1
|
van Galen M, Bok A, Peshkovsky T, van der Gucht J, Albada B, Sprakel J. De novo DNA-based catch bonds. Nat Chem 2024; 16:1943-1950. [PMID: 38914727 PMCID: PMC11611730 DOI: 10.1038/s41557-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
All primary chemical interactions weaken under mechanical stress, which imposes fundamental mechanical limits on the materials constructed from them. Biological materials combine plasticity with strength, for which nature has evolved a unique solution-catch bonds, supramolecular interactions that strengthen under tension. Biological catch bonds use force-gated conformational switches to convert weak bonds into strong ones. So far, catch bonds remain exclusive to nature, leaving their potential as mechanoadaptive elements in synthetic systems untapped. Here we report the design and realization of artificial catch bonds. Starting from a minimal set of thermodynamic design requirements, we created a molecular motif capable of catch bonding. It consists of a DNA duplex featuring a cryptic domain that unfolds under tension to strengthen the interaction. We show that these catch bonds recreate force-enhanced rolling adhesion, a hallmark feature of biological catch bonds in bacteria and leukocytes. This Article introduces catch bonds into the synthetic domain, and could lead to the creation of artificial catch-bonded materials.
Collapse
Affiliation(s)
- Martijn van Galen
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Annemarie Bok
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Taieesa Peshkovsky
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, Netherlands.
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands.
| |
Collapse
|
2
|
Quapp W, Bofill JM. Theory and Examples of Catch Bonds. J Phys Chem B 2024; 128:4097-4110. [PMID: 38634732 DOI: 10.1021/acs.jpcb.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We discuss slip bonds, catch bonds, and the tug-of-war mechanism using mathematical arguments. The aim is to explain the theoretical tool of molecular potential energy surfaces (PESs). For this, we propose simple 2-dimensional surface models to demonstrate how a molecule under an external force behaves. Examples are selectins. Catch bonds, in particular, are explained in more detail, and they are contrasted to slip bonds. We can support special two-dimensional molecular PESs for E- and L-selectin which allow the catch bond property. We demonstrate that Newton trajectories (NT) are powerful tools to describe these phenomena. NTs form the theoretical background of mechanochemistry.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, Leipzig D-04009, Germany
| | - Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
3
|
Barkan CO, Bruinsma RF. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds. Proc Natl Acad Sci U S A 2024; 121:e2315866121. [PMID: 38294934 PMCID: PMC10861892 DOI: 10.1073/pnas.2315866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.
Collapse
Affiliation(s)
- Casey O. Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| | - Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| |
Collapse
|
4
|
Li L, Ding Q, Wu Y, Zheng Z, Zhang X, Zhang M, Long M, Lü S. Binding of different hyaluronan to CD44 mediates distinct cell adhesion dynamics under shear flow. FEBS J 2023; 290:4695-4711. [PMID: 37254632 DOI: 10.1111/febs.16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
As a known receptor-ligand pair for mediating cell-cell or cell-extracellular matrix adhesions, cluster of differentiation 44 (CD44)-hyaluronan (HA) interactions are not only determined by molecular weight (MW) diversity of HA, but also are regulated by external physical or mechanical factors. However, the coupling effects of HA MW and shear flow are still unclear. Here, we compared the differences between high molecular weight HA (HHA) and low molecular weight HA (LHA) binding to CD44 under varied shear stresses. The results demonstrated that HHA dominated the binding phase but LHA was in favour of the shear resistance phase, respectively, under shear stress range ≤ 1.0 dyne·cm-2 . This difference was attributed to the high binding strength of the CD44-HHA interaction, as well as the optimal distribution matching between both CD44 and HA sides. Activation of the intracellular signal pathway was sensitive to both HA MW and shear flow. Our findings also indicate that only CD44-HHA interaction under shear stress of 0.2 dyne·cm-2 could significantly enhance the clustering of CD44, as well as induce the increase in both CD44 and CD18 expression. The present study offers the basis for further quantification of the features of CD44-HA interactions and their biological functions.
Collapse
Affiliation(s)
- Linda Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Qihan Ding
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zheng
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Moldovan L, Song CH, Chen YC, Wang HJ, Ju LA. Biomembrane force probe (BFP): Design, advancements, and recent applications to live-cell mechanobiology. EXPLORATION (BEIJING, CHINA) 2023; 3:20230004. [PMID: 37933233 PMCID: PMC10624387 DOI: 10.1002/exp.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 11/08/2023]
Abstract
Mechanical forces play a vital role in biological processes at molecular and cellular levels, significantly impacting various diseases such as cancer, cardiovascular disease, and COVID-19. Recent advancements in dynamic force spectroscopy (DFS) techniques have enabled the application and measurement of forces and displacements with high resolutions, providing crucial insights into the mechanical pathways underlying these diseases. Among DFS techniques, the biomembrane force probe (BFP) stands out for its ability to measure bond kinetics and cellular mechanosensing with pico-newton and nano-meter resolutions. Here, a comprehensive overview of the classical BFP-DFS setup is presented and key advancements are emphasized, including the development of dual biomembrane force probe (dBFP) and fluorescence biomembrane force probe (fBFP). BFP-DFS allows us to investigate dynamic bond behaviors on living cells and significantly enhances the understanding of specific ligand-receptor axes mediated cell mechanosensing. The contributions of BFP-DFS to the fields of cancer biology, thrombosis, and inflammation are delved into, exploring its potential to elucidate novel therapeutic discoveries. Furthermore, future BFP upgrades aimed at improving output and feasibility are anticipated, emphasizing its growing importance in the field of cell mechanobiology. Although BFP-DFS remains a niche research modality, its impact on the expanding field of cell mechanobiology is immense.
Collapse
Affiliation(s)
- Laura Moldovan
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
| | - Caroline Haoran Song
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| | - Yiyao Catherine Chen
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
| | - Haoqing Jerry Wang
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| | - Lining Arnold Ju
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
6
|
Faust MA, Rasé VJ, Lamb TJ, Evavold BD. What's the Catch? The Significance of Catch Bonds in T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:333-342. [PMID: 37459191 PMCID: PMC10732538 DOI: 10.4049/jimmunol.2300141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 07/20/2023]
Abstract
One of the main goals in T cell biology has been to investigate how TCR recognition of peptide:MHC (pMHC) determines T cell phenotype and fate. Ag recognition is required to facilitate survival, expansion, and effector function of T cells. Historically, TCR affinity for pMHC has been used as a predictor for T cell fate and responsiveness, but there have now been several examples of nonfunctional high-affinity clones and low-affinity highly functional clones. Recently, more attention has been paid to the TCR being a mechanoreceptor where the key biophysical determinant is TCR bond lifetime under force. As outlined in this review, the fundamental parameters between the TCR and pMHC that control Ag recognition and T cell triggering are affinity, bond lifetime, and the amount of force at which the peak lifetime occurs.
