1
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front Cell Dev Biol 2024; 12:1412641. [PMID: 38872931 PMCID: PMC11169674 DOI: 10.3389/fcell.2024.1412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has played a central role in discovering much of what is currently known about the composition, assembly, and function of cilia and flagella. Chlamydomonas combines excellent genetics, such as the ability to grow cells as haploids or diploids and to perform tetrad analysis, with an unparalleled ability to detach and isolate flagella in a single step without cell lysis. The combination of genetics and biochemistry that is possible in Chlamydomonas has allowed many of the key components of the cilium to be identified by looking for proteins that are missing in a defined mutant. Few if any other model organisms allow such a seamless combination of genetic and biochemical approaches. Other major advantages of Chlamydomonas compared to other systems include the ability to induce flagella to regenerate in a highly synchronous manner, allowing the kinetics of flagellar growth to be measured, and the ability of Chlamydomonas flagella to adhere to glass coverslips allowing Intraflagellar Transport to be easily imaged inside the flagella of living cells, with quantitative precision and single-molecule resolution. These advantages continue to work in favor of Chlamydomonas as a model system going forward, and are now augmented by extensive genomic resources, a knockout strain collection, and efficient CRISPR gene editing. While Chlamydomonas has obvious limitations for studying ciliary functions related to animal development or organ physiology, when it comes to studying the fundamental biology of cilia and flagella, Chlamydomonas is simply unmatched in terms of speed, efficiency, cost, and the variety of approaches that can be brought to bear on a question.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Werner S, Okenve-Ramos P, Hehlert P, Zitouni S, Priya P, Mendonça S, Sporbert A, Spalthoff C, Göpfert MC, Jana SC, Bettencourt-Dias M. IFT88 maintains sensory function by localising signalling proteins along Drosophila cilia. Life Sci Alliance 2024; 7:e202302289. [PMID: 38373798 PMCID: PMC10876440 DOI: 10.26508/lsa.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.
Collapse
Affiliation(s)
- Sascha Werner
- https://ror.org/04b08hq31 Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pilar Okenve-Ramos
- https://ror.org/04b08hq31 Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Sihem Zitouni
- https://ror.org/04b08hq31 Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institut de Génétique Humaine (IGH), UMR, 9002 CNRS, Montpellier, France
| | - Pranjali Priya
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | - Susana Mendonça
- https://ror.org/04b08hq31 Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Berlin, Germany
| | - Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Swadhin Chandra Jana
- https://ror.org/04b08hq31 Instituto Gulbenkian de Ciência, Oeiras, Portugal
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | | |
Collapse
|
5
|
Dai J, Ma M, Niu Q, Eisert RJ, Wang X, Das P, Lechtreck KF, Dutcher SK, Zhang R, Brown A. Mastigoneme structure reveals insights into the O-linked glycosylation code of native hydroxyproline-rich helices. Cell 2024; 187:1907-1921.e16. [PMID: 38552624 PMCID: PMC11015965 DOI: 10.1016/j.cell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Molecular Cell Biology (MCB) graduate program, Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Robyn J Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St Louis, MO, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Huang J, Tao H, Chen J, Shen Y, Lei J, Pan J, Yan C, Yan N. Structure-guided discovery of protein and glycan components in native mastigonemes. Cell 2024; 187:1733-1744.e12. [PMID: 38552612 DOI: 10.1016/j.cell.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.
Collapse
Affiliation(s)
- Junhao Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jikun Chen
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Shen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Fueki S, Kaneko T, Matsuki H, Hashimoto Y, Yoshida M, Isu A, Wakabayashi KI, Yoshimura K. Temperature-dependent augmentation of ciliary motility by the TRP2 channel in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2024. [PMID: 38426808 DOI: 10.1002/cm.21840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Temperature is a critical factor for living organisms. Many microorganisms migrate toward preferable temperatures, and this behavior is called thermotaxis. In this study, the molecular and physiological bases for thermotaxis are examined in Chlamydomonas reinhardtii. A mutant with knockout of a transient receptor potential (TRP) channel, trp2-3, showed defective thermotaxis. The swimming velocity and ciliary beat frequency of wild-type Chlamydomonas increase with temperature; however, this temperature-dependent enhancement of motility was almost absent in the trp2-3 mutant. Wild-type Chlamydomonas showed negative thermotaxis, but mutants deficient in the outer or inner dynein arm showed positive thermotaxis and a defect in temperature-dependent increase in swimming velocity, suggesting involvement of both dynein arms in thermotaxis.
Collapse
Affiliation(s)
- Shunta Fueki
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Taro Kaneko
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Haruka Matsuki
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yuki Hashimoto
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
8
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
9
|
Das P, Mekonnen B, Alkhofash R, Ingle AV, Workman EB, Feather A, Zhang G, Chasen N, Liu P, Lechtreck KF. The Small Interactor of PKD2 protein promotes the assembly and ciliary entry of the Chlamydomonas PKD2-mastigoneme complexes. J Cell Sci 2024; 137:jcs261497. [PMID: 38063216 PMCID: PMC10846610 DOI: 10.1242/jcs.261497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Abha V. Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gui Zhang
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Nathan Chasen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Das P, Mekonnen B, Alkhofash R, Ingle A, Workman EB, Feather A, Liu P, Lechtreck KF. Small Interactor of PKD2 (SIP), a novel PKD2-related single-pass transmembrane protein, is required for proteolytic processing and ciliary import of Chlamydomonas PKD2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544839. [PMID: 37398320 PMCID: PMC10312728 DOI: 10.1101/2023.06.13.544839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In Chlamydomonas cilia, the ciliopathy-relevant TRP channel PKD2 is spatially compartmentalized into a distal region, in which PKD2 binds the axoneme and extracellular mastigonemes, and a smaller proximal region, in which PKD2 is more mobile and lacks mastigonemes. Here, we show that the two PKD2 regions are established early during cilia regeneration and increase in length as cilia elongate. In abnormally long cilia, only the distal region elongated whereas both regions adjusted in length during cilia shortening. In dikaryon rescue experiments, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia whereas assembly of the distal region was hindered, suggesting that axonemal docking of PKD2 requires de novo ciliary assembly. We identified Small Interactor of PKD2 (SIP), a small PKD2-related protein, as a novel component of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from mutant cilia. Like the pkd2 and mst1 mutants, sip swims with reduced velocity. Cilia of the pkd2 mutant beat with normal frequency and bending pattern but were less efficient in moving cells supporting a passive role of the PKD2-SIP-mastigoneme complexes in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Abha Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | | | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
11
|
Liu P, Liu Y, Zhou J. Ciliary mechanosensation - roles of polycystins and mastigonemes. J Cell Sci 2023; 136:286945. [PMID: 36752106 DOI: 10.1242/jcs.260565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.
Collapse
Affiliation(s)
- Peiwei Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China.,College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Ishikawa H, Moore J, Diener DR, Delling M, Marshall WF. Testing the ion-current model for flagellar length sensing and IFT regulation. eLife 2023; 12:e82901. [PMID: 36637158 PMCID: PMC9891718 DOI: 10.7554/elife.82901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic cilia and flagella are microtubule-based organelles whose relatively simple shape makes them ideal for investigating the fundamental question of organelle size regulation. Most of the flagellar materials are transported from the cell body via an active transport process called intraflagellar transport (IFT). The rate of IFT entry into flagella, known as IFT injection, has been shown to negatively correlate with flagellar length. However, it remains unknown how the cell measures the length of its flagella and controls IFT injection. One of the most-discussed theoretical models for length sensing to control IFT is the ion-current model, which posits that there is a uniform distribution of Ca2+ channels along the flagellum and that the Ca2+ current from the flagellum into the cell body increases linearly with flagellar length. In this model, the cell uses the Ca2+ current to negatively regulate IFT injection. The recent discovery that IFT entry into flagella is regulated by the phosphorylation of kinesin through a calcium-dependent protein kinase has provided further impetus for the ion-current model. To test this model, we measured and manipulated the levels of Ca2+ inside of Chlamydomonas flagella and quantified IFT injection. Although the concentration of Ca2+ inside of flagella was weakly correlated with the length of flagella, we found that IFT injection was reduced in calcium-deficient flagella, rather than increased as the model predicted, and that variation in IFT injection was uncorrelated with the occurrence of flagellar Ca2+ spikes. Thus, Ca2+ does not appear to function as a negative regulator of IFT injection, hence it cannot form the basis of a stable length control system.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jeremy Moore
- Kenyon College, Gambier, and Summer Research Training Program at University of California San FranciscoSan FranciscoUnited States
| | - Dennis R Diener
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Markus Delling
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
13
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
15
|
Poddar A, Hsu YY, Zhang F, Shamma A, Kreais Z, Muller C, Malla M, Ray A, Liu AP, Chen Q. Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis. Mol Biol Cell 2022; 33:ar134. [PMID: 36200871 PMCID: PMC9727806 DOI: 10.1091/mbc.e22-07-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pkd2 is the fission yeast homologue of polycystins. This putative ion channel localizes to the plasma membrane. It is required for the expansion of cell volume during interphase growth and cytokinesis, the last step of cell division. However, the channel activity of Pkd2 remains untested. Here, we examined the calcium permeability and mechanosensitivity of Pkd2 through in vitro reconstitution and calcium imaging of pkd2 mutant cells. Pkd2 was translated and inserted into the lipid bilayers of giant unilamellar vesicles using a cell-free expression system. The reconstituted Pkd2 permeated calcium when the membrane was stretched via hypoosmotic shock. In vivo, inactivation of Pkd2 through a temperature-sensitive mutation pkd2-B42 reduced the average intracellular calcium level by 34%. Compared with the wild type, the hypomorphic mutation pkd2-81KD reduced the amplitude of hypoosmotic shock-triggered calcium spikes by 59%. During cytokinesis, mutations of pkd2 reduced the calcium spikes, accompanying cell separation and the ensuing membrane stretching, by 60%. We concluded that fission yeast polycystin Pkd2 allows calcium influx when activated by membrane stretching, representing a likely mechanosensitive channel that contributes to the cytokinetic calcium spikes.
Collapse
Affiliation(s)
- Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Faith Zhang
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Abeda Shamma
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Zachary Kreais
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,Department of Biophysics, University of Michigan, Ann Arbor, MI 48109,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Qian Chen (); Allen Liu ()
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606,*Address correspondence to: Qian Chen (); Allen Liu ()
| |
Collapse
|
16
|
McCafferty CL, Papoulas O, Jordan MA, Hoogerbrugge G, Nichols C, Pigino G, Taylor DW, Wallingford JB, Marcotte EM. Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex. eLife 2022; 11:e81977. [PMID: 36346217 PMCID: PMC9674347 DOI: 10.7554/elife.81977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has been made in determining the atomic structure of IFT-B, little is known of the structural biology of IFT-A. Here, we combined chemical cross-linking mass spectrometry and cryo-electron tomography with AlphaFold2-based prediction of both protein structures and interaction interfaces to model the overall architecture of the monomeric six-subunit IFT-A complex, as well as its polymeric assembly within cilia. We define monomer-monomer contacts and membrane-associated regions available for association with transported cargo, and we also use this model to provide insights into the pleiotropic nature of human ciliopathy-associated genetic variants in genes encoding IFT-A subunits. Our work demonstrates the power of integration of experimental and computational strategies both for multi-protein structure determination and for understanding the etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Gabriel Hoogerbrugge
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Candice Nichols
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | | | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| |
Collapse
|
17
|
de Carpentier F, Maes A, Marchand CH, Chung C, Durand C, Crozet P, Lemaire SD, Danon A. How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. PLANT PHYSIOLOGY 2022; 190:1927-1940. [PMID: 35775951 PMCID: PMC9614484 DOI: 10.1093/plphys/kiac321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 05/05/2023]
Abstract
Multicellular organisms implement a set of reactions involving signaling and cooperation between different types of cells. Unicellular organisms, on the other hand, activate defense systems that involve collective behaviors between individual organisms. In the unicellular model alga Chlamydomonas (Chlamydomonas reinhardtii), the existence and the function of collective behaviors mechanisms in response to stress remain mostly at the level of the formation of small structures called palmelloids. Here, we report the characterization of a mechanism of abiotic stress response that Chlamydomonas can trigger to form massive multicellular structures. We showed that these aggregates constitute an effective bulwark within which the cells are efficiently protected from the toxic environment. We generated a family of mutants that aggregate spontaneously, the socializer (saz) mutants, of which saz1 is described here in detail. We took advantage of the saz mutants to implement a large-scale multiomics approach that allowed us to show that aggregation is not the result of passive agglutination, but rather genetic reprogramming and substantial modification of the secretome. The reverse genetic analysis we conducted allowed us to identify positive and negative regulators of aggregation and to make hypotheses on how this process is controlled in Chlamydomonas.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | - Céline Chung
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Cyrielle Durand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Polytech-Sorbonne, Sorbonne Université, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
18
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Dai J, Zhang G, Alkhofash RA, Mekonnen B, Saravanan S, Xue B, Fan ZC, Betleja E, Cole DG, Liu P, Lechtreck K. Loss of ARL13 impedes BBSome-dependent cargo export from Chlamydomonas cilia. J Cell Biