets used to be considered the sole central player in thrombus generation. However, recently, it has been demonstrated that leukocytes, particularly neutrophils, play a crucial role in the activation of the blood coagulation cascade leading to thrombosis. In this review, we summarized the mechanisms leading to thrombus formation in the microcirculation according to the method of injury in mice with a special focus on the new identified roles of neutrophils in this process.
Collapse
|
33
|
Matulka K, Lin HH, Hříbková H, Uwanogho D, Dvořák P, Sun YM. PTP1B Is an Effector of Activin Signaling and Regulates Neural Specification of Embryonic Stem Cells. Cell Stem Cell 2013; 13:706-19. [DOI: 10.1016/j.stem.2013.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 11/16/2022]
|
34
|
Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11:1800-13. [PMID: 24015866 DOI: 10.1111/jth.12359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 08/31/2023]
Abstract
Platelet activation must be tightly controlled in order to allow platelets to respond rapidly to vascular injury and prevent thrombosis from occurring. Protein-tyrosine phosphorylation is one of the main ways in which activation signals are transmitted in platelets. Although much is known about the protein-tyrosine kinases (PTKs) that initiate and propagate activation signals, relatively little is known about the protein-tyrosine phosphatases (PTPs) that modulate these signals in platelets. PTPs are a family of enzymes that dephosphorylate tyrosine residues in proteins and regulate signals transmitted within cells. PTPs have been implicated in a variety of pathological conditions, including cancer, diabetes and autoimmunity, but their functions in hemostasis and thrombosis remain largely undefined. Exciting new findings from a number of groups have revealed that PTPs are in fact critical regulators of platelet activation and thrombosis. The primary aim of this review is to highlight the unique and important functions of PTPs in regulating platelet activity. Establishing the functions of PTPs in platelets is essential to better understand the molecular basis of thrombosis and may lead to the development of improved antithrombotic therapies.
Collapse
Affiliation(s)
- Y A Senis
- Centre for Cardiovascular and Respiratory Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
35
|
Arregui CO, González Á, Burdisso JE, González Wusener AE. Protein tyrosine phosphatase PTP1B in cell adhesion and migration. Cell Adh Migr 2013; 7:418-23. [PMID: 24104540 DOI: 10.4161/cam.26375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.
Collapse
Affiliation(s)
- Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Juan E Burdisso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| |
Collapse
|
36
|
Burdisso JE, González Á, Arregui CO. PTP1B promotes focal complex maturation, lamellar persistence and directional migration. J Cell Sci 2013; 126:1820-31. [DOI: 10.1242/jcs.118828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous findings established that ER-bound PTP1B targets peripheral cell-matrix adhesions and regulates positively cell adhesion to fibronectin. Here we show that PTP1B enhances focal complex lifetime at the lamellipodium base, delaying their turnover and facilitating α-actinin incorporation. We demonstrate the presence of catalytic PTP1BD181A-α-actinin complexes at focal complexes. Kymograph analysis reveals that PTP1B contributes to lamellar protrusion persistence and directional cell migration. Pull down and FRET analysis also shows that PTP1B is required for efficient integrin-dependent downregulation of RhoA and upregulation of Rac1 during spreading. A substrate trap strategy revealed that FAK/Src recruitment and Src activity were essential for the generation of PTP1B substrates in adhesions. PTP1B targets the negative regulatory site of Src (phosphotyrosine 529), paxillin and p130Cas at peripheral cell-matrix adhesions. We postulate that PTP1B modulates more than one pathway required for focal complex maturation and membrane protrusion, including α-actinin-mediated cytoskeletal anchorage, integrin-dependent activation of the FAK/Src signaling pathway, and RhoA and Rac1 GTPase activity. By doing so, PTP1B contributes to coordinate adhesion turnover, lamellar stability and directional cell migration.