Collapse
Affiliation(s)
- Michael A Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Viva J Rasé
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Rollins ZA, Chan A, Shirure VS, George SC. Receptor-ligand non-equilibrium kinetics (RLNEK) 1.0: An integrated Trackmate laminar flow chamber analysis. J Immunol Methods 2022; 511:113381. [PMID: 36341963 DOI: 10.1016/j.jim.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Although parallel plate flow chamber assays are widely performed, extraction of kinetic parameters is limited to specialized labs with mathematical expertise and customized video-microscopy tracking tools. The recent development of Trackmate has increased researcher accessibility to tracking particles in video-microscopy experiments; however, there is a lack of tools that analyze this tracking information. We report a software tool, compatible with Trackmate, that extracts Receptor Ligand Non-Equilibrium Kinetic (RLNEK) parameters from video-microscopy data. This software should be of particular interest to the community of researchers and scientists interrogating the target-specific binding and release of immune cells.
Collapse
Affiliation(s)
- Zachary A Rollins
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Allison Chan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Dam T, Chouliara M, Junghans V, Jönsson P. Supported Lipid Bilayers and the Study of Two-Dimensional Binding Kinetics. Front Mol Biosci 2022; 9:833123. [PMID: 35252352 PMCID: PMC8896763 DOI: 10.3389/fmolb.2022.833123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Binding between protein molecules on contacting cells is essential in initiating and regulating several key biological processes. In contrast to interactions between molecules in solution, these events are restricted to the two-dimensional (2D) plane of the meeting cell surfaces. However, converting between the more commonly available binding kinetics measured in solution and the so-called 2D binding kinetics has proven a complicated task since for the latter several factors other than the protein-protein interaction per se have an impact. A few important examples of these are: protein density, membrane fluctuations, force on the bond and the use of auxiliary binding molecules. The development of model membranes, and in particular supported lipid bilayers (SLBs), has made it possible to simplify the studied contact to analyze these effects and to measure 2D binding kinetics of individual protein-protein interactions. We will in this review give an overview of, and discuss, how different SLB systems have been used for this and compare different methods to measure binding kinetics in cell-SLB contacts. Typically, the SLB is functionalized with fluorescently labelled ligands whose interaction with the corresponding receptor on a binding cell can be detected. This interaction can either be studied 1) by an accumulation of ligands in the cell-SLB contact, whose magnitude depends on the density of the proteins and binding affinity of the interaction, or 2) by tracking single ligands in the SLB, which upon interaction with a receptor result in a change of motion of the diffusing ligand. The advantages and disadvantages of other methods measuring 2D binding kinetics will also be discussed and compared to the fluorescence-based methods. Although binding kinetic measurements in cell-SLB contacts have provided novel information on how ligands interact with receptors in vivo the number of these measurements is still limited. This is influenced by the complexity of the system as well as the required experimental time. Moreover, the outcome can vary significantly between studies, highlighting the necessity for continued development of methods to study 2D binding kinetics with higher precision and ease.
Collapse
Affiliation(s)
- Tommy Dam
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Victoria Junghans
- Nuffield Department of Medicine, CAMS Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
- *Correspondence: Peter Jönsson,
| |
Collapse
|
9
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
10
|
Li L, Ding Q, Zhou J, Wu Y, Zhang M, Guo X, Long M, Lü S. Distinct binding kinetics of E-, P- and L-selectins to CD44. FEBS J 2021; 289:2877-2894. [PMID: 34839587 DOI: 10.1111/febs.16303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Molecular-level selectin-cluster of differentiation 44 (CD44) interactions are far from clear because of the complexity and diversity of CD44 glycosylation and isoforms expressed on various types of cells. By combining experimental measurements and simulation predictions, the binding kinetics of three selectin members to the recombinant CD44 were quantified and the corresponding microstructural mechanisms were explored, respectively. Experimental results showed that the E-selectin-CD44 interactions mainly mediated the firm adhesion of microbeads under shear flow with the strongest rupture force. P- and L-selectins had similar interaction strength but different association and dissociation rates by mediating stable rolling and transient adhesions of microbeads, respectively. Molecular docking and molecular dynamics (MD) simulations predicted that the binding epitopes of CD44 to selectins are all located at the side face of each selectin, although the interfaces denoted as the hinge region are between lectin and epidermal growth factor domains of E-selectin, Lectin domain side of P-selectin and epidermal growth factor domain side of L-selectin, respectively. The lowest binding free energy, the largest rupture force and the longest lifetime for E-selectin, as well as the comparable values for P- and L-selectins, demonstrated in both equilibration and steered MD simulations, supported the above experimental results. These results offer basic data for understanding the functional differences of selectin-CD44 interactions.
Collapse
Affiliation(s)
- Linda Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Qihan Ding
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhou
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xingming Guo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Stabilization of the Hinge Region of Human E-selectin Enhances Binding Affinity to Ligands Under Force. Cell Mol Bioeng 2021; 14:65-74. [PMID: 33633813 PMCID: PMC7878631 DOI: 10.1007/s12195-021-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction E-selectin is a member of the selectin family of cell adhesion molecules expressed on the plasma membrane of inflamed endothelium and facilitates initial leukocyte tethering and subsequent cell rolling during the early stages of the inflammatory response via binding to glycoproteins expressing sialyl LewisX and sialyl LewisA (sLeX/A). Existing crystal structures of the extracellular lectin/EGF-like domain of E-selectin complexed with sLeX have revealed that E-selectin can exist in two conformation states, a low affinity (bent) conformation, and a high affinity (extended) conformation. The differentiating characteristic of the two conformations is the interdomain angle between the lectin and the EGF-like domain. Methods Using molecular dynamics (MD) simulations we observed that in the absence of tensile force E-selectin undergoes spontaneous switching between the two conformational states at equilibrium. A single amino acid substitution at residue 2 (serine to tyrosine) on the lectin domain favors the extended conformation. Results Steered molecular dynamics (SMD) simulations of E-selectin and PSGL-1 in conjunction with experimental cell adhesion assays show a longer binding lifetime of E-selectin (S2Y) to PSGL-1 compared to wildtype protein. Conclusions The findings in this study advance our understanding into how the structural makeup of E-selectin allosterically influences its adhesive dynamics.
Collapse
|
12
|
Biphasic Force-Regulated Phosphorylation Site Exposure and Unligation of ERM Bound with PSGL-1: A Novel Insight into PSGL-1 Signaling via Steered Molecular Dynamics Simulations. Int J Mol Sci 2020; 21:ijms21197064. [PMID: 32992803 PMCID: PMC7583015 DOI: 10.3390/ijms21197064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The PSGL-1-actin cytoskeleton linker proteins ezrin/radixin/moesin (ERM), an adaptor between P-selectin glycoprotein ligand-1 (PSGL-1) and spleen tyrosine kinase (Syk), is a key player in PSGL-1 signal, which mediates the adhesion and recruitment of leukocytes to the activated endothelial cells in flow. Binding of PSGL-1 to ERM initials intracellular signaling through inducing phosphorylation of Syk, but effects of tensile force on unligation and phosphorylation site exposure of ERM bound with PSGL-1 remains unclear. To answer this question, we performed a series of so-called “ramp-clamp” steered molecular dynamics (SMD) simulations on the radixin protein FERM domain of ERM bound with intracellular juxtamembrane PSGL-1 peptide. The results showed that, the rupture force of complex pulled with constant velocity was over 250 pN, which prevented the complex from breaking in front of pull-induced exposure of phosphorylation site on immunoreceptor tyrosine activation motif (ITAM)-like motif of ERM; the stretched complex structure under constant tensile forces <100 pN maintained on a stable quasi-equilibrium state, showing a high mechano-stabilization of the clamped complex; and, in consistent with the force-induced allostery at clamped stage, increasing tensile force (<50 pN) would decrease the complex dissociation probability but facilitate the phosphorylation site exposure, suggesting a force-enhanced biophysical connectivity of PSGL-1 signaling. These force-enhanced characters in both phosphorylation and unligation of ERM bound with PSGL-1 should be mediated by a catch-slip bond transition mechanism, in which four residue interactions on binding site were involved. This study might provide a novel insight into the transmembrane PSGL-1 signal, its biophysical connectivity and molecular structural basis for cellular immune responses in mechano-microenvironment, and showed a rational SMD-based computer strategy for predicting structure-function relation of protein under loads.
Collapse
|
13
|
An C, Hu W, Gao J, Ju BF, Obeidy P, Zhao YC, Tu X, Fang W, Ju LA, Chen W. Ultra-stable Biomembrane Force Probe for Accurately Determining Slow Dissociation Kinetics of PD-1 Blockade Antibodies on Single Living Cells. NANO LETTERS 2020; 20:5133-5140. [PMID: 32530632 DOI: 10.1021/acs.nanolett.0c01360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immune checkpoint blockade with monoclonal antibodies (mAbs) that target programmed cell death protein-1 (PD-1) has remarkably revolutionized cancer therapy. Their binding kinetics measured by surface plasmon resonance does not always correlate well with their immunotherapeutic efficacies, mainly due to the lack of two-dimensional cell plasma membrane and the capability of force sensing and manipulation. In this regard, based on a more suitable and ultra-sensitive biomechanical nanotool, biomembrane force probe (BFP), we developed a Double-edge Smart Feedback control system as an ultra-stable platform to characterize ultra-long bond lifetimes of receptor-ligand binding on living cells. We further benchmarked the dissociation kinetics for three clinically approved PD-1 blockade mAbs (Nivolumab, Pembrolizumab, and Camrelizumab), intriguingly correlating well with the objective response rates in the hepatocellular carcinoma second-line treatment. This ultra-stable BFP potentially provides a compelling kinetic platform to direct the screening, optimization, and clinical selection of therapeutic antibodies in the future.
Collapse
Affiliation(s)
- Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Jie Gao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Bing-Feng Ju
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Peyman Obeidy
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
| | - Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
- Heart Research Institute, Newtown, New South Wales Australia, 2042
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
- State Key Laboratory for Modern Optical Instrumentation and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
14
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
15
|
Amar K, Suni II, Chowdhury F. A quartz crystal microbalance based study reveals living cell loading rate via αvβ3 integrins. Biochem Biophys Res Commun 2020; 524:1051-1056. [DOI: 10.1016/j.bbrc.2020.01.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
|
16
|
Aleisa FA, Sakashita K, Lee JM, AbuSamra DB, Al Alwan B, Nozue S, Tehseen M, Hamdan SM, Habuchi S, Kusakabe T, Merzaban JS. Functional binding of E-selectin to its ligands is enhanced by structural features beyond its lectin domain. J Biol Chem 2020; 295:3719-3733. [PMID: 31949047 PMCID: PMC7076219 DOI: 10.1074/jbc.ra119.010910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/12/2020] [Indexed: 12/19/2022] Open
Abstract
Selectins are key to mediating interactions involved in cellular adhesion and migration, underlying processes such as immune responses, metastasis, and transplantation. Selectins are composed of a lectin domain, an epidermal growth factor (EGF)-like domain, multiple short consensus repeats (SCRs), a transmembrane domain, and a cytoplasmic tail. It is well-established that the lectin and EGF domains are required to mediate interactions with ligands; however, the contributions of the other domains in mediating these interactions remain obscure. Using various E-selectin constructs produced in a newly developed silkworm-based expression system and several assays performed under both static and physiological flow conditions, including flow cytometry, glycan array analysis, surface plasmon resonance, and cell-rolling assays, we show here that a reduction in the number of SCR domains is correlated with a decline in functional E-selectin binding to hematopoietic cell E- and/or L-selectin ligand (HCELL) and P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, the binding was significantly improved through E-selectin dimerization and by a substitution (A28H) that mimics an extended conformation of the lectin and EGF domains. Analyses of the association and dissociation rates indicated that the SCR domains, conformational extension, and dimerization collectively contribute to the association rate of E-selectin-ligand binding, whereas just the lectin and EGF domains contribute to the dissociation rate. These findings provide the first evidence of the critical role of the association rate in functional E-selectin-ligand interactions, and they highlight that the SCR domains have an important role that goes beyond the structural extension of the lectin and EGF domains.
Collapse
Affiliation(s)
- Fajr A Aleisa
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Kosuke Sakashita
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Dina B AbuSamra
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Bader Al Alwan
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Shuho Nozue
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Satoshi Habuchi
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 23955-6900.
| |
Collapse
|
17
|
Rolling adhesion of leukocytes on soft substrates: Does substrate stiffness matter? J Biomech 2019; 91:32-42. [DOI: 10.1016/j.jbiomech.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/05/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
|
18
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
19
|
Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J Cell Sci 2019; 132:jcs.216911. [PMID: 30659118 DOI: 10.1242/jcs.216911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hyunjung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suzanne G Eskin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322, USA .,Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Geroge W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Larry V McIntire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Li Y, Fang Y, Wu J. [Investigation of the influence of mechanical signals on the structure of CD44/FERM complex via molecular dynamics simulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:501-508. [PMID: 30124011 PMCID: PMC9935118 DOI: 10.7507/1001-5515.201801051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/03/2022]
Abstract
The intracellular domain of clusters of differentiation 44 (CD44) binding to the FERM (protein 4.1-ezrin-radixin-moesin) domain of ERM (ezrin/radixin/moesin) proteins and furthermore triggering the recruitment of spleen tyrosine kinase (Syk) are very important in the process of tumor cell adhesion, migration and proliferation. At first, it was found that CD44/FERM structure was stable by observing CD44/FERM complex conformation and analyzing the interaction of interface residues both in static crystal structure and in equilibrium process. Meanwhile, unconventional immunoreceptor tyrosine-based activation motif (ITAM-like), and phosphorylation sites Y191 and Y205 were buried in FERM domain, which would hinder the phosphorylation of ERM proteins, the recruitment of Syk and subsequent signal transduction. Then, steered molecular dynamics simulation was applied to simulate the interaction between CD44 and FERM domain in the mechanical environment. The results showed that mechanical signal could induce the exposure of the ITAM-like motif and phosphorylation site Y205 by tracking and analyzing CD44/FERM complex conformational changes and the solvent-accessible surface area. This study revealed how the force regulates the activation of downstream signal through CD44 intracellular domain for the first time, and would be useful for further understanding the adhesion and migration pathway of cancer cells and the design of antitumor drugs.
Collapse
Affiliation(s)
- Yufeng Li
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P.R.China
| | - Ying Fang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P.R.China
| | - Jianhua Wu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006,
| |
Collapse
|
21
|
Adhikari S, Moran J, Weddle C, Hinczewski M. Unraveling the mechanism of the cadherin-catenin-actin catch bond. PLoS Comput Biol 2018; 14:e1006399. [PMID: 30118477 PMCID: PMC6114904 DOI: 10.1371/journal.pcbi.1006399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/29/2018] [Accepted: 07/24/2018] [Indexed: 11/19/2022] Open
Abstract
The adherens junctions between epithelial cells involve a protein complex formed by E-cadherin, β-catenin, α-catenin and F-actin. The stability of this complex was a puzzle for many years, since in vitro studies could reconstitute various stable subsets of the individual proteins, but never the entirety. The missing ingredient turned out to be mechanical tension: a recent experiment that applied physiological forces to the complex with an optical tweezer dramatically increased its lifetime, a phenomenon known as catch bonding. However, in the absence of a crystal structure for the full complex, the microscopic details of the catch bond mechanism remain mysterious. Building on structural clues that point to α-catenin as the force transducer, we present a quantitative theoretical model for how the catch bond arises, fully accounting for the experimental lifetime distributions. The underlying hypothesis is that force induces a rotational transition between two conformations of α-catenin, overcoming a significant energy barrier due to a network of salt bridges. This transition allosterically regulates the energies at the interface between α-catenin and F-actin. The model allows us to predict these energetic changes, as well as highlighting the importance of the salt bridge rotational barrier. By stabilizing one of the α-catenin states, this barrier could play a role in how the complex responds to additional in vivo binding partners like vinculin. Since significant conformational energy barriers are a common feature of other adhesion systems that exhibit catch bonds, our model can be adapted into a general theoretical framework for integrating structure and function in a variety of force-regulated protein complexes.
Collapse
Affiliation(s)
- Shishir Adhikari
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jacob Moran
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christopher Weddle
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
22
|
Guo S, Tang Q, Yao M, You H, Le S, Chen H, Yan J. Structural-elastic determination of the force-dependent transition rate of biomolecules. Chem Sci 2018; 9:5871-5882. [PMID: 30079200 PMCID: PMC6050536 DOI: 10.1039/c8sc01319e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The force-dependent unfolding/refolding of protein domains and ligand-receptor association/dissociation are crucial for mechanosensitive functions, while many aspects of how force affects the transition rate still remain poorly understood. Here, we report a new analytical expression of the force-dependent rate of molecules for transitions overcoming a single barrier. Unlike previous models derived in the framework of Kramers theory that requires a presumed one-dimensional free energy landscape, our model is derived based on the structural-elastic properties of molecules which are not restricted by the shape and dimensionality of the underlying free energy landscape. Importantly, the parameters of this model provide direct information on the structural-elastic features of the molecules between their transition and initial states. We demonstrate the applications of this model by applying it to explain force-dependent transition kinetics for several molecules and predict the structural-elastic properties of the transition states of these molecules.
Collapse
Affiliation(s)
- Shiwen Guo
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
| | - Qingnan Tang
- Department of Physics , National University of Singapore , Singapore 117551
| | - Mingxi Yao
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
| | - Huijuan You
- School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China 430030
| | - Shimin Le
- Department of Physics , National University of Singapore , Singapore 117551
| | - Hu Chen
- Department of Physics , Xiamen University , Xiamen , China 361005
| | - Jie Yan
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for Bioimaging Sciences , National University of Singapore , Singapore 117557
| |
Collapse
|
23
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
24
|
Li Q, Wayman A, Lin J, Fang Y, Zhu C, Wu J. Flow-Enhanced Stability of Rolling Adhesion through E-Selectin. Biophys J 2017; 111:686-699. [PMID: 27558713 DOI: 10.1016/j.bpj.2016.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Selectin-ligand interactions mediate tethering and rolling of circulating leukocytes on the vessel wall during inflammation. Extensive study has been devoted to elucidating the kinetic and mechanical constraints of receptor-ligand-interaction-mediated leukocyte adhesion, yet many questions remain unanswered. Here, we describe our design of an inverted flow chamber to compare adhesions of HL-60 cells to E-selectin in the upright and inverted orientations. This new, to our knowledge, design allowed us to evaluate the effect of gravity and to investigate the mechanisms of flow-enhanced adhesion. Cell rolling in the two orientations was qualitatively similar, and the quantitative differences can be explained by the effect of gravity, which promotes free-flowing cells to tether and detached cells to reattach to the surface in the upright orientation but prevents such attachment from happening in the inverted orientation. We characterized rolling stability by the lifetime of rolling adhesion and detachment of rolling cells, which could be easily measured in the inverted orientation, but not in the upright orientation because of the reattachment of transiently detached cells. Unlike the transient tether lifetime of E-selectin-ligand interaction, which exhibited triphasic slip-catch-slip bonds, the lifetime of rolling adhesion displayed a biphasic trend that first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. We have developed a minimal mathematical model for the probability of rolling adhesion. Comparison of the theoretical predictions to data has provided model validation and allowed evaluation of the effective two-dimensional association on-rate, kon, and the binding affinity, Ka, of the E-selectin-ligand interaction. kon increased with the wall shear stress from 0.1 to 0.7 dyn/cm(2). Ka first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. Our results provide insights into how the interplay between flow-dependent on-rate and off-rate of E-selectin-ligand bonds determine flow-enhanced cell rolling stability.
Collapse
Affiliation(s)
- Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Annica Wayman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jiangguo Lin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jianhua Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Wedepohl S, Dernedde J, Vahedi-Faridi A, Tauber R, Saenger W, Bulut H. Reducing Macro- and Microheterogeneity of N-Glycans Enables the Crystal Structure of the Lectin and EGF-Like Domains of Human L-Selectin To Be Solved at 1.9 Å Resolution. Chembiochem 2017; 18:1338-1345. [PMID: 28489325 DOI: 10.1002/cbic.201700220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/07/2023]
Abstract
L-Selectin, a cell-adhesion receptor on the surface of most leukocytes, contains seven N-glycosylation sites. In order to obtain the crystal structure of human L-selectin, we expressed a shortened version of L-selectin comprising the C-type lectin and EGF-like domains (termed LE) and systematically analysed mutations of the three glycosylation sites (Asn22, Asn66 and Asn139) in order to reduce macroheterogeneity. After we further removed microheterogeneity, we obtained crystals that diffracted X-rays up to 1.9 Å from a variant (LE010) with exchanges N22Q and N139Q and one GlcNAc2 Man5 N-glycan chain attached to Asn66. Crystal-structure analysis showed that the terminal mannose of GlcNAc2 Man5 of one LE010 molecule was coordinated to Ca2+ in the binding site of a symmetry-related LE010. The orientation of the lectin and EGF-like domain was similar to the described "bent" conformation of E- and P-selectins. The Ca2+ -binding site reflects the binding mode seen in E- and P-selectin structures co-crystallised with ligands.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Haydar Bulut
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| |
Collapse
|
26
|
Liu Z, Yago T, Zhang N, Panicker SR, Wang Y, Yao L, Mehta-D'souza P, Xia L, Zhu C, McEver RP. L-selectin mechanochemistry restricts neutrophil priming in vivo. Nat Commun 2017; 8:15196. [PMID: 28497779 PMCID: PMC5437312 DOI: 10.1038/ncomms15196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.
Collapse
Affiliation(s)
- Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Sumith R. Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Padmaja Mehta-D'souza
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rodger P. McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
27
|
Chakrabarti S, Hinczewski M, Thirumalai D. Phenomenological and microscopic theories for catch bonds. J Struct Biol 2017; 197:50-56. [PMID: 27046010 PMCID: PMC5580263 DOI: 10.1016/j.jsb.2016.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Lifetimes of bound states of protein complexes or biomolecule folded states typically decrease when subject to mechanical force. However, a plethora of biological systems exhibit the counter-intuitive phenomenon of catch bonding, where non-covalent bonds become stronger under externally applied forces. The quest to understand the origin of catch-bond behavior has led to the development of phenomenological and microscopic theories that can quantitatively recapitulate experimental data. Here, we assess the successes and limitations of such theories in explaining experimental data. The most widely applied approach is a phenomenological two-state model, which fits all of the available data on a variety of complexes: actomyosin, kinetochore-microtubule, selectin-ligand, and cadherin-catenin binding to filamentous actin. With a primary focus on the selectin family of cell-adhesion complexes, we discuss the positives and negatives of phenomenological models and the importance of evaluating the physical relevance of fitting parameters. We describe a microscopic theory for selectins, which provides a structural basis for catch bonds and predicts a crucial allosteric role for residues Asn82-Glu88. We emphasize the need for new theories and simulations that can mimic experimental conditions, given the complex response of cell adhesion complexes to force and their potential role in a variety of biological contexts.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, OH 44106, United States
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
28
|
Mehta-D'souza P, Klopocki AG, Oganesyan V, Terzyan S, Mather T, Li Z, Panicker SR, Zhu C, McEver RP. Glycan Bound to the Selectin Low Affinity State Engages Glu-88 to Stabilize the High Affinity State under Force. J Biol Chem 2016; 292:2510-2518. [PMID: 28011641 DOI: 10.1074/jbc.m116.767186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Selectin interactions with fucosylated glycan ligands mediate leukocyte rolling in the vasculature under shear forces. Crystal structures of P- and E-selectin suggest a two-state model in which ligand binding to the lectin domain closes loop 83-89 around the Ca2+ coordination site, enabling Glu-88 to engage Ca2+ and fucose. This triggers further allostery that opens the lectin/EGF domain hinge. The model posits that force accelerates transition from the bent (low affinity) to the extended (high affinity) state. However, transition intermediates have not been described, and the role of Glu-88 in force-assisted allostery has not been examined. Here we report the structure of the lectin and EGF domains of L-selectin bound to a fucose mimetic; that is, a terminal mannose on an N-glycan attached to a symmetry-related molecule. The structure is a transition intermediate where loop 83-89 closes to engage Ca2+ and mannose without triggering allostery that opens the lectin/EGF domain hinge. We used three complementary assays to compare ligand binding to WT selectins and to E88D selectins that replaced Glu-88 with Asp. Soluble P-selectinE88D bound with an ∼9-fold lower affinity to PSGL-1, a physiological ligand, due to faster dissociation. Adhesion frequency experiments with a biomembrane force probe could not detect interactions of P-selectinE88D with PSGL-1. Cells expressing transmembrane P-selectinE88D or L-selectinE88D detached from immobilized ligands immediately after initiating flow. Cells expressing E-selectinE88D rolled but detached faster. Our data support a two-state model for selectins in which Glu-88 must engage ligand to trigger allostery that stabilizes the high affinity state under force.
Collapse
Affiliation(s)
| | | | | | - Simon Terzyan
- Crystallography Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | | | - Zhenhai Li
- the Coulter Department of Biomedical Engineering
| | | | - Cheng Zhu
- the Coulter Department of Biomedical Engineering.,Woodruff School of Mechanical Engineering, and.,the Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rodger P McEver
- From the Cardiovascular Biology Research Program and .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
29
|
Abstract
Mechanical force regulates a broad range of molecular interactions in biology. Three types of counterintuitive mechanical regulation of receptor–ligand dissociation have been described. Catch bonds are strengthened by constant forces, as opposed to slip bonds that are weakened by constant forces. The phenomenon that bonds become stronger with prior application of cyclic forces is termed cyclic mechanical reinforcement (CMR). Slip and catch bonds have respectively been explained by two-state models. However, they assume fast equilibration between internal states and hence are inadequate for CMR. Here we propose a three-state model for CMR where both loading and unloading regulate the transition of bonds among the short-lived, intermediate, and long-lived state. Cyclic forces favor bonds in the long-lived state, hence greatly prolonging their lifetimes. The three-state model explains the force history effect and agrees with the experimental CMR effect of integrin α5β1–fibronectin interaction. This model helps decipher the distinctive ways by which molecular bonds are mechanically strengthened: catch bonds by constant forces and CMR by cyclic forces. The different types of mechanical regulation may enable the cell to fine tune its mechanotransduction via membrane receptors.
Collapse
|
30
|
Li Z, Lee H, Zhu C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Exp Cell Res 2016; 349:85-94. [PMID: 27720950 DOI: 10.1016/j.yexcr.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation.
Collapse
Affiliation(s)
- Zhenhai Li
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
31
|
Jiang N, Chen W, Jothikumar P, Patel JM, Shashidharamurthy R, Selvaraj P, Zhu C. Effects of anchor structure and glycosylation of Fcγ receptor III on ligand binding affinity. Mol Biol Cell 2016; 27:3449-3458. [PMID: 27582391 PMCID: PMC5221579 DOI: 10.1091/mbc.e16-06-0470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 11/12/2022] Open
Abstract
The anchor structure of CD16 affects its binding affinity in a ligand-specific manner. The ligand binding affinity decreases for human IgG1 but increases for murine IgG2a when the anchor is changed from full to partial to none. Removing N-glycosylation from CD16 also increases the ligand binding affinity. Isoforms of the Fcγ receptor III (FcγRIII or CD16) are cell surface receptors for the Fc portion of IgG and important regulators of humoral immune responses. Different ligand binding kinetics of FcγRIII isoforms are obtained in three dimensions by surface plasmon resonance and in two dimensions by a micropipette adhesion frequency assay. We show that the anchor structure of CD16 isoforms isolated from the cell membrane affects their binding affinities in a ligand-specific manner. Changing the receptor anchor structure from full to partial to none decreases the ligand binding affinity for human IgG1 (hIgG1) but increases it for murine IgG2a (mIgG2a). Removing N-glycosylation from the CD16 protein core by tunicamycin also increases the ligand binding affinity. Molecular dynamics simulations indicate that deglycosylation at Asn-163 of CD16 removes the steric hindrance for the CD16-hIgG1 Fc binding and thus increases the binding affinity. These results highlight an unexpected sensitivity of ligand binding to the receptor anchor structure and glycosylation and suggest their respective roles in controlling allosterically the conformation of the ligand binding pocket of CD16.
Collapse
Affiliation(s)
- Ning Jiang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Wei Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Prithiviraj Jothikumar
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jaina M Patel
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | | | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
32
|
Rocheleau AD, Cao TM, Takitani T, King MR. Comparison of human and mouse E-selectin binding to Sialyl-Lewis(x). BMC STRUCTURAL BIOLOGY 2016; 16:10. [PMID: 27368167 PMCID: PMC4930595 DOI: 10.1186/s12900-016-0060-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
Background During inflammation, leukocytes are captured by the selectin family of adhesion receptors lining blood vessels to facilitate exit from the bloodstream. E-selectin is upregulated on stimulated endothelial cells and binds to several ligands on the surface of leukocytes. Selectin:ligand interactions are mediated in part by the interaction between the lectin domain and Sialyl-Lewis x (sLex), a tetrasaccharide common to selectin ligands. There is a high degree of homology between selectins of various species: about 72 and 60 % in the lectin and EGF domains, respectively. In this study, molecular dynamics, docking, and steered molecular dynamics simulations were used to compare the binding and dissociation mechanisms of sLex with mouse and human E-selectin. First, a mouse E-selectin homology model was generated using the human E-selectin crystal structure as a template. Results Mouse E-selectin was found to have a greater interdomain angle, which has been previously shown to correlate with stronger binding among selectins. sLex was docked onto human and mouse E-selectin, and the mouse complex was found to have a higher free energy of binding and a lower dissociation constant, suggesting stronger binding. The mouse complex had higher flexibility in a few key residues. Finally, steered molecular dynamics was used to dissociate the complexes at force loading rates of 2000–5000 pm/ps2. The mouse complex took longer to dissociate at every force loading rate and the difference was statistically significant at 3000 pm/ps2. When sLex-coated microspheres were perfused through microtubes coated with human or mouse E-selectin, the particles rolled more slowly on mouse E-selectin. Conclusions Both molecular dynamics simulations and microsphere adhesion experiments show that mouse E-selectin protein binds more strongly to sialyl Lewis x ligand than human E-selectin. This difference was explained by a greater interdomain angle for mouse E-selectin, and greater flexibility in key residues. Future work could introduce similar amino acid substitutions into the human E-selectin sequence to further modulate adhesion behavior.
Collapse
Affiliation(s)
- Anne D Rocheleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Thong M Cao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tait Takitani
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
33
|
Helms G, Dasanna AK, Schwarz US, Lanzer M. Modeling cytoadhesion of Plasmodium falciparum-infected erythrocytes and leukocytes-common principles and distinctive features. FEBS Lett 2016; 590:1955-71. [PMID: 26992823 PMCID: PMC5071704 DOI: 10.1002/1873-3468.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to the microvascular endothelial lining shares striking similarities to cytoadhesion of leukocytes. In both cases, adhesins are presented in structures that raise them above the cell surface. Another similarity is the enhancement of adhesion under physical force (catch bonding). Here, we review recent advances in our understanding of the molecular and biophysical mechanisms underlying cytoadherence in both cellular systems. We describe how imaging, flow chamber experiments, single‐molecule measurements, and computational modeling have been used to decipher the relevant processes. We conclude that although the parasite seems to induce processes that resemble the cytoadherence of leukocytes, the mechanics of erythrocytes is such that the resulting behavior in shear flow is fundamentally different.
Collapse
Affiliation(s)
- Gesa Helms
- Department of Infectious Diseases, Heidelberg University, Germany
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Ulrich S Schwarz
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Germany
| |
Collapse
|
34
|
Myerson JW, Anselmo AC, Liu Y, Mitragotri S, Eckmann DM, Muzykantov VR. Non-affinity factors modulating vascular targeting of nano- and microcarriers. Adv Drug Deliv Rev 2016; 99:97-112. [PMID: 26596696 PMCID: PMC4798918 DOI: 10.1016/j.addr.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
Particles capable of homing and adhering to specific vascular biomarkers have potential as fundamental tools in drug delivery for mediation of a wide variety of pathologies, including inflammation, thrombosis, and pulmonary disorders. The presentation of affinity ligands on the surface of a particle provides a means of targeting the particle to sites of therapeutic interest, but a host of other factors come into play in determining the targeting capacity of the particle. This review presents a summary of several key considerations in nano- and microparticle design that modulate targeted delivery without directly altering epitope-specific affinity. Namely, we describe the effect of factors in definition of the base carrier (including shape, size, and flexibility) on the capacity of carriers to access, adhere to, and integrate in target biological milieus. Furthermore, we present a summary of fundamental dynamics of carrier behavior in circulation, taking into account interactions with cells in circulation and the role of hemodynamics in mediating the direction of carriers to target sites. Finally, we note non-affinity aspects to uptake and intracellular trafficking of carriers in target cells. In total, recent findings presented here may offer an opportunity to capitalize on mitigating factors in the behavior of ligand-targeted carriers in order to optimize targeting.
Collapse
|
35
|
Kalasin S, Santore MM. Near-Surface Motion and Dynamic Adhesion during Silica Microparticle Capture on a Polymer (Solvated PEG) Brush via Hydrogen Bonding. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Surachate Kalasin
- Department of Polymer Science
and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Maria M. Santore
- Department of Polymer Science
and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
Chen Y, Liu B, Ju L, Hong J, Ji Q, Chen W, Zhu C. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J Vis Exp 2015:e52975. [PMID: 26274371 DOI: 10.3791/52975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10(-12) N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology
| | - Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology
| | - Lining Ju
- Charles Perkins Centre, The University of Sydney
| | - Jinsung Hong
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology
| | - Qinghua Ji
- Institute of Biophysics, Laboratory of RNA Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Wei Chen
- School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology;
| |
Collapse
|
37
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
38
|
Preston RC, Jakob RP, Binder FPC, Sager CP, Ernst B, Maier T. E-selectin ligand complexes adopt an extended high-affinity conformation. J Mol Cell Biol 2015; 8:62-72. [PMID: 26117840 PMCID: PMC4710209 DOI: 10.1093/jmcb/mjv046] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
E-selectin is a cell-adhesion molecule of the vascular endothelium that promotes essential leukocyte rolling in the early inflammatory response by binding to glycoproteins containing the tetrasaccharide sialyl Lewis(x) (sLe(x)). Efficient leukocyte recruitment under vascular flow conditions depends on an increased lifetime of E-selectin/ligand complexes under tensile force in a so-called catch-bond binding mode. Co-crystal structures of a representative fragment of the extracellular E-selectin region with sLe(x) and a glycomimetic antagonist thereof reveal an extended E-selectin conformation, which is identified as a high-affinity binding state of E-selectin by molecular dynamics simulations. Small-angle X-ray scattering experiments demonstrate a direct link between ligand binding and E-selectin conformational transition under static conditions in solution. This permits tracing a series of concerted structural changes connecting ligand binding to conformational stretching as the structural basis of E-selectin catch-bond-mediated leukocyte recruitment. The detailed molecular view of the binding site paves the way for the design of a new generation of selectin antagonists. This is of special interest, since their therapeutic potential was recently demonstrated with the pan-selectin antagonists GMI-1070 (Rivipansel).
Collapse
Affiliation(s)
- Roland C Preston
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Florian P C Binder
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Lieberthal TJ, Cohen HC, Kao WJ. Poly(ethylene glycol)-containing hydrogels modulate α-defensin release from polymorphonuclear leukocytes and monocyte recruitment. J Biomed Mater Res A 2015; 103:3772-80. [DOI: 10.1002/jbm.a.35519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Tyler Jacob Lieberthal
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
| | - Hannah Caitlin Cohen
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
| | - W. John Kao
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
- Department of Surgery, School of Medicine and Public Health; University of Wisconsin-Madison; 600 Highland Avenue Madison Wisconsin 53792
| |
Collapse
|
40
|
Mechanical force effect on the two-state equilibrium of the hyaluronan-binding domain of CD44 in cell rolling. Proc Natl Acad Sci U S A 2015; 112:6991-6. [PMID: 26038553 DOI: 10.1073/pnas.1423520112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD44 is the receptor for hyaluronan (HA) and mediates cell rolling under fluid shear stress. The HA-binding domain (HABD) of CD44 interconverts between a low-affinity, ordered (O) state and a high-affinity, partially disordered (PD) state, by the conformational change of the C-terminal region, which is connected to the plasma membrane. To examine the role of tensile force on CD44-mediated rolling, we used a cell-free rolling system, in which recombinant HABDs were attached to beads through a C-terminal or N-terminal tag. We found that the rolling behavior was stabilized only at high shear stress, when the HABD was attached through the C-terminal tag. In contrast, no difference was observed for the beads coated with HABD mutants that constitutively adopt either the O state or the PD state. Steered molecular dynamics simulations suggested that the force from the C terminus disrupts the interaction between the C-terminal region and the core of the domain, thus providing structural insights into how the mechanical force triggers the allosteric O-to-PD transition. Based on these results, we propose that the force applied from the C terminus enhances the HABD-HA interactions by inducing the conformational change to the high-affinity PD transition more rapidly, thereby enabling CD44 to mediate lymphocyte trafficking and hematopoietic progenitor cell homing under high-shear conditions.
Collapse
|
41
|
Abstract
Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering
| | | | | |
Collapse
|
42
|
Chen Y, Radford SE, Brockwell DJ. Force-induced remodelling of proteins and their complexes. Curr Opin Struct Biol 2015; 30:89-99. [PMID: 25710390 PMCID: PMC4499843 DOI: 10.1016/j.sbi.2015.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study.
Collapse
Affiliation(s)
- Yun Chen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
43
|
Lü S, Chen S, Mao D, Zhang Y, Long M. Contribution of the CR domain to P-selectin lectin domain allostery by regulating the orientation of the EGF domain. PLoS One 2015; 10:e0118083. [PMID: 25675100 PMCID: PMC4326174 DOI: 10.1371/journal.pone.0118083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 01/04/2015] [Indexed: 12/01/2022] Open
Abstract
The allostery of P-selectin has been studied extensively with a focus on the Lec and EGF domains, whereas the contribution of the CR domain remains unclear. Here, molecular dynamics simulations (MDS) combined with homology modeling were preformed to investigate the impact of the CR domain on P-selectin allostery. The results indicated that the CR domain plays a role in the allosteric dynamics of P-selectin in two ways. First, the CR1 domain tends to stabilize the low affinity of P-selectin during the equilibration processes with the transition inhibition from the S1 to S1’ state by restraining the extension of the bent EGF orientation, or with the relaxation acceleration of the S2 state by promoting the bending of the extended EGF orientation. Second, the existence of CR domain increases intramolecular extension prior to complex separation, increasing the time available for the allosteric shift during forced dissociation with a prolonged bond duration. These findings further our understanding of the structure-function relationship of P-selectin with the enriched micro-structural bases of the CR domain.
Collapse
Affiliation(s)
- Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SQL); (ML)
| | - Shenbao Chen
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Debin Mao
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SQL); (ML)
| |
Collapse
|
44
|
Chen X, Mao Z, Chen B. Probing time-dependent mechanical behaviors of catch bonds based on two-state models. Sci Rep 2015; 5:7868. [PMID: 25598078 PMCID: PMC4297987 DOI: 10.1038/srep07868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/11/2014] [Indexed: 01/13/2023] Open
Abstract
With lifetime counter-intuitively being prolonged under forces, catch bonds can play critical roles in various sub-cellular processes. By adopting different “catching” strategies within the framework of two-state models, we construct two types of catch bonds that have a similar force-lifetime profile upon a constant force-clamp load. However, when a single catch bond of either type is subjected to varied forces, we find that they can behave very differently in both force history dependence and bond strength. We further find that a cluster of catch bonds of either type generally becomes unstable when subjected to a periodically oscillating force, which is consistent with experimental results. These results provide important insights into versatile time-dependent mechanical behaviors of catch bonds. We suggest that it is necessary to further differentiate those bonds that are all phenomenologically referred to as “Catch bonds”.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhixiu Mao
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
45
|
Abstract
Biological mechano-transduction and force-dependent changes scale from protein conformation (â„« to nm) to cell organization and multi-cell function (mm to cm) to affect cell organization, fate, and homeostasis. External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function.
Collapse
Affiliation(s)
- Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - William I. Weis
- Department of Structural Biology, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| |
Collapse
|
46
|
Rakshit S, Sivasankar S. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 2014; 16:2211-23. [PMID: 24419646 DOI: 10.1039/c3cp53963f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.
Collapse
Affiliation(s)
- Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
47
|
Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes. Proc Natl Acad Sci U S A 2014; 111:9048-53. [PMID: 24927549 DOI: 10.1073/pnas.1405384111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of noncovalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes ("slip bonds"), making the discovery that these lifetimes can also be prolonged ("catch bonds") a surprise. We created a microscopic analytic theory by incorporating the structures of selectin and integrin receptors into a conceptual framework based on the theory of stochastic equations, which quantitatively explains a wide range of experimental data (including catch bonds at low forces and slip bonds at high forces). Catch bonds arise due to force-induced remodeling of hydrogen bond networks, a finding that also accounts for unbinding in structurally unrelated integrin-fibronectin and actomyosin complexes. For the selectin family, remodeling of hydrogen bond networks drives an allosteric transition resulting in the formation of the maximum number of hydrogen bonds determined only by the structure of the receptor and independent of the ligand. A similar transition allows us to predict the increase in the number of hydrogen bonds in a particular allosteric state of α5β1 integrin-fibronectin complex, a conformation which is yet to be crystallized. We also make a testable prediction that a single point mutation (Tyr51Phe) in the ligand associated with selectin should dramatically alter the nature of the catch bond compared with the wild type. Our work suggests that nature uses a ductile network of hydrogen bonds to engineer function over a broad range of forces.
Collapse
|
48
|
Resolving the molecular mechanism of cadherin catch bond formation. Nat Commun 2014; 5:3941. [PMID: 24887573 DOI: 10.1038/ncomms4941] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022] Open
Abstract
Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated.
Collapse
|
49
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Riese SB, Kuehne C, Tedder TF, Hallmann R, Hohenester E, Buscher K. Heterotropic modulation of selectin affinity by allosteric antibodies affects leukocyte rolling. THE JOURNAL OF IMMUNOLOGY 2014; 192:1862-9. [PMID: 24431230 DOI: 10.4049/jimmunol.1302147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selectins are a family of adhesion receptors designed for efficient leukocyte tethering to the endothelium under shear. As a key property to resist premature bond disruption, selectin adhesiveness is enhanced by tensile forces that promote the conversion of a bent into an extended conformation of the N-terminal lectin and epidermal growth factor-like domains. Conformation-specific Abs have been invaluable in deciphering the activation mechanism of integrins, but similar reagents are not available for selectins. In this study, we show that the anti-human L-selectin mAbs DREG-55 and LAM1-5 but not DREG-56, DREG-200, or LAM1-1 heterotropically modulate adhesion presumably by stabilizing the extended receptor conformation. Force-free affinity assays, flow chamber, and microkinetic studies reveal a ligand-specific modulation of L-selectin affinity by DREG-55 mAb, resulting in a dramatic decrease of rolling velocity under flow. Furthermore, secondary tethering of polymorphonuclear cells was blocked by DREG-200 but significantly boosted by DREG-55 mAb. The results emphasize the need for a new classification for selectin Abs and introduce the new concept of heterotropic modulation of receptor function.
Collapse
Affiliation(s)
- Sebastian B Riese
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University of Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|