1
|
Susila H, Jurić S, Liu L, Gawarecka K, Chung KS, Jin S, Kim SJ, Nasim Z, Youn G, Suh MC, Yu H, Ahn JH. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 2021; 373:1137-1142. [PMID: 34516842 DOI: 10.1126/science.abh4054] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Snježana Jurić
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.,Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Kyung Sook Chung
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Soo-Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:727118. [PMID: 34531888 PMCID: PMC8438413 DOI: 10.3389/fpls.2021.727118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Britta Förster
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Loraine M. Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - G. Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Benedict M. Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Uehara S, Sei A, Sada M, Ito-Inaba Y, Inaba T. Installation of authentic BicA and SbtA proteins to the chloroplast envelope membrane is achieved by the proteolytic cleavage of chimeric proteins in Arabidopsis. Sci Rep 2020; 10:2353. [PMID: 32047175 PMCID: PMC7012931 DOI: 10.1038/s41598-020-59190-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/24/2020] [Indexed: 11/09/2022] Open
Abstract
To improve the photosynthetic performance of C3 plants, installing cyanobacterial bicarbonate transporters to the chloroplast inner envelope membrane (IEM) has been proposed for years. In our previous study, we successfully introduced chimeric cyanobacterial sodium-dependent bicarbonate transporters, BicA or SbtA, to the chloroplast IEM of Arabidopsis. However, the installation of authentic BicA and SbtA to the chloroplast IEM has not been achieved yet. In this study, we examined whether or not tobacco etch virus (TEV) protease targeted within chloroplasts can cleave chimeric proteins and produce authentic bicarbonate transporters. To this end, we constructed a TEV protease that carried the transit peptide and expressed it with chimeric BicA or SbtA proteins containing a TEV cleavage site in planta. Chimeric proteins were cleaved only when the TEV protease was co-expressed. The authentic forms of hemagglutinin-tagged BicA and SbtA were detected in the chloroplast IEM. In addition, cleavage of chimeric proteins at the TEV recognition site seemed to occur after the targeting of chimeric proteins to the chloroplast IEM. We conclude that the cleavage of chimeric proteins within chloroplasts is an efficient way to install authentic bicarbonate transporters to the chloroplast IEM. Furthermore, a similar approach can be applied to other bacterial plasma membrane proteins.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayane Sei
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Misaki Sada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
4
|
Protein import into chloroplasts via the Tic40-dependent and -independent pathways depends on the amino acid composition of the transit peptide. Biochem Biophys Res Commun 2019; 518:66-71. [PMID: 31400859 DOI: 10.1016/j.bbrc.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 11/23/2022]
Abstract
Preprotein import into chloroplasts is mediated by the coordinated actions of translocons at the outer and inner envelopes of chloroplasts (Toc and Tic, respectively). The cleavable N-terminal transit peptide (TP) of preproteins plays an essential role in the import of preproteins into chloroplasts. The Tic40 protein, a component of the Tic complex, is believed to mediate the import of preproteins through the inner envelope. In this study, we aimed to obtain in vivo evidence supporting the role of Tic40 in preprotein import into chloroplasts. Contrary to previous findings, the import of various preproteins with wild-type TPs showed no difference between tic40 and wild-type protoplasts of Arabidopsis thaliana. However, the import of N-terminal mutants of the RbcS protein (RbcS-nt), in which basic amino acid residues (arginine and lysine) in the central region of the TP were substituted with neutral (alanine) or acidic (glutamic acid) amino acid residues, was dependent on Tic40. In addition, in tic40 protoplasts, the inner envelope protein Tic40 tagged with HA (hemagglutinin) showed more intermediate form present in the stroma. Based on these results, we propose that protein can be imported into chloroplast by either Tic40-independent or Tic40-dependent pathways depending on the types of TP.
Collapse
|
5
|
Zhang J, Wu S, Boehlein SK, McCarty DR, Song G, Walley JW, Myers A, Settles AM. Maize defective kernel5 is a bacterial TamB homologue required for chloroplast envelope biogenesis. J Cell Biol 2019; 218:2638-2658. [PMID: 31235479 PMCID: PMC6683743 DOI: 10.1083/jcb.201807166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Zhang et al. show that the maize dek5 locus is required for chloroplast envelope biogenesis and encodes a TamB-like protein. Bacterial TamB proteins facilitate insertion of β-barrel outer membrane proteins, indicating plastids have a conserved mechanism for envelope membrane biogenesis. Chloroplasts are of prokaryotic origin with a double-membrane envelope separating plastid metabolism from the cytosol. Envelope membrane proteins integrate chloroplasts with the cell, but envelope biogenesis mechanisms remain elusive. We show that maize defective kernel5 (dek5) is critical for envelope biogenesis. Amyloplasts and chloroplasts are larger and reduced in number in dek5 with multiple ultrastructural defects. The DEK5 protein is homologous to rice SSG4, Arabidopsis thaliana EMB2410/TIC236, and Escherichia coli tamB. TamB functions in bacterial outer membrane biogenesis. DEK5 is localized to the envelope with a topology analogous to TamB. Increased levels of soluble sugars in dek5 developing endosperm and elevated osmotic pressure in mutant leaf cells suggest defective intracellular solute transport. Proteomics and antibody-based analyses show dek5 reduces levels of Toc75 and chloroplast envelope transporters. Moreover, dek5 chloroplasts reduce inorganic phosphate uptake with at least an 80% reduction relative to normal chloroplasts. These data suggest that DEK5 functions in plastid envelope biogenesis to enable transport of metabolites and proteins.
Collapse
Affiliation(s)
- Junya Zhang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Susan K Boehlein
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Gaoyuan Song
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Alan Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - A Mark Settles
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL .,Horticultural Sciences Department, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Day PM, Theg SM. Evolution of protein transport to the chloroplast envelope membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:315-326. [PMID: 30291507 DOI: 10.1007/s11120-018-0540-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Chloroplasts are descendants of an ancient endosymbiotic cyanobacterium that lived inside a eukaryotic cell. They inherited the prokaryotic double membrane envelope from cyanobacteria. This envelope contains prokaryotic protein sorting machineries including a Sec translocase and relatives of the central component of the bacterial outer membrane β-barrel assembly module. As the endosymbiont was integrated with the rest of the cell, the synthesis of most of its proteins shifted from the stroma to the host cytosol. This included nearly all the envelope proteins identified so far. Consequently, the overall biogenesis of the chloroplast envelope must be distinct from cyanobacteria. Envelope proteins initially approach their functional locations from the exterior rather than the interior. In many cases, they have been shown to use components of the general import pathway that also serves the stroma and thylakoids. If the ancient prokaryotic protein sorting machineries are still used for chloroplast envelope proteins, their activities must have been modified or combined with the general import pathway. In this review, we analyze the current knowledge pertaining to chloroplast envelope biogenesis and compare this to bacteria.
Collapse
Affiliation(s)
- Philip M Day
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA.
| |
Collapse
|
7
|
Fernandez DE. Two paths diverged in the stroma: targeting to dual SEC translocase systems in chloroplasts. PHOTOSYNTHESIS RESEARCH 2018; 138:277-287. [PMID: 29951837 DOI: 10.1007/s11120-018-0541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts inherited systems and strategies for protein targeting, translocation, and integration from their cyanobacterial ancestor. Unlike cyanobacteria however, chloroplasts in green algae and plants contain two distinct SEC translocase/integrase systems: the SEC1 system in the thylakoid membrane and the SEC2 system in the inner envelope membrane. This review summarizes the mode of action of SEC translocases, identification of components of the SEC2 system, evolutionary history of SCY and SECA genes, and previous work on the co- and post-translational targeting of lumenal and thylakoid membrane proteins to the SEC1 system. Recent work identifying substrates for the SEC2 system and potential features that may contribute to inner envelope targeting are also discussed.
Collapse
Affiliation(s)
- Donna E Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Fernández-San Millán A, Aranjuelo I, Douthe C, Nadal M, Ancín M, Larraya L, Farran I, Flexas J, Veramendi J. Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3661-3673. [PMID: 29912355 PMCID: PMC6022695 DOI: 10.1093/jxb/ery148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/12/2018] [Indexed: 05/10/2023]
Abstract
The leaf mesophyll CO2 conductance and the concentration of CO2 within the chloroplast are major factors affecting photosynthetic performance. Previous studies have shown that the aquaporin NtAQP1 (which localizes to the plasma membrane and chloroplast inner envelope membrane) is involved in CO2 permeability in the chloroplast. Levels of NtAQP1 in plants genetically engineered to overexpress the protein correlated positively with leaf mesophyll CO2 conductance and photosynthetic rate. In these studies, the nuclear transformation method used led to changes in NtAQP1 levels in the plasma membrane and the chloroplast inner envelope membrane. In the present work, NtAQP1 levels were increased up to 16-fold in the chloroplast membranes alone by the overexpression of NtAQP1 from the plastid genome. Despite the high NtAQP1 levels achieved, transplastomic plants showed lower photosynthetic rates than wild-type plants. This result was associated with lower Rubisco maximum carboxylation rate and ribulose 1,5-bisphosphate regeneration. Transplastomic plants showed reduced mesophyll CO2 conductance but no changes in chloroplast CO2 concentration. The absence of differences in chloroplast CO2 concentration was associated with the lower CO2 fixation activity of the transplastomic plants. These findings suggest that non-functional pores of recombinant NtAQP1 may be produced in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Cyril Douthe
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - María Ancín
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Luis Larraya
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Inmaculada Farran
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - Jon Veramendi
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| |
Collapse
|
9
|
Lee DW, Yoo YJ, Razzak MA, Hwang I. Prolines in Transit Peptides Are Crucial for Efficient Preprotein Translocation into Chloroplasts. PLANT PHYSIOLOGY 2018; 176:663-677. [PMID: 29158328 PMCID: PMC5761803 DOI: 10.1104/pp.17.01553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts import many preproteins that can be classified based on their physicochemical properties. The cleavable N-terminal transit peptide (TP) of chloroplast preproteins contains all the information required for import into chloroplasts through Toc/Tic translocons. The question of whether and how the physicochemical properties of preproteins affect TP-mediated import into chloroplasts has not been elucidated. Here, we present evidence that Pro residues in TP mediate efficient translocation through the chloroplast envelope membranes for proteins containing transmembrane domains (TMDs) or proteins prone to aggregation. By contrast, the translocation of soluble proteins through the chloroplast envelope membranes is less dependent on TP prolines. Proless TPs failed to mediate protein translocation into chloroplasts; instead, these mutant TPs led to protein mistargeting to the chloroplast envelope membranes or nonspecific protein aggregation during import into chloroplasts. The mistargeting of TMD-containing proteins caused by Pro-less TPs in wild-type protoplasts was mimicked by wild-type TPs in hsp93-V protoplasts, in which preprotein translocation is compromised. We propose that the physicochemical properties of chloroplast proteins affect protein translocation through the chloroplast envelope, and prolines in TP have a crucial role in the efficient translocation of TMD-containing proteins.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
10
|
Abstract
The plastids, including chloroplasts, are a group of interrelated organelles that confer photoautotrophic growth and the unique metabolic capabilities that are characteristic of plant systems. Plastid biogenesis relies on the expression, import, and assembly of thousands of nuclear encoded preproteins. Plastid proteomes undergo rapid remodeling in response to developmental and environmental signals to generate functionally distinct plastid types in specific cells and tissues. In this review, we will highlight the central role of the plastid protein import system in regulating and coordinating the import of functionally related sets of preproteins that are required for plastid-type transitions and maintenance.