Collapse
|
37
|
Mori J, Wang YJ, Ellison S, Heising S, Neel BG, Tremblay ML, Watson SP, Senis YA. Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B. Arterioscler Thromb Vasc Biol 2012; 32:2956-65. [DOI: 10.1161/atvbaha.112.300447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective—
The receptor-like protein-tyrosine phosphatase (PTP) CD148 and the nontransmembrane PTP1-B have been shown to be net positive regulators of Src family kinases in platelets. In the present study, we compared the relative contributions of these PTPs in platelet activation by the major glycoprotein, glycoprotein VI, α
IIb
β
3
, and C-type lectin-like receptor 2 (CLEC-2).
Methods and Results—
PTP-1B–deficient mouse platelets responded normally to the glycoprotein VI–specific agonist collagen-related peptide and antibody-mediated CLEC-2 activation. However, they exhibited a marginal reduction in α
IIb
β
3
-mediated Src family kinase activation and tyrosine phosphorylation. In contrast, CD148-deficient platelets exhibited a dramatic reduction in activation by glycoprotein VI and α
IIb
β
3
and a marginal reduction in response to activation by CLEC-2, which was further enhanced in the absence of PTP-1B. These defects were associated with reduced activation of Src family kinase and spleen tyrosine kinase, suggesting a causal relationship. Under arteriolar flow conditions, there was defective aggregate formation in the absence of PTP-1B and, to a greater extent, CD148 and a severe abrogation of both adhesion and aggregation in the absence of both PTPs.
Conclusion—
Findings from this study demonstrate that CD148 plays a dominant role in activating Src family kinases in platelets relative to PTP-1B. Both PTPs are required for optimal platelet activation and aggregate formation under high arterial shear rates.
Collapse
Affiliation(s)
- Jun Mori
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Ying-Jie Wang
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Stuart Ellison
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Silke Heising
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Benjamin G. Neel
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Michel L. Tremblay
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Steve P. Watson
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| | - Yotis A. Senis
- From the Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.M., Y.J.W., S.E., S.H., S.P.W, Y.A.S.); Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (B.G.N.); and Goodman Cancer
| |
Collapse
|
38
|
Abstract
The integrin β3-mediated c-Src priming and activation, via the SH3 domain, is consistently associated with diseases, such as the formation of thrombosis and the migration of tumor cells. Conventionally, activation of c-Src is often induced by the binding of proline-rich sequences to its SH3 domain. Instead, integrin β3 uses R(760)GT(762) for priming and activation. Because of the lack of structural information, it is not clear where RGT will bind to SH3, and under what mechanism this interaction can prime/activate c-Src. In this study, we present a 2.0-Å x-ray crystal structure in which SH3 is complexed with the RGT peptide. The binding site lies in the "N"-Src loop of the SH3 domain. Structure-based site-directed mutagenesis showed that perturbation on the "N"-Src loop disrupts the interaction between the SH3 domain and the RGT peptide. Furthermore, the simulated c-Src:β3 complex based on the crystal structure of SH3:RGT suggests that the binding of the RGT peptide might disrupt the intramolecular interaction between the SH3 and linker domains, leading to the disengagement of Trp260:"C"-helix and further activation of c-Src.
Collapse
|
39
|
Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I, Bonofiglio D, Catalano S, Andò S. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology 2012; 153:5157-66. [PMID: 22962253 DOI: 10.1210/en.2012-1561] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Local estrogen production by aromatase is an important mechanism of autocrine stimulation in hormone-dependent breast cancer. We have previously shown that 17-β estradiol (E(2)) rapidly enhances aromatase enzymatic activity through an increase of tyrosine protein phosphorylation controlled by the activity of the c-Src kinase in breast cancer cells. Here, we investigated the protein tyrosine phosphatase PTP1B (protein tyrosine phosphatase 1B) as a potential regulator of aromatase activity. We demonstrated a specific association between PTP1B and aromatase at protein-protein level and a reduction of aromatase activity in basal and E(2)-treated MCF-7 and ZR75 breast cancer cells when PTP1B was overexpressed. Indeed, a specific tyrosine phosphatase inhibitor increased basal and E(2)-induced enzymatic activity as well as tyrosine phosphorylation status of the purified aromatase protein. Moreover, E(2) through phosphatidylinositol 3 kinase/Akt activation caused a significant decrease of PTP1B catalytic activity along with an increase in its serine phosphorylation. Concomitantly, the phosphatidylinositol 3 kinase inhibitor LY294002 or a dominant negative of Akt was able to reduce the E(2) stimulatory effects on activity and tyrosine phosphorylation levels of aromatase. Taken together, our results suggest that E(2) can impair PTP1B ability to dephosphorylate aromatase, and thus it increases its enzymatic activity, creating a positive feedback mechanism for estradiol signaling in breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Departments of Cell Biology, University of Calabria, Cosenza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 2012; 7:e38948. [PMID: 22701734 PMCID: PMC3372476 DOI: 10.1371/journal.pone.0038948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 05/15/2012] [Indexed: 12/17/2022] Open
Abstract
PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.
Collapse
|
41
|
Kuchay SM, Wieschhaus AJ, Marinkovic M, Herman IM, Chishti AH. Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 2012; 10:1120-32. [PMID: 22458296 PMCID: PMC3956748 DOI: 10.1111/j.1538-7836.2012.04715.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calpains are implicated in a wide range of cellular functions including the maintenance of hemostasis via the regulation of cytoskeletal modifications in platelets. OBJECTIVES Determine the functional role of calpain isoforms in platelet spreading. METHODS AND RESULTS Platelets from calpain-1(-/-) mice show enhanced spreading on collagen- and fibrinogen-coated surfaces as revealed by immunofluorescence, differential interference contrast (DIC) and scanning electron microscopy. The treatment of mouse platelets with MDL, a cell permeable inhibitor of calpains 1/2, resulted in increased spreading. The PTP1B-mediated enhanced tyrosine dephosphorylation in calpain-1(-/-) platelets did not fully account for the enhanced spreading as platelets from the double knockout mice lacking calpain-1 and PTP1B showed only a partial rescue of the spreading phenotype. In non-adherent platelets, proteolysis and GTPase activity of RhoA and Rac1 were indistinguishable between the wild-type (WT) and calpain-1(-/-) platelets. In contrast, the ECM-adherent calpain-1(-/-) platelets showed higher Rac1 activity at the beginning of spreading, whereas RhoA was more active at later time points. The ECM-adherent calpain-1(-/-) platelets showed an elevated level of RhoA protein but not Rac1 and Cdc42. Proteolysis of recombinant RhoA, but not Rac1 and Cdc42, indicates that RhoA is a calpain-1 substrate in vitro. CONCLUSIONS Potentiation of the platelet spreading phenotype in calpain-1(-/-) mice suggests a novel role of calpain-1 in hemostasis, and may explain the normal bleeding time observed in the calpain-1(-/-) mice.
Collapse
Affiliation(s)
- S M Kuchay
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
42
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
43
|
G(12/13) signaling pathways substitute for integrin αIIbβ3-signaling for thromboxane generation in platelets. PLoS One 2011; 6:e16586. [PMID: 21347357 PMCID: PMC3037367 DOI: 10.1371/journal.pone.0016586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have previously shown that ADP-induced TXA(2) generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA(2) generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G(12/13) signaling pathways. Hence, we evaluated the role of these pathways in TXA(2) generation. PRINCIPAL FINDINGS Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G(12/13) pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G(12/13) pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G(12/13) pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, αIIbβ3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G(12/13) pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA(2) generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA(2) generation. CONCLUSIONS Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G(12/13) pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G(12/13) pathways contributing to TXA(2) generation in platelets remains elusive.
Collapse
|
44
|
Mitsios JV, Prévost N, Kasirer-Friede A, Gutierrez E, Groisman A, Abrams CS, Wang Y, Litvinov RI, Zemljic-Harpf A, Ross RS, Shattil SJ. What is vinculin needed for in platelets? J Thromb Haemost 2010; 8:2294-304. [PMID: 20670372 PMCID: PMC2965783 DOI: 10.1111/j.1538-7836.2010.03998.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED Summary. BACKGROUND Vinculin links integrins to the cell cytoskeleton by virtue of its binding to proteins such as talin and F-actin. It has been implicated in the transmission of mechanical forces from the extracellular matrix to the cytoskeleton of migrating cells. Vinculin's function in platelets is unknown. OBJECTIVE To determine whether vinculin is required for the functions of platelets and their major integrin, α(IIb) β(3) . METHODS The murine vinculin gene (Vcl) was deleted in the megakaryocyte/platelet lineage by breeding Vcl fl/fl mice with Pf4-Cre mice. Platelet and integrin functions were studied in vivo and ex vivo. RESULTS Vinculin was undetectable in platelets from Vcl fl/fl Cre(+) mice, as determined by immunoblotting and fluorescence microscopy. Vinculin-deficient megakaryocytes exhibited increased membrane tethers in response to mechanical pulling on α(IIb) β(3) with laser tweezers, suggesting that vinculin helps to maintain membrane cytoskeleton integrity. Surprisingly, vinculin-deficient platelets displayed normal agonist-induced fibrinogen binding to α(IIb) β(3) , aggregation, spreading, actin polymerization/organization, clot retraction and the ability to form a procoagulant surface. Furthermore, vinculin-deficient platelets adhered to immobilized fibrinogen or collagen normally, under both static and flow conditions. Tail bleeding times were prolonged in 59% of vinculin-deficient mice. However, these mice exhibited no spontaneous bleeding and they formed occlusive platelet thrombi comparable to those in wild-type littermates in response to carotid artery injury with FeCl(3) . CONCLUSION Despite promoting membrane cytoskeleton integrity when mechanical force is applied to α(IIb) β(3) , vinculin is not required for the traditional functions of α(IIb) β(3) or the platelet actin cytoskeleton.
Collapse
Affiliation(s)
- John V. Mitsios
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nicolas Prévost
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ana Kasirer-Friede
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, La Jolla, CA 92093
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093
| | - Charles S. Abrams
- Department of Medicine and Cell, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Yanfeng Wang
- Department of Medicine and Cell, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Rustem I. Litvinov
- Department of Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Alice Zemljic-Harpf
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- VA Healthcare San Diego, San Diego, CA 92161
| | - Robert S. Ross
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- VA Healthcare San Diego, San Diego, CA 92161
| | - Sanford J. Shattil
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
Kapur S, Amoui M, Kesavan C, Wang X, Mohan S, Baylink DJ, Lau KHW. Leptin receptor (Lepr) is a negative modulator of bone mechanosensitivity and genetic variations in Lepr may contribute to the differential osteogenic response to mechanical stimulation in the C57BL/6J and C3H/HeJ pair of mouse strains. J Biol Chem 2010; 285:37607-18. [PMID: 20851886 PMCID: PMC2988366 DOI: 10.1074/jbc.m110.169714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigated the role of leptin receptor (Lepr) signaling in determining the bone mechanosensitivity and also evaluated whether differences in the Lepr signaling may contribute to the differential osteogenic response of the C57BL/6J (B6) and C3H/HeJ (C3H) pair of mouse strains to mechanical stimuli. This study shows that a loading strain of ∼2,500 με, which was insufficient to produce a bone formation response in B6 mice, significantly increased bone formation parameters in leptin-deficient ob(-)/ob(-) mice and that a loading strain of ∼3,000 με also yielded greater osteogenic responses in Lepr-deficient db(-)/db(-) mice than in wild-type littermates. In vitro, a 30-min steady shear stress increased [(3)H]thymidine incorporation and Erk1/2 phosphorylation in ob(-)/ob(-) osteoblasts and db(-)/db(-) osteoblasts much greater than those in corresponding wild-type osteoblasts. The siRNA-mediated suppression of Lepr expression in B6 osteoblasts enhanced (but in osteoblasts of C3H (the mouse strain with poor bone mechanosensitivity) restored) their anabolic responses to shear stress. The Lepr signaling (leptin-induced Jak2/Stat3 phosphorylation) in C3H osteoblasts was higher than that in B6 osteoblasts. One of the three single nucleotide polymorphisms in the C3H Lepr coding region yielded an I359V substitution near the leptin binding region, suggesting that genetic variation of Lepr may contribute to a dysfunctional Lepr signaling in C3H osteoblasts. In conclusion, Lepr signaling is a negative modulator of bone mechanosensitivity. Genetic variations in Lepr, which result in a dysfunctional Lepr signaling in C3H mice, may contribute to the poor osteogenic response to loading in C3H mice.
Collapse
Affiliation(s)
- Sonia Kapur
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yip SC, Saha S, Chernoff J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010; 35:442-9. [PMID: 20381358 PMCID: PMC2917533 DOI: 10.1016/j.tibs.2010.03.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 01/17/2023]
Abstract
PTP1B, a non-transmembrane protein tyrosine phosphatase that has long been studied as a negative regulator of insulin and leptin signaling, has received renewed attention as an unexpected positive factor in tumorigenesis. Here, we highlight how views of this enzyme have evolved from regarding it as a simple metabolic off-switch to a more complex view of PTP1B as an enzyme that can play both negative and positive roles in diverse signaling pathways. These dual characteristics make PTP1B a particularly attractive therapeutic target for diabetes, obesity, and perhaps breast cancer.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
47
|
Pradhan S, Alrehani N, Patel V, Khatlani T, Vijayan KV. Cross-talk between serine/threonine protein phosphatase 2A and protein tyrosine phosphatase 1B regulates Src activation and adhesion of integrin αIIbβ3 to fibrinogen. J Biol Chem 2010; 285:29059-68. [PMID: 20615878 DOI: 10.1074/jbc.m109.085167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Integrin α(IIb)β(3) signaling mediated by kinases and phosphatases participate in hemostasis and thrombosis, in part, by supporting stable platelet adhesion. Our previous studies indicate that the genetic manipulation of PP2Acα (α isoform of the catalytic subunit of protein phosphatase 2A) negatively regulate the adhesion of human embryonal kidney 293 cells expressing α(IIb)β(3) to fibrinogen. Here, we demonstrated that small interference RNA (siRNA) mediated knockdown of PP2Acα in 293 α(IIb)β(3) cells led to the dephosphorylation of Src Tyr-529, phosphorylation of Src Tyr-418 and an increased Src kinase activity. Conversely, overexpression of PP2Acα decreased the basal Src activity. Pharmacological inhibition of PP2Ac in human platelets or PP2Acα knockdown in primary murine megakaryocytes resulted in Src activation. PP2Acα-depleted 293 α(IIb)β(3) cells did not alter the serine (Ser) phosphorylation of Src but enhanced the Ser-50 phosphorylation of protein tyrosine phosphatase 1B (PTP-1B) with a concomitant increase in the PTP-1B activity. Src activation in the PP2Acα-depleted 293 α(IIb)β(3) cells was abolished by siRNA mediated knockdown of PTP-1B. Pharmacological inhibition of Src or knockdown of Src, PTP-1B blocked the enhanced activation of extracellular signal-regulated kinase (ERK1/2) and the increased adhesiveness of PP2Acα-depleted 293 α(IIb)β(3) cells to fibrinogen, respectively. Thus, inactivation of PP2Acα promotes hyperphosphorylation of PTP-1B Ser-50, elevates PTP-1B activity, which dephosphorylates Src Tyr-529 to activate Src and its downstream ERK1/2 signaling pathways that regulate α(IIb)β(3) adhesion. Moreover, these studies extend the notion that a cross-talk between Ser/Thr and Tyr phosphatases can fine-tune α(IIb)β(3) outside-in signaling.
Collapse
Affiliation(s)
- Subhashree Pradhan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Ellison S, Mori J, Barr AJ, Senis YA. CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases. J Thromb Haemost 2010; 8:1575-83. [PMID: 20345711 DOI: 10.1111/j.1538-7836.2010.03865.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY BACKGROUND We have previously shown that the receptor-like protein tyrosine phosphatase (PTP) CD148 is essential for initiating glycoprotein VI (GPVI) signaling in platelets. We proposed that CD148 does so by dephosphorylating the C-terminal inhibitory tyrosine of Src family kinases (SFKs). However, this mechanism is complicated by CD148-deficient mouse platelets having a concomitant reduction in GPVI expression. OBJECTIVES To investigate the effect of CD148 on GPVI signaling independent of the decrease in GPVI expression and to further establish the molecular basis of the activatory effect of CD148 and downregulation of GPVI. METHODS CD148-deficient mouse platelets were investigated for functional and biochemical defects. The DT40/NFAT-lucifierase reporter assay was used to analyze the effect of CD148 on GPVI signaling. CD148-SFK interactions and dephosphorylation were quantified using biochemical assays. RESULTS CD148-deficient mouse platelets exhibited reduced collagen-mediated aggregation, secretion and spreading in association with reduced expression of GPVI and FcR gamma-chain and reduced tyrosine phosphorylation. The phosphorylation status of SFKs suggested a global reduction in SFK activity in resting CD148-deficient platelets. Studies in a cell model confirmed that CD148 inhibits GPVI signaling independent of a change in receptor expression and through a mechanism dependent on tyrosine dephosphorylation. Recombinant CD148 dephosphorylated the inhibitory tyrosines of Fyn, Lyn and Src in vitro, although paradoxically it also dephosphorylated the activation loop of SFKs. CONCLUSIONS CD148 plays a critical role in regulating GPVI/FcR gamma-chain expression and maintains a pool of active SFKs in platelets by directly dephosphorylating the C-terminal inhibitory tyrosines of SFKs that is essential for platelet activation.
Collapse
Affiliation(s)
- S Ellison
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
49
|
Li Z, Zhang G, Liu J, Stojanovic A, Ruan C, Lowell CA, Du X. An important role of the SRC family kinase Lyn in stimulating platelet granule secretion. J Biol Chem 2010; 285:12559-70. [PMID: 20189992 DOI: 10.1074/jbc.m109.098756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Src family kinases (SFKs) have been proposed to play stimulatory and inhibitory roles in platelet activation. The mechanisms for these apparently contradictory roles are unclear. Here we show that SFK, mainly Lyn, is important in stimulating a common signaling pathway leading to secretion of platelet granules. Lyn knock-out or an isoform-nonselective SFK inhibitor, PP2, inhibited platelet secretion of both dense and alpha granules and the secretion-dependent platelet aggregation induced by thrombin, collagen, and thromboxane A(2). The inhibitory effect of Lyn knock-out on platelet aggregation was reversed by supplementing granule content ADP, indicating that the primary role of Lyn is to stimulate granule secretion. Inhibitory effect of PP2 on platelet aggregation induced by thrombin and thromboxane A(2) were also reversed by supplementing ADP. Furthermore, PP2 treatment or Lyn knock-out diminished agonist-induced Akt activation and cyclic GMP production. The inhibitory effect of PP2 or Lyn knock-out on platelet response can be corrected by supplementing cyclic GMP. These data indicate that Lyn stimulates platelet secretion by activating the phosphoinositide 3-kinase-Akt-nitric oxide (NO)-cyclic GMP pathway and also provide an explanation why Lyn can both stimulate and inhibit platelet activation.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y, Kakinuma S, Yamazaki S, Okamura S, Tamura N, Goto S, Sawaguchi A, Manabe I, Takatsu K, Nakauchi H, Takaki S, Eto K. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2009; 120:179-90. [PMID: 20038804 DOI: 10.1172/jci39503] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/28/2009] [Indexed: 12/20/2022] Open
Abstract
The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk-/- mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin alphaIIbbeta3-mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk-/- mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk-/- platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the beta3 integrin subunit, and reduced binding of Fyn to integrin alphaIIbbeta3. These results provide new insight into the mechanism of alphaIIbbeta3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.
Collapse
Affiliation(s)
- Hitoshi Takizawa
- Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|