1
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
3
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
4
|
Lee G, Park JH. Programmed cell death reshapes the central nervous system during metamorphosis in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 43:39-45. [PMID: 33065339 PMCID: PMC10754214 DOI: 10.1016/j.cois.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis is fascinating and dramatic stage of postembryonic development in insects [1]. The most prominent metamorphic changes seen in holometabolous insects involve destruction of most larval structures and concomitant generation of adult ones. Such diverse cellular events are orchestrated by ecdysone. The central nervous system (CNS) is also extensively remodeled to process new sensory inputs; to coordinate new types of locomotion; and to perform higher-order decision making [2]. Programmed cell death (PCD) is an integral part of the metamorphic development. It eliminates obsolete larval tissues and extra cells that are generated from the morphogenesis of adult tissues. In the CNS, PCD of selected neurons and glial cells as well as reshaping of persistent larval cells are essential for establishing the adult CNS. In this review, we summarize the ecdysone signaling, and then molecular and cellular events associated with PCD primarily in the metamorphosing CNS of Drosophila melanogaster.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States.
| |
Collapse
|
5
|
Kamsoi O, Belles X. E93-depleted adult insects preserve the prothoracic gland and molt again. Development 2020; 147:dev.190066. [PMID: 33077428 DOI: 10.1242/dev.190066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
Insect metamorphosis originated around the middle Devonian, associated with the innovation of the final molt; this occurs after histolysis of the prothoracic gland (PG; which produces the molting hormone) in the first days of adulthood. We previously hypothesized that transcription factor E93 is crucial in the emergence of metamorphosis, because it triggers metamorphosis in extant insects. This work on the cockroach Blattella germanica reveals that E93 also plays a crucial role in the histolysis of PG, which fits the above hypothesis. Previous studies have shown that the transcription factor FTZ-F1 is essential for PG histolysis. We have found that FTZ-F1 depletion towards the end of the final nymphal instar downregulates the expression of E93, whereas E93-depleted nymphs molt to adults that retain a functional PG. Interestingly, these adults are able to molt again, which is exceptional in insects. The study of insects able to molt again in the adult stage may reveal clues about how nymphal epidermal cells definitively become adult cells, and whether it is possible to reverse this process.
Collapse
Affiliation(s)
- Orathai Kamsoi
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
8
|
HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development. G3-GENES GENOMES GENETICS 2017; 7:1985-1993. [PMID: 28455414 PMCID: PMC5473774 DOI: 10.1534/g3.117.041541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs). Administration of HDAC inhibitors (HDACi), like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells.
Collapse
|
9
|
Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death. G3-GENES GENOMES GENETICS 2017; 7:789-799. [PMID: 28104670 PMCID: PMC5345709 DOI: 10.1534/g3.116.037366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.
Collapse
|
10
|
Chen RT, Jiao P, Liu Z, Lu Y, Xin HH, Zhang DP, Miao YG. Role of BmDredd during Apoptosis of Silk Gland in Silkworm, Bombyx mori. PLoS One 2017; 12:e0169404. [PMID: 28068357 PMCID: PMC5222620 DOI: 10.1371/journal.pone.0169404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
Silk glands (SGs) undergo massive apoptosis driven degeneration during the larval-pupal transformation. To better understand this event on molecular level, we investigated the expression of apoptosis-related genes across the developmental transition period that spans day 4 in the fifth instar Bombyx mori larvae to day 2 pupae. Increases in the expression of BmDredd (an initiator caspase homolog) closely followed the highest BmEcR expression and resembled the expression trend of BmIcE. Simultaneously, we found that BmDredd expression was significantly higher in SG compared to other tissues at 18 h post-spinning, but reduced following injection of the apoptosis inhibitor (Z-DEVD-fmk). Furthermore, BmDredd expression correlated with changes of caspase3-like activities in SG and RNAi-mediated knockdown of BmDredd delayed SG apoptosis. Moreover, caspase3-like activity was increased in SG by overexpression of BmDredd. Taken together, the results suggest that BmDredd plays a critical role in SG apoptosis.
Collapse
Affiliation(s)
- Rui-ting Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Peng Jiao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhen Liu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Hu-hu Xin
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Deng-pan Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun-gen Miao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Wang D, Li XR, Dong DJ, Huang H, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Promotes the Cytoplasmic Localization of Yorkie to Suppress Cell Proliferation and Induce Apoptosis. J Biol Chem 2016; 291:21761-21770. [PMID: 27551043 DOI: 10.1074/jbc.m116.719856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
The transcriptional co-activator Yki (Yorkie), a member of the Hippo pathway, regulates cell proliferation or apoptosis, depending on its nuclear or cytoplasmic location. However, the upstream factors regulating the subcellular localization of Yki are unclear. We found that the steroid hormone 20-hydroxyecdysone (20E) induces phosphorylation of Yki, causing it to remain in the cytoplasm, where it promotes apoptosis in the midgut of the lepidopteran insect Helicoverpa armigera Yki is expressed in various tissues, with an increase in the epidermis and midgut during early metamorphic molting. Yki is localized mainly in the nucleus of feeding larval midgut cells but is mainly localized in the cytoplasm of metamorphic molting larval midgut cells. The knockdown of Yki in the feeding larvae promotes larval-pupal transition, midgut programmed cell death, and repressed IAP1 (inhibitor of apoptosis 1) expression. Knockdown of Yki in the epidermal cell line (HaEpi) induced increased activation of Caspase3/7. Overexpressed Yki in HaEpi cells was mainly localized in the nucleus and induced cell proliferation. 20E promotes the cytoplasmic localization of Yki, reducing the expression of the IAP1, resulting in apoptosis. 20E promotes cytoplasmic retention of Yki by increasing Yki phosphorylation levels and promoting the interaction between Yki and the adaptor protein 14-3-3-ϵ. This regulation of Yki suppresses cell proliferation and induces cell apoptosis.
Collapse
Affiliation(s)
- Di Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Du-Juan Dong
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Hua Huang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Hwangbo DS, Biteau B, Rath S, Kim J, Jasper H. Control of apoptosis by Drosophila DCAF12. Dev Biol 2016; 413:50-9. [PMID: 26972874 DOI: 10.1016/j.ydbio.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/08/2016] [Accepted: 03/05/2016] [Indexed: 11/30/2022]
Abstract
Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD.
Collapse
Affiliation(s)
- Dae-Sung Hwangbo
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benoit Biteau
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Sneha Rath
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Jihyun Kim
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
13
|
Wang ZH, Clark C, Geisbrecht ER. Analysis of mitochondrial structure and function in the Drosophila larval musculature. Mitochondrion 2015; 26:33-42. [PMID: 26611999 DOI: 10.1016/j.mito.2015.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are dynamic organelles that change their architecture in normal physiological conditions. Mutations in genes that control mitochondrial fission or fusion, such as dynamin-related protein (Drp1), Mitofusins 1 (Mfn1) and 2 (Mfn2), and Optic atrophy 1 (Opa1), result in neuropathies or neurodegenerative diseases. It is increasingly clear that altered mitochondrial dynamics also underlie the pathology of other degenerative diseases, including Parkinson's disease (PD). Thus, understanding mitochondrial distribution, shape, and dynamics in all cell types is a prerequisite for developing and defining treatment regimens that may differentially affect tissues. The majority of Drosophila genes implicated in mitochondrial dynamics have been studied in the adult indirect flight muscle (IFM). Here, we discuss the utility of Drosophila third instar larvae (L3) as an alternative model to analyze and quantify mitochondrial behaviors. Advantages include large muscle cell size, a stereotyped arrangement of mitochondria that is conserved in mammalian muscles, and the ability to analyze muscle-specific gene function in mutants that are lethal prior to adult stages. In particular, we highlight methods for sample preparation and analysis of mitochondrial morphological features.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
14
|
Obata F, Tanaka S, Kashio S, Tsujimura H, Sato R, Miura M. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor. BMC Biol 2015; 13:48. [PMID: 26152191 PMCID: PMC4495774 DOI: 10.1186/s12915-015-0160-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022] Open
Abstract
Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. Conclusions With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a “proteinous drill” for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0160-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hidenobu Tsujimura
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,CREST, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
15
|
Cell death in development: Signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39:12-9. [PMID: 25668151 DOI: 10.1016/j.semcdb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
Abstract
Programmed cell death eliminates unneeded and dangerous cells in a timely and effective manner during development. In this review, we examine the role cell death plays during development in worms, flies and mammals. We discuss signaling pathways that regulate developmental cell death, and describe how they communicate with the core cell death pathways. In most organisms, the majority of developmental cell death is seen in the nervous system. Therefore we focus on what is known about the regulation of developmental cell death in this tissue. Understanding how the cell death is regulated during development may provide insight into how this process can be manipulated in the treatment of disease.
Collapse
|
16
|
Ecdysone-induced receptor tyrosine phosphatase PTP52F regulates Drosophila midgut histolysis by enhancement of autophagy and apoptosis. Mol Cell Biol 2014; 34:1594-606. [PMID: 24550005 DOI: 10.1128/mcb.01391-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.
Collapse
|
17
|
Neuman SD, Ihry RJ, Gruetzmacher KM, Bashirullah A. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila. Dev Biol 2014; 387:229-39. [PMID: 24468295 DOI: 10.1016/j.ydbio.2014.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022]
Abstract
Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert J Ihry
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelly M Gruetzmacher
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development. Dev Biol 2013; 386:34-41. [PMID: 24333635 DOI: 10.1016/j.ydbio.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
Abstract
Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development.
Collapse
|
19
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
20
|
Hassel C, Zhang B, Dixon M, Calvi BR. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 2013; 141:112-23. [PMID: 24284207 DOI: 10.1242/dev.098871] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endocycle is a common developmental cell cycle variation wherein cells become polyploid through repeated genome duplication without mitosis. We previously showed that Drosophila endocycling cells repress the apoptotic cell death response to genotoxic stress. Here, we investigate whether it is differentiation or endocycle remodeling that promotes apoptotic repression. We find that when nurse and follicle cells switch into endocycles during oogenesis they repress the apoptotic response to DNA damage caused by ionizing radiation, and that this repression has been conserved in the genus Drosophila over 40 million years of evolution. Follicle cells defective for Notch signaling failed to switch into endocycles or differentiate and remained apoptotic competent. However, genetic ablation of mitosis by knockdown of Cyclin A or overexpression of fzr/Cdh1 induced follicle cell endocycles and repressed apoptosis independently of Notch signaling and differentiation. Cells recovering from these induced endocycles regained apoptotic competence, showing that repression is reversible. Recovery from fzr/Cdh1 overexpression also resulted in an error-prone mitosis with amplified centrosomes and high levels of chromosome loss and fragmentation. Our results reveal an unanticipated link between endocycles and the repression of apoptosis, with broader implications for how endocycles may contribute to genome instability and oncogenesis.
Collapse
Affiliation(s)
- Christiane Hassel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
21
|
Ihry RJ, Sapiro AL, Bashirullah A. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades. PLoS Genet 2012; 8:e1003085. [PMID: 23209440 PMCID: PMC3510042 DOI: 10.1371/journal.pgen.1003085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone. Pulses of steroid hormones regulate a variety of biological processes, but how these simple global cues are converted into specific local responses remains unclear. While steroid responses have traditionally been thought to be regulated at the transcriptional level, here we demonstrate that translational control plays a novel role in refining steroid signals. The DEAD box RNA helicase belle directly regulates the translation of E74A mRNA, which encodes a transcription factor that is induced by the fly steroid hormone ecdysone and then rapidly repressed. This process is disrupted in belle mutant tissues, where E74A mRNA accumulates to abnormally high levels but is not translated. We demonstrate that Belle-dependent translation of E74A is required to both repress its own transcription and to induce tissue-specific target genes. These findings confirm the prediction that auto-regulation is important for the self-limiting behavior of steroid responses and demonstrate a critical role for translational control in refining a global hormonal signal into specific biological responses.
Collapse
Affiliation(s)
- Robert J. Ihry
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Anne L. Sapiro
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev 2011; 6:15. [PMID: 21521537 PMCID: PMC3098771 DOI: 10.1186/1749-8104-6-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metamorphosis of Drosophila melanogaster is accompanied by elimination of obsolete neurons via programmed cell death (PCD). Metamorphosis is regulated by ecdysteroids, including 20-hydroxyecdysone (20E), but the roles and modes of action of hormones in regulating neuronal PCD are incompletely understood. RESULTS We used targeted expression of GFP to track the fate of a larval motoneuron, RP2, in ventral ganglia. RP2s in abdominal neuromeres two through seven (A2 to A7) exhibited fragmented DNA by 15 hours after puparium formation (h-APF) and were missing by 20 h-APF. RP2 death began shortly after the 'prepupal pulse' of ecdysteroids, during which time RP2s expressed ecdysteroid receptors (EcRs). Genetic manipulations showed that RP2 death required the function of EcR-B isoforms, the death-activating gene, reaper (but not hid), and the apoptosome component, Dark. PCD was blocked by expression of the caspase inhibitor p35 but unaffected by manipulating Diap1. In contrast, aCC motoneurons in neuromeres A2 to A7, and RP2s in neuromere A1, expressed EcRs during the prepupal pulse but survived into the pupal stage under all conditions tested. To test the hypothesis that ecdysteroids trigger RP2's death directly, we placed abdominal GFP-expressing neurons in cell culture immediately prior to the prepupal pulse, with or without 20E. 20E induced significant PCD in putative RP2s, but not in control neurons, as assessed by morphological criteria and propidium iodide staining. CONCLUSIONS These findings suggest that the rise of ecdysteroids during the prepupal pulse acts directly, via EcR-B isoforms, to activate PCD in RP2 motoneurons in abdominal neuromeres A2 to A7, while sparing RP2s in A1. Genetic manipulations suggest that RP2's death requires Reaper function, apoptosome assembly and Diap1-independent caspase activation. RP2s offer a valuable 'single cell' approach to the molecular understanding of neuronal death during insect metamorphosis and, potentially, of neurodegeneration in other contexts.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, 97403-1254, USA
| | | |
Collapse
|
23
|
Wang L, Lam G, Thummel CS. Med24 and Mdh2 are required for Drosophila larval salivary gland cell death. Dev Dyn 2010; 239:954-64. [PMID: 20063412 DOI: 10.1002/dvdy.22213] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The steroid hormone ecdysone triggers the rapid destruction of larval tissues through transcriptional cascades that culminate in rpr and hid expression and caspase activation. Here, we show that mutations in Mdh2 and Med24 block caspase cleavage and larval salivary gland cell death. Mdh2 encodes a predicted malate dehydrogenase that localizes to mitochondria. Consistent with this proposed function, Mdh2 mutants have significantly lower levels of ATP and accumulate late-stage citric acid cycle intermediates, suggesting that the cell death defects arise from a deficit in energy production. Med24 encodes a component of the Mediator transcriptional coactivator complex. Unexpectedly, however, expression of the key death regulator genes is normal in Med24 mutant salivary glands. This study identifies novel mechanisms for controlling the destruction of larval tissues during Drosophila metamorphosis and provides new directions for our understanding of steroid-triggered programmed cell death.
Collapse
Affiliation(s)
- Lei Wang
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112-5330, USA
| | | | | |
Collapse
|
24
|
Rueppell O, Metheny JD, Linksvayer T, Fondrk MK, Page RE, Amdam GV. Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity (Edinb) 2010; 106:894-903. [PMID: 21048673 DOI: 10.1038/hdy.2010.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The molecular basis of complex traits is increasingly understood but a remaining challenge is to identify their co-regulation and inter-dependence. Pollen hoarding (pln) in honeybees is a complex trait associated with a well-characterized suite of linked behavioral and physiological traits. In European honeybee stocks bidirectionally selected for pln, worker (sterile helper) ovary size is pleiotropically affected by quantitative trait loci that were initially identified for their effect on foraging behavior. To gain a better understanding of the genetic architecture of worker ovary size in this model system, we analyzed a series of crosses between the selected strains. The crossing results were heterogeneous and suggested non-additive effects. Three significant and three suggestive quantitative trait loci of relatively large effect sizes were found in two reciprocal backcrosses. These loci are not located in genome regions of known effects on foraging behavior but contain several interesting candidate genes that may specifically affect worker-ovary size. Thus, the genetic architecture of this life history syndrome may be comprised of pleiotropic, central regulators that influence several linked traits and other genetic factors that may be downstream and trait specific.
Collapse
Affiliation(s)
- O Rueppell
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, Greensboro, NC 27403, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Mané-Padrós D, Cruz J, Vilaplana L, Nieva C, Ureña E, Bellés X, Martín D. The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. Dev Biol 2010; 346:150-60. [DOI: 10.1016/j.ydbio.2010.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
26
|
Hakim RS, Baldwin K, Smagghe G. Regulation of midgut growth, development, and metamorphosis. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:593-608. [PMID: 19775239 DOI: 10.1146/annurev-ento-112408-085450] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The insect midgut is an important site of entry for pathogens and insect control agents. This review focuses on recent information related to midgut epithelial growth, metamorphosis, and repair as a defense against pathogens. The roles of stem cell mitogens and differentiation factors are described. Included is a discussion of apoptosis and autophagy in the yellow body. Sloughing, also described, protects the midgut from virus infections and bacterial toxins through death and replacement of affected cells. The mechanisms by which the repair process reduces the effectiveness of pest control strategies are discussed. Primary tissue culture methods also are described, and their value in understanding the mechanisms by which biologically based insecticides work is discussed.
Collapse
Affiliation(s)
- Raziel S Hakim
- Department of Anatomy, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
27
|
Sumithra P, Britto CP, Krishnan M. Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 2009; 339:349-58. [DOI: 10.1007/s00441-009-0898-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
|
28
|
Orme M, Meier P. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 2009; 14:950-60. [PMID: 19495985 DOI: 10.1007/s10495-009-0358-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 01/25/2023]
Abstract
Regulation of apoptosis is crucial to ensure cellular viability, and failure to do so is linked to several human pathologies. The apoptotic cell death programme culminates in the activation of caspases, a family of highly specific cysteine proteases essential for the destruction of the cell. Although best known for their role in executing apoptosis, caspases also play important signalling roles in non-apoptotic processes, such as regulation of actin dynamics, innate immunity, cell proliferation, differentiation and survival. Under such conditions, caspases are activated without killing the cell. Caspase activation and activity is subject to complex regulation, and various cellular and viral inhibitors have been identified that control the activity of caspases in their apoptotic and non-apoptotic roles. Members of the Inhibitor of APoptosis (IAP) protein family ensure cell viability in Drosophila by directly binding to caspases and regulating their activities in a ubiquitin-dependent manner. The observation that IAPs are essential for cell survival in Drosophila, and are frequently deregulated in human cancer, contributing to tumourigenesis, chemoresistance, disease progression and poor patient survival, highlights the importance of this family of caspase regulators in health and disease. Here we summarise recent advances from Drosophila that start to elucidate how the cellular response to caspase activation is modulated by IAPs and their regulators.
Collapse
Affiliation(s)
- Mariam Orme
- The Breakthrough Toby Robins Breast Cancer Research Centre, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK.
| | | |
Collapse
|
29
|
Jesse P, Mottke G, Eberle J, Seifert G, Henze G, Prokop A. Apoptosis-inducing activity of Helleborus niger in ALL and AML. Pediatr Blood Cancer 2009; 52:464-9. [PMID: 19090543 DOI: 10.1002/pbc.21905] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Helleborus niger is used in the adjuvant treatment of different tumors in anthroposophical medicine. Indications include various types of brain tumors in children, as well as prostate cancer, leukemia and lymphoma. Our aim was to investigate the therapeutic effects of these extracts apart from the traditional use. PROCEDURES : We used an aqueous whole plant extract of H. niger in different cancer and leukemia cell lines and primary cells of patients with childhood ALL and AML and identified the main mechanisms of action. RESULTS A strong inhibition of proliferation is caused by specific apoptosis induction, which is executed via the mitochondrial pathway and caspase-3 processing. Apoptosis could be detected in lymphoma (BJAB), leukemia (Reh, Nalm6, Sup-B15) and melanoma (Mel-HO) cells and overcomes a Bcl-2-mediated block of apoptosis. In primary cells of patients with childhood ALL and AML, which were partly poor responding to doxorubicin and daunorubicin, a strong apoptosis induction was determined. In combination with the vinca alkaloid vincristine, strong synergistic effects were detected in BJAB cells. CONCLUSION We demonstrate in vitro efficacy of H. niger extract in cells of hematological malignancies; these studies should encourage in vivo experiments.
Collapse
Affiliation(s)
- Patrick Jesse
- Department of Pediatric Oncology/Hematology, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Chittaranjan S, McConechy M, Hou YCC, Freeman JD, DeVorkin L, Gorski SM. Steroid hormone control of cell death and cell survival: molecular insights using RNAi. PLoS Genet 2009; 5:e1000379. [PMID: 19214204 PMCID: PMC2632862 DOI: 10.1371/journal.pgen.1000379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022] Open
Abstract
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.
Collapse
Affiliation(s)
| | - Melissa McConechy
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ying-Chen Claire Hou
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - J. Douglas Freeman
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Lindsay DeVorkin
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
31
|
Abstract
The elimination of unwanted cells by programmed cell death is a common feature of animal development. Genetic studies in the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have not only revealed the molecular machineries that cause the programmed demise of specific cells, but have also allowed us to get a glimpse of the types of pathways that regulate these machineries during development. Rather than serving as a broad overview of programmed cell death during development, this review focuses on recent advances in our understanding of the regulation of specific programmed cell death events during nematode, fly, and mouse development. Recent studies have revealed that many of the regulatory pathways involved play additional important roles in development, which confirms that the programmed cell death fate is an integral aspect of animal development.
Collapse
Affiliation(s)
- Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
32
|
Reuveny A, Elhanany H, Volk T. Enhanced sensitivity of midline glial cells to apoptosis is achieved by HOW(L)-dependent repression of Diap1. Mech Dev 2008; 126:30-41. [PMID: 18984040 DOI: 10.1016/j.mod.2008.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/08/2008] [Accepted: 10/12/2008] [Indexed: 12/29/2022]
Abstract
The selective sensitivity of cells to programmed cell death (PCD) depends on the positive and negative death-inducing signals that converge into the apoptotic pathway. In Drosophila, the midline glial (MG) cells undergo selective death during development. Here, we show that the long isoform of the RNA-binding protein Held Out Wing (HOW(L)) is essential for enhancing the sensitivity of the MG cells to PCD. In how mutant embryos, the number of MG cells was elevated. This phenotype could be rescued by midline expression of the HOW(L) repressor isoform. In how mutant embryos, the levels of the caspase inhibitor of apoptosis, Diap1 were elevated, in parallel to reduction in the levels of activated caspase. Similarly, reducing the levels of HOW in S2 cells led to elevation of Diap1, whereas over expression of HOW(L) promoted reduction of Diap1 protein as well as mRNA levels. Importantly, deletion of the two HOW binding sites from diap1 3'UTR abrogated HOW-dependent repression of Diap1, suggesting that HOW represses diap1 by binding to its 3'UTR. These results suggest that HOW(L) enhances the sensitivity of MG cells to apoptotic signals by reducing the levels of diap1 in these cells in, demonstrating a novel mode of regulation of PCD at the mRNA level.
Collapse
Affiliation(s)
- Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
33
|
Dutta S, Baehrecke EH. Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 2008; 18:1466-75. [PMID: 18818081 PMCID: PMC2576500 DOI: 10.1016/j.cub.2008.08.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/30/2008] [Accepted: 08/12/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Sudeshna Dutta
- Molecular and Cell Biology Program, University of Maryland, College Park, MD 20742 USA
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Eric H. Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| |
Collapse
|
34
|
A genetic screen identifies new regulators of steroid-triggered programmed cell death in Drosophila. Genetics 2008; 180:269-81. [PMID: 18757938 DOI: 10.1534/genetics.108.092478] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone ecdysone triggers the rapid and massive destruction of larval tissues through transcriptional cascades that culminate in rpr and hid expression and caspase activation. Here we describe the use of genetic screens to further our understanding of this steroid-triggered programmed cell death response. Pupal lethal mutants were screened for specific defects in larval salivary gland destruction. A pilot screen using existing P-element collections resulted in the identification of mutations in known cell death regulators, E74 and hid, as well as multiple alleles in CBP (nejire) and dTrf2. A large-scale EMS mutagenesis screen on the third chromosome resulted in the recovery of 48 mutants. These include seven multiallelic complementation groups, at least five of which do not map to regions or genes previously associated with cell death. Five mutants display defects in the transcriptional induction of rpr and hid, and all display a penetrant block in caspase activation. Three were mapped to specific genes: CG5146, which encodes a protein of unknown function, Med24, which encodes a component of the RNA polymerase II mediator complex, and CG7998, which encodes a putative mitochondrial malate dehydrogenase. These genetic screens provide new directions for understanding the regulation of programmed cell death during development.
Collapse
|
35
|
Frasch M. A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes Dev 2008; 22:1572-6. [PMID: 18559473 DOI: 10.1101/gad.1690608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first microRNAs were identified in Caenorhabditis elegans based on their functions in the temporal regulation of stage-specific cell fate decisions. Until now, it was not known whether the so-called heterochronic genes that encode miRNAs are also involved in controlling developmental transitions in other organisms. New findings by Sokol et al. (this issue of Genes & Development, pp. 1591-1596) demonstrate that the Drosophila counterpart of a heterochronic miRNA gene from C. elegans, let-7, does indeed play a role in promoting stage-specific developmental events in neuromuscular tissues during the transition from larval to adult stages, thus pointing to a more widespread utilization of miRNAs in temporal regulation of animal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department Biology, Developmental Biology Unit, University of Erlangen-Nürnberg, Erlangen, 91058 Erlangen, Germany.
| |
Collapse
|