Collapse
|
11
|
Lee DW, Lee J, Hwang I. Sorting of nuclear-encoded chloroplast membrane proteins. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:1-7. [PMID: 28668581 DOI: 10.1016/j.pbi.2017.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 05/11/2023]
Abstract
Among the many organelles in eukaryotic cells, chloroplasts have the most complex structure, with multiple suborganellar membranes, making protein targeting to chloroplasts, particularly to various suborganellar membranes, highly challenging. Multiple mechanisms function in the biogenesis of chloroplast membrane proteins. Nuclear-encoded nascent proteins can be targeted to the outer envelope membrane directly from the cytosol after translation, but their targeting to the inner envelope and thylakoid membranes requires multiple steps, including cytosolic sorting, translocation across the envelope membranes, sorting in the stroma, and insertion into their target membranes. In this review, we discuss the current knowledge about the sorting mechanisms of proteins to the two envelope membranes and the thylakoid membrane, along with perspectives for future research.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
12
|
Rolland V, Rae BD, Long BM. Setting sub-organellar sights: accurate targeting of multi-transmembrane-domain proteins to specific chloroplast membranes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5013-5016. [PMID: 29106623 PMCID: PMC5853405 DOI: 10.1093/jxb/erx351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article comments on: Singhal R, Fernandez DE. 2017. Sorting of SEC translocase SCY components to different membranes in chloroplasts. Journal of Experimental Botany 68, 5029–5043.
Collapse
Affiliation(s)
| | - Benjamin D Rae
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton ACT, Australia
| | - Benedict M Long
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton ACT, Australia
- Correspondence:
| |
Collapse
|
13
|
Singhal R, Fernandez DE. Sorting of SEC translocase SCY components to different membranes in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5029-5043. [PMID: 28992187 PMCID: PMC5853536 DOI: 10.1093/jxb/erx318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Membrane proteins that are imported into chloroplasts must be accurately routed in order to establish and maintain the highly differentiated membranes characteristic of these organelles. Little is known about the targeting information or pathways involved, especially in the case of proteins with multiple transmembrane domains. We have studied targeting of the SCY components of the two SEC translocases in chloroplasts. SCY1 and SCY2 share a similar, highly conserved structure with 10 transmembrane domains, but are targeted to different membranes: the thylakoids and inner envelope, respectively. We used protoplast transfections and a confocal microscopy imaging assay in combination with a domain-swapping approach to investigate sorting pathways and identify important targeting elements in these proteins. We show that the N-terminal region of SCY1 contains targeting determinants that allow SCY1 to be recruited to the signal-recognition particle pathway. In addition, substituting the N-terminal region of SCY1 for the N-terminal region of SCY2 causes SCY2 to be displaced out of the inner envelope. The region of SCY2 that contains transmembrane domains 3 and 4 is necessary for localization to the inner envelope and may serve as a membrane anchor, enhancing the integration of other transmembrane domains via either stop-transfer or post-import mechanisms.
Collapse
Affiliation(s)
- Rajneesh Singhal
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Donna E Fernandez
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Correspondence:
| |
Collapse
|
14
|
Nevarez PA, Qiu Y, Inoue H, Yoo CY, Benfey PN, Schnell DJ, Chen M. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus. PLANT PHYSIOLOGY 2017; 173:1953-1966. [PMID: 28232584 PMCID: PMC5373053 DOI: 10.1104/pp.16.00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 05/20/2023]
Abstract
HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus.
Collapse
Affiliation(s)
- P Andrew Nevarez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Hitoshi Inoue
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Philip N Benfey
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Danny J Schnell
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.);
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| |
Collapse
|
15
|
Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K. Identification of Putative Substrates of SEC2, a Chloroplast Inner Envelope Translocase. PLANT PHYSIOLOGY 2017; 173:2121-2137. [PMID: 28213560 PMCID: PMC5373066 DOI: 10.1104/pp.17.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 05/11/2023]
Abstract
Most chloroplast proteins are synthesized in the cytosol and imported into chloroplasts. Many imported proteins are further targeted to the thylakoid membrane and lumen by the SEC1, TAT, or SRP/ALB3 translocases. Others are targeted to the inner chloroplast envelope membrane by undescribed translocases. Recently, a second SEC system (SEC2) consisting of SCY2, SECE2, and SECA2 was found in the chloroplast envelope. Null mutants of SCY2 in Arabidopsis (Arabidopsis thaliana) exhibit a severe embryo-lethal phenotype. To investigate the function of the SEC2 system in plants, we used inducible RNA interference to knock down SCY2 in Arabidopsis. Seedlings cultured with inducer were chlorotic with aberrant chloroplasts and undeveloped thylakoids, indicating an essential role for SCY2 in chloroplast biogenesis beyond embryo development. In SCY2 down-regulated seedlings, several thylakoid membrane proteins, including SCY1, ALB3, and TATC, and inner envelope membrane proteins, including TIC40, TIC110, and FTSH12, were reduced substantially, suggesting that they may be SEC2 substrates. Additional insight was achieved by the in vitro reconstitution of protein integration into chloroplast membranes. The results show that SCY1 and ALB3 target directly to the thylakoid membrane and are likely independent of SEC2. FTSH12 was integrated into the envelope membrane in a coupled import-integration reaction that was impaired by the SECA inhibitor sodium azide. The stromal intermediate of TIC40 integrated into the envelope in a reaction that was largely inhibited when antibodies against epitope-tagged SCY2 or SECE2 were applied. These data demonstrate that the SEC2 translocase likely integrates a subset of inner envelope membrane proteins, such as FTSH12 and TIC40.
Collapse
Affiliation(s)
- Yubing Li
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Jonathan R Martin
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Giovanni A Aldama
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Donna E Fernandez
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| |
Collapse
|
16
|
Endow JK, Rocha AG, Baldwin AJ, Roston RL, Yamaguchi T, Kamikubo H, Inoue K. Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope. PLoS One 2016; 11:e0167802. [PMID: 27936133 PMCID: PMC5147994 DOI: 10.1371/journal.pone.0167802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.
Collapse
Affiliation(s)
- Joshua K. Endow
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Agostinho Gomes Rocha
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Amy J. Baldwin
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Rebecca L. Roston
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| |
Collapse
|
17
|
Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 2016; 5. [PMID: 26999824 PMCID: PMC4811774 DOI: 10.7554/elife.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 01/20/2023] Open
Abstract
Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI:http://dx.doi.org/10.7554/eLife.12631.001 Chloroplasts are a hallmark feature of plant cells and the sites of photosynthesis – the process in which plants harness the energy in sunlight for their own needs. The first chloroplasts arose when a photosynthetic bacterium was engulfed by another host cell, and most of the original bacterial genes have been transferred to the host cell’s nucleus during the evolution of land plants. As a result, modern chloroplasts need to import the thousands of proteins encoded by these genes from the rest of the cell. The chloroplast protein import system relies on a protein transporter in the chloroplast membrane that evolved from a family of bacterial transporters. However, the bacterial transporters were initially involved in protein export, and it was not known how the activity of these transporters adapted to move proteins in the opposite direction. Paila et al. set out to better understand the chloroplast protein import system and produced mutated forms of the transporter in the model plant Arabidopsis thaliana. These experiments revealed that a part of the transporter that is conserved in many other organisms, the “protein transport associated domains”, has been adapted for three key roles in protein import. First, this part of the transporter interacts with the other components of the import system that make the transporter more selective and control which direction the proteins are transported. Second, the domains interact with proteins during transport to help move them across the chloroplast membrane. Finally, the domains recruit other molecules called chaperones, which stop the protein from aggregating or misfolding during the transport process. These activities are similar to those for the bacterial export transporters, but clearly evolved to allow transport in the opposite direction – that is, to import proteins into chloroplasts. The next challenges are to explain how proteins destined for chloroplasts are recognized and transported through the chloroplast’s membrane. DOI:http://dx.doi.org/10.7554/eLife.12631.002
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Lynn Gl Richardson
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Elizabeth S Parks
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - James McMahon
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, United States
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
18
|
Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America.
| |
Collapse
|
19
|
Uehara S, Adachi F, Ito-Inaba Y, Inaba T. Specific and Efficient Targeting of Cyanobacterial Bicarbonate Transporters to the Inner Envelope Membrane of Chloroplasts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:16. [PMID: 26870048 PMCID: PMC4735556 DOI: 10.3389/fpls.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM) of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Fumi Adachi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazaki, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| |
Collapse
|
20
|
Huang PK, Chan PT, Su PH, Chen LJ, Li HM. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process. PLANT PHYSIOLOGY 2016; 170:857-66. [PMID: 26676256 PMCID: PMC4734592 DOI: 10.1104/pp.15.01830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope.
Collapse
Affiliation(s)
- Po-Kai Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Po-Ting Chan
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Pai-Hsiang Su
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Rolland V, Badger MR, Price GD. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:185. [PMID: 26973659 PMCID: PMC4770052 DOI: 10.3389/fpls.2016.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/03/2016] [Indexed: 05/18/2023]
Abstract
Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92-115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope.
Collapse
|
22
|
Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc Natl Acad Sci U S A 2015; 112:E1678-87. [PMID: 25775549 DOI: 10.1073/pnas.1424655112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.
Collapse
|
23
|
Chu CC, Li HM. Protein import into isolated pea root leucoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:690. [PMID: 26388889 PMCID: PMC4560022 DOI: 10.3389/fpls.2015.00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 05/06/2023]
Abstract
Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.
Collapse
Affiliation(s)
| | - Hsou-min Li
- *Correspondence: Hsou-min Li, Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan,
| |
Collapse
|
24
|
Oh YJ, Hwang I. Targeting and biogenesis of transporters and channels in chloroplast envelope membranes: Unsolved questions. Cell Calcium 2014; 58:122-30. [PMID: 25465895 DOI: 10.1016/j.ceca.2014.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023]
Abstract
Chloroplasts produce carbohydrates, hormones, vitamins, amino acids, pigments, nucleotides, ATP, and secondary metabolites. Channels and transporters are required for the movement of molecules across the two chloroplast envelope membranes. These transporters and channel proteins are grouped into two different types, including β-barrel proteins and transmembrane-domain (TMD) containing proteins. Most β-barrel proteins are localized at the outer chloroplast membrane, and TMD-containing proteins are localized at the inner chloroplast membrane. Many of these transporters and channels are encoded by nuclear genes; therefore, they have to be imported into chloroplasts after translation on cytosolic ribosomes. These proteins should have specific targeting signals for their final destination in the chloroplast membrane and for assembly into specific complexes. In this review, we summarize recent progress in the identification, functional characterization, and biogenesis of transporters and channels at the chloroplast envelope membranes, and discuss outstanding questions regarding transporter and channel protein biogenesis.
Collapse
Affiliation(s)
- Young Jun Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; Department Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| |
Collapse
|
25
|
Okawa K, Inoue H, Adachi F, Nakayama K, Ito-Inaba Y, Schnell DJ, Uehara S, Inaba T. Targeting of a polytopic membrane protein to the inner envelope membrane of chloroplasts in vivo involves multiple transmembrane segments. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5257-65. [PMID: 25013120 PMCID: PMC4157711 DOI: 10.1093/jxb/eru290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 05/08/2023]
Abstract
The inner envelope membrane (IEM) of the chloroplast plays crucial roles in forming an osmotic barrier and controlling metabolite exchange between the organelle and the cytosol. The IEM therefore harbours a number of membrane proteins and requires the import and integration of these nuclear-encoded proteins for its biogenesis. Recent studies have demonstrated that the transmembrane segment of single-spanning IEM proteins plays key roles in determining their IEM localization. However, few studies have focused on the molecular mechanisms by which polytopic membrane proteins are targeted to the IEM. In this study, we investigated the targeting mechanism of polytopic IEM proteins using the protein Cor413im1 as a model substrate. Cor413im1 does not utilize a soluble intermediate for its targeting to the IEM. Furthermore, we show that the putative fifth transmembrane segment of Cor413im1 is necessary for its targeting to the IEM. The C-terminal portion containing this transmembrane segment is also able to deliver Cor413im1 protein to the IEM. However, the fifth transmembrane segment of Cor413im1 itself is insufficient to target a fusion protein to the IEM. These data suggest that the targeting of polytopic membrane proteins to the chloroplast IEM in vivo involves multiple transmembrane segments and that chloroplasts have evolved a unique mechanism for the integration of polytopic proteins to the IEM.
Collapse
Affiliation(s)
- Kumiko Okawa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hitoshi Inoue
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003 MA, USA
| | - Fumi Adachi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Katsuhiro Nakayama
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003 MA, USA
| | - Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
26
|
Alternative Processing of Arabidopsis Hsp70 Precursors during Protein Import into Chloroplasts. Biosci Biotechnol Biochem 2014; 72:2926-35. [DOI: 10.1271/bbb.80408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Hardré H, Kuhn L, Albrieux C, Jouhet J, Michaud M, Seigneurin-Berny D, Falconet D, Block MA, Maréchal E. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. FRONTIERS IN PLANT SCIENCE 2014; 5:203. [PMID: 24999344 PMCID: PMC4064156 DOI: 10.3389/fpls.2014.00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/25/2014] [Indexed: 05/27/2023]
Abstract
The understanding of chloroplast function requires the precise localization of proteins in each of its sub-compartments. High-sensitivity mass spectrometry has allowed the inventory of proteins in thylakoid, stroma, and envelope fractions. Concerning membrane association, proteins can be either integral or peripheral or even soluble proteins bound transiently to a membrane complex. We sought a method providing information at the surface of the outer envelope membrane (OEM), based on specific tagging with biotin or proteolysis using thermolysin, a non-membrane permeable protease. To evaluate this method, envelope, thylakoid, and stroma proteins were separated by two-dimensional electrophoresis and analyzed by immunostaining and mass spectrometry. A short selection of proteins associated to the chloroplast envelope fraction was checked after superficial treatments of intact chloroplasts. We showed that this method could allow the characterization of OEM embedded proteins facing the cytosol, as well as peripheral and soluble proteins associated via tight or lose interactions. Some stromal proteins were associated with biotinylated spots and analyzes are still needed to determine whether polypeptides were tagged prior import or if they co-migrated with OEM proteins. This method also suggests that some proteins associated with the inner envelope membrane (IEM) might need the integrity of a trans-envelope (IEM-OEM) protein complex (e.g., division ring-forming components) or at least an intact OEM partner. Following this evaluation, proteomic analyzes should be refined and the putative role of inter-membrane space components stabilizing trans-envelope complexes demonstrated. For future comprehensive studies, perspectives include the dynamic analyses of OEM proteins and IEM-OEM complexes in various physiological contexts and using virtually any other purified membrane organelle.
Collapse
Affiliation(s)
- Hélène Hardré
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Lauriane Kuhn
- Laboratoire de Biologie à Grande Echelle, iRTSVCEA Grenoble, Grenoble, France
| | - Catherine Albrieux
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Maryse A. Block
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| |
Collapse
|
28
|
Kasmati AR, Töpel M, Khan NZ, Patel R, Ling Q, Karim S, Aronsson H, Jarvis P. Evolutionary, molecular and genetic analyses of Tic22 homologues in Arabidopsis thaliana chloroplasts. PLoS One 2013; 8:e63863. [PMID: 23675512 PMCID: PMC3652856 DOI: 10.1371/journal.pone.0063863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The Tic22 protein was previously identified in pea as a putative component of the chloroplast protein import apparatus. It is a peripheral protein of the inner envelope membrane, residing in the intermembrane space. In Arabidopsis, there are two Tic22 homologues, termed atTic22-III and atTic22-IV, both of which are predicted to localize in chloroplasts. These two proteins defined clades that are conserved in all land plants, which appear to have evolved at a similar rates since their separation >400 million years ago, suggesting functional conservation. The atTIC22-IV gene was expressed several-fold more highly than atTIC22-III, but the genes exhibited similar expression profiles and were expressed throughout development. Knockout mutants lacking atTic22-IV were visibly normal, whereas those lacking atTic22-III exhibited moderate chlorosis. Double mutants lacking both isoforms were more strongly chlorotic, particularly during early development, but were viable and fertile. Double-mutant chloroplasts were small and under-developed relative to those in wild type, and displayed inefficient import of precursor proteins. The data indicate that the two Tic22 isoforms act redundantly in chloroplast protein import, and that their function is non-essential but nonetheless required for normal chloroplast biogenesis, particularly during early plant development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Mats Töpel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Nadir Zaman Khan
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Ramesh Patel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Qihua Ling
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Sazzad Karim
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Henrik Aronsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Paul Jarvis
- University of Leicester, Department of Biology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Inoue H, Li M, Schnell DJ. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci U S A 2013; 110:3173-8. [PMID: 23382192 PMCID: PMC3581895 DOI: 10.1073/pnas.1219229110] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chloroplast heat shock protein 90 (Hsp90C) represents a highly conserved subfamily of the Hsp90 family of molecular chaperones whose function has not been defined. We identified Hsp90C as a component that interacts with import intermediates of nuclear-encoded preproteins during posttranslational import into isolated chloroplasts. Hsp90C was specifically coprecipitated with a complex of protein import components, including Tic110, Tic40, Toc75, Tic22, and the stromal chaperones, Hsp93 and Hsp70. Radicicol, an inhibitor of Hsp90 ATPase activity, reversibly inhibited the import of a variety of preproteins during translocation across the inner envelope membrane, indicating that Hsp90C functions in membrane translocation into the organelle. Hsp90C is encoded by a single gene in Arabidopsis thaliana, and insertion mutations in the Hsp90C gene are embryo lethal, indicating an essential function for the chaperone in plant viability. On the basis of these results, we propose that Hsp90C functions within a chaperone complex in the chloroplast stroma to facilitate membrane translocation during protein import into the organelle.
Collapse
Affiliation(s)
- Hitoshi Inoue
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | | | - Danny J. Schnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
30
|
Teng YS, Chan PT, Li HM. Differential age-dependent import regulation by signal peptides. PLoS Biol 2012; 10:e1001416. [PMID: 23118617 PMCID: PMC3484058 DOI: 10.1371/journal.pbio.1001416] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.
Collapse
Affiliation(s)
- Yi-Shan Teng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Po-Ting Chan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
32
|
Barbosa Viana AA, Pelegrini PB, Grossi-de-Sá MF. Plant biofarming: Novel insights for peptide expression in heterologous systems. Biopolymers 2012. [DOI: 10.1002/bip.22089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Celedon JM, Cline K. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:341-51. [PMID: 22750312 DOI: 10.1016/j.bbamcr.2012.06.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/14/2022]
Abstract
Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jose M Celedon
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
34
|
Cytosolic events involved in chloroplast protein targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:245-52. [PMID: 22450030 DOI: 10.1016/j.bbamcr.2012.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 12/12/2022]
Abstract
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
35
|
Froehlich JE, Keegstra K. The role of the transmembrane domain in determining the targeting of membrane proteins to either the inner envelope or thylakoid membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:844-56. [PMID: 21838779 DOI: 10.1111/j.1365-313x.2011.04735.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplastic membrane proteins can be targeted to any of three distinct membrane systems, i.e., the outer envelope membrane (OEM), inner envelope membrane (IEM), and thylakoid membrane. This complex structure of chloroplasts adds significantly to the challenge of studying protein targeting to various membrane sub-compartments within a chloroplast. In this investigation, we examined the role played by the transmembrane domain (TMD) in directing membrane proteins to either the IEM or thylakoid membrane. Using the IEM protein, Arc6 (Accumulation and Replication of Chloroplasts 6), we exchanged the stop-transfer TMD of Arc6 with various TMDs derived from different IEM and thylakoid membrane proteins and monitored the subcellular localization of these Arc6-hybrid proteins. We showed that when the Arc6 TMD was replaced with a TMD derived from various thylakoid membrane proteins, these Arc6(thylTMD) hybrid proteins could be directed to the thylakoid membrane rather than to the IEM. Conversely, when the TMD of the thylakoid membrane proteins, STN8 (State Transition protein kinase 8) or Plsp1 (Plastidic type I signal peptidase 1), was replaced with the stop-transfer TMD of Arc6, STN8 and Plsp1 were halted at the IEM. From our investigation, we conclude that the TMD plays a critical role in targeting integral membrane proteins to either the IEM or thylakoid membrane.
Collapse
Affiliation(s)
- John E Froehlich
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
36
|
Machettira AB, Gross LE, Sommer MS, Weis BL, Englich G, Tripp J, Schleiff E. The localization of Tic20 proteins in Arabidopsis thaliana is not restricted to the inner envelope membrane of chloroplasts. PLANT MOLECULAR BIOLOGY 2011; 77:381-390. [PMID: 21874592 DOI: 10.1007/s11103-011-9818-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/13/2011] [Indexed: 05/31/2023]
Abstract
Tic20 is a central, membrane-embedded component of the precursor protein translocon of the inner envelope of chloroplasts (TIC). In Arabidopsis thaliana, four different isoforms of Tic20 exist. They are annotated as atTic20-I, -II, -IV and -V and form two distinct phylogenetic subfamilies in embryophyta. Consistent with atTic20-I being the only essential isoform for chloroplast development, we show that the protein is exclusively targeted to the chloroplasts inner envelope. The same result is observed for atTic20-II. In contrast, atTic20-V is localized in thylakoids and atTic20-IV dually localizes to chloroplasts and mitochondria. These results together with the previously established expression profiles explain the recently described phenotypes of Tic20 knockout plants and point towards a functional diversification of these proteins within the family. For all Tic20 proteins a 4-helix topology is proposed irrespective of the targeted membrane, which in part could be confirmed in vivo by application of a self-assembling GFP-based topology approach. By the same approach we show that the inner envelope localized Tic20 proteins expose their C-termini to the chloroplast stroma. This localization would be consistent with the positive inside rule considering a stromal translocation intermediate as discussed.
Collapse
Affiliation(s)
- Anu B Machettira
- Department of Biosciences, Molecular Cell Biology of Plants, Johann-Wolfgang-Goethe University Frankfurt, Max-von-Laue Strasse 9, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Bölter B, Soll J. Protein Import into Chloroplasts: Dealing with the (Membrane) Integration Problem. Chembiochem 2011; 12:1655-61. [DOI: 10.1002/cbic.201100118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Indexed: 11/10/2022]
|
38
|
Kasmati AR, Töpel M, Patel R, Murtaza G, Jarvis P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:877-89. [PMID: 21395885 DOI: 10.1111/j.1365-313x.2011.04551.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Tic20 protein was identified in pea (Pisum sativum) as a component of the chloroplast protein import apparatus. In Arabidopsis, there are four Tic20 homologues, termed atTic20-I, atTic20-IV, atTic20-II and atTic20-V, all with predicted topological similarity to the pea protein (psTic20). Analysis of Tic20 sequences from many species indicated that they are phylogenetically unrelated to mitochondrial Tim17-22-23 proteins, and that they form two evolutionarily conserved subgroups [characterized by psTic20/atTic20-I/IV (Group 1) and atTic20-II/V (Group 2)]. Like psTic20, all four Arabidopsis proteins have a predicted transit peptide consistent with targeting to the inner envelope. Envelope localization of each one was confirmed by analysis of YFP fusions. RT-PCR and microarray data revealed that the four genes are expressed throughout development. To assess the functional significance of the genes, T-DNA mutants were identified. Homozygous tic20-I plants had an albino phenotype that correlated with abnormal chloroplast development and reduced levels of chloroplast proteins. However, knockouts for the other three genes were indistinguishable from the wild type. To test for redundancy, double and triple mutants were studied; apart from those involving tic20-I, none was distinguishable from the wild type. The tic20-I tic20-II and tic20-I tic20-V double mutants were albino, like the corresponding tic20-I parent. In contrast, tic20-I tic20-IV double homozygotes could not be identified, due to gametophytic and embryonic lethality. Redundancy between atTic20-I and atTic20-IV was confirmed by complementation analysis. Thus, atTic20-I and atTic20-IV are the major functional Tic20 isoforms in Arabidopsis, with partially overlapping roles. While the Group 2 proteins have been conserved over approximately 1.2 billion (1.2 × 10(9) ) years, they are not essential for normal development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- Department of Biology, University of Leicester, University Road, Leicester LE17RH, UK
| | | | | | | | | |
Collapse
|
39
|
Dani KGS, Hatti KS, Ravikumar P, Kush A. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:453-461. [PMID: 21489096 DOI: 10.1111/j.1438-8677.2010.00410.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The distinguishing structural and functional domains of plant acyl-acyl carrier protein (ACP) thioesterases and their complex interaction with the ACP-linked fatty acid substrate complex have remained elusive. E. coli based heterologous expression and characterisation of many plant thioesterases reported so far have not been extended and linked to in silico modelling studies to explain the diversity in plant thioesterase substrate specificities. In this study, a thioesterase cDNA isolated from immature seed tissues of Jatropha curcas was found to be type B and specific to stearoyl acyl ACP when expressed in E. coli K27fadD88, a lipid utilisation mutant. Homology modelling and molecular docking of a selected region of the isolated JcFatB protein predicted that it had high affinity towards both stearate (18:0) and palmitate (16:0). Structural analysis of the sequence confirmed the presence of a transit peptide that is processed in multiple steps. The enzyme is localised in the chloroplasts and has an N-terminal inner chloroplast transmembrane domain characteristic of type B plant thioesterases. Docking of ligands with JcFatB and its comparison with a modelled Jatropha thioesterase type A provided further evidence for native substrate preferences of Jatropha thioesterases. This study provides essential clues to develop future methods for large-scale bacterial production of free fatty acids and for design of strategies to modulate the seed oil composition in this important non-edible, seed oil plant.
Collapse
|
40
|
Froehlich J. Studying Arabidopsis envelope protein localization and topology using thermolysin and trypsin proteases. Methods Mol Biol 2011; 774:351-367. [PMID: 21822849 DOI: 10.1007/978-1-61779-234-2_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplasts are metabolically important organelles that perform many essential functions within plant cells. The chloroplasts can be subdivided into six distinct sub-compartments to which a protein may be ultimately targeted. These sub-compartments are defined as the outer envelope membrane (OEM), the inner envelope membrane (IEM), the thylakoid membrane, and three aqueous sub-compartments - the intermembrane space (IMS), the stroma, and the thylakoid lumen. The process by which proteins are targeted to the chloroplastic envelope membrane remains a challenging question in cell biology. Our understanding of protein targeting to the OEM is very limited, whereas targeting of membrane proteins to the IEM appears to utilize at least two targeting pathways called the stop-transfer and the conservative sorting (or post-import) pathways. Furthermore, once a membrane protein arrives at the envelope membrane, our understanding of how it achieves its final topology remains limited. One method that can be used to determine the topology of an envelope membrane protein is to apply the "dual protease" strategy. This approach involves several steps: first, performing an in vitro import assay; second, applying a "dual protease" protection assay using thermolysin and trypsin; and finally, isolating and analyzing chloroplastic subcellular fractionations (i.e., total membrane and soluble fractions). By using this multistep approach, one can gain critical information regarding the final topology of an OEM or IEM protein. Likewise, the "dual protease" approach may help in elucidating the possible targeting pathway that a membrane protein utilizes prior to its insertion into the envelope membrane.
Collapse
Affiliation(s)
- John Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
41
|
Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, Cline K, Fernandez DE. Plastids contain a second sec translocase system with essential functions. PLANT PHYSIOLOGY 2011; 155:354-69. [PMID: 21051552 PMCID: PMC3075773 DOI: 10.1104/pp.110.166546] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 05/20/2023]
Abstract
Proteins that are synthesized on cytoplasmic ribosomes but function within plastids must be imported and then targeted to one of six plastid locations. Although multiple systems that target proteins to the thylakoid membranes or thylakoid lumen have been identified, a system that can direct the integration of inner envelope membrane proteins from the stroma has not been previously described. Genetics and localization studies were used to show that plastids contain two different Sec systems with distinct functions. Loss-of-function mutations in components of the previously described thylakoid-localized Sec system, designated as SCY1 (At2g18710), SECA1 (At4g01800), and SECE1 (At4g14870) in Arabidopsis (Arabidopsis thaliana), result in albino seedlings and sucrose-dependent heterotrophic growth. Loss-of-function mutations in components of the second Sec system, designated as SCY2 (At2g31530) and SECA2 (At1g21650) in Arabidopsis, result in arrest at the globular stage and embryo lethality. Promoter-swap experiments provided evidence that SCY1 and SCY2 are functionally nonredundant and perform different roles in the cell. Finally, chloroplast import and fractionation assays and immunogold localization of SCY2-green fluorescent protein fusion proteins in root tissues indicated that SCY2 is part of an envelope-localized Sec system. Our data suggest that SCY2 and SECA2 function in Sec-mediated integration and translocation processes at the inner envelope membrane.
Collapse
|
42
|
In silico methods for identifying organellar and suborganellar targeting peptides in Arabidopsis chloroplast proteins and for predicting the topology of membrane proteins. Methods Mol Biol 2011; 774:243-80. [PMID: 21822844 DOI: 10.1007/978-1-61779-234-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous experimental and in silico approaches have been developed for attempting to identify the -subcellular localisation of proteins. Approximately 2,000-4,000 proteins are thought to be targeted to plastids in plants, but a complete and unambiguous catalogue has yet to be drawn up. This article reviews the various prediction methods that identify plastid targeting sequences, and those that can help estimate location and topology within the plastid or plastid membranes. The most successful approaches are described in detail, with detailed notes to help avoid common pitfalls and advice on interpreting conflicting or ambiguous results. In most cases, it is best to try multiple approaches, and we also cover the powerful new integrated databases that provide a selected blend of experimental data and predictions.
Collapse
|
43
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
44
|
Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. THE PLANT CELL 2010; 22:1909-35. [PMID: 20543028 PMCID: PMC2910980 DOI: 10.1105/tpc.110.073874] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/10/2010] [Accepted: 05/25/2010] [Indexed: 05/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans the chloroplast envelope and that the cytosolic C terminus of ABAR interacts with a group of WRKY transcription factors (WRKY40, WRKY18, and WRKY60) that function as negative regulators of ABA signaling in seed germination and postgermination growth. WRKY40, a central negative regulator, inhibits expression of ABA-responsive genes, such as ABI5. In response to a high level of ABA signal that recruits WRKY40 from the nucleus to the cytosol and promotes ABAR-WRKY40 interaction, ABAR relieves the ABI5 gene of inhibition by repressing WRKY40 expression. These findings describe a unique ABA signaling pathway from the early signaling events to downstream gene expression.
Collapse
Affiliation(s)
- Yi Shang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Zhi-Qiang Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Zheng Cao
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Chao Mei
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Xin
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Fu-Qing Wu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Xiao-Fang Wang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Shu-Yuan Du
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Jiang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Xiao-Feng Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhao
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Hai-Li Sun
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Rui Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yong-Tao Yu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Address correspondence to
| |
Collapse
|
45
|
Viana AAB, Li M, Schnell DJ. Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J Biol Chem 2010; 285:12948-60. [PMID: 20194502 DOI: 10.1074/jbc.m110.109744] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner envelope membrane (IEM) of the chloroplast plays key roles in controlling metabolite transport between the organelle and cytoplasm and is a major site of lipid and membrane synthesis within the organelle. IEM biogenesis requires the import and integration of nucleus-encoded membrane proteins. Previous reports have led to the conclusion that membrane proteins are inserted into the IEM during protein import from the cytoplasm via a stop-transfer mechanism or are completely imported into the stroma and then inserted into the IEM in a post-import mechanism. In this study, we examined the determinants for each pathway by comparing the targeting of APG1 (albino or pale green mutant 1), an example of a stop-transfer substrate, and atTic40, an example of a post-import substrate. We show that the APG1 transmembrane domain is sufficient to direct stop-transfer insertion. The APG1 transmembrane domain also functions as a topology determinant. We also show that the ability of the post-import signals within atTic40 to target proteins to the IEM is dependent upon their context within the full protein sequence. In the incorrect context, the atTic40 signals can behave as stop-transfer signals or fail to target fusion proteins to the IEM. These data suggest that the post-import pathway signals are complex and have evolved to avoid stop-transfer insertion.
Collapse
Affiliation(s)
- Antonio A B Viana
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
46
|
Abstract
Plastids are a heterogeneous family of organelles found ubiquitously in plants and algal cells. Most prominent are the chloroplasts, which carry out such essential processes as photosynthesis and the biosynthesis of fatty acids as well as of amino acids. As mitochondria, chloroplasts are derived from a single endosymbiotic event. They are believed to have evolved from an ancient cyanobacterium, which was engulfed by an early eukaryotic ancestor. During evolution the plastid genome has been greatly reduced and most of the genes have been transferred to the host nucleus. Consequently, more than 98% of all plastid proteins are translated on cytosolic ribosomes. They have to be posttranslationally targeted to and imported into the organelle. Targeting is assisted by cytosolic proteins which interact with proteins destined for plastids and thereby keep them in an import competent state. After reaching the target organelle, many proteins have to conquer the barrier of the chloroplast outer and inner envelope. This process is mediated by complex molecular machines in the outer (Toc complex) and inner (Tic complex) envelope of chloroplasts, respectively. Most proteins destined for the compartments inside the chloroplast contain a cleavable N-terminal transit peptide, whereas most of the outer envelope components insert into the membrane without such a targeting peptide.
Collapse
Affiliation(s)
- Penelope Strittmatter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried and Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians- Universität, Munich, Germany
| | | | | |
Collapse
|
47
|
Abstract
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized as precursors with N-terminal targeting signals called transit peptides. Novel machinery has evolved to specifically import these proteins from the cytosol into chloroplasts. This machinery consists of more than a dozen components located in and around the chloroplast envelope, including a pair of GTPase receptors, a beta-barrel-type channel across the outer membrane, and an AAA(+)-type motor in the stroma. How individual components assemble into functional subcomplexes and the sequential steps of the translocation process are being mapped out. An increasing number of noncanonical import pathways, including a pathway with initial transport through the endomembrane system, is being revealed. Multiple levels of control on protein transport into chloroplasts have evolved, including the development of two receptor subfamilies, one for photosynthetic proteins and one for housekeeping proteins. The functions or expression levels of some translocon components are further adjusted according to plastid type, developmental stage, and metabolic conditions.
Collapse
Affiliation(s)
- Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
48
|
Martin JR, Harwood JH, McCaffery MW, Fernandez DE, Cline KC. Localization and integration of thylakoid protein translocase subunit cpTatC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:831-42. [PMID: 19207210 PMCID: PMC2787251 DOI: 10.1111/j.1365-313x.2009.03816.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.
Collapse
Affiliation(s)
- Jonathan R. Martin
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| | - Jessica H. Harwood
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
| | - Michael W. McCaffery
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
| | - Kenneth C. Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA
| |
Collapse
|
49
|
Aronsson H, Jarvis P. The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Cline K, Dabney-Smith C. Plastid protein import and sorting: different paths to the same compartments. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:585-92. [PMID: 18990609 PMCID: PMC2628589 DOI: 10.1016/j.pbi.2008.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 05/18/2023]
Abstract
Chloroplasts contain several thousand different proteins, of which more than 95% are encoded on nuclear genes, synthesized in the cytosol as precursor proteins, and imported into the organelle. The major pathways for import and routing have been described; a general import apparatus in the chloroplast envelope and several ancestral translocases in the thylakoid membranes. In this update we focus on some interesting and emerging areas: the Tat translocase, which operates in parallel with the Sec system but transports folded proteins; different routes to the envelope membranes, which promises an understanding of the ways the Tic apparatus sorts transmembrane domains (TMDs) and may also uncover developmental relationships between envelope and thylakoids; and novel routes for proteins into chloroplasts including delivery from the secretory system.
Collapse
Affiliation(s)
- Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Graduate Program, 1109 Fifield Hall, University of Florida, Gainesville, FL 32611,
| | | |
Collapse
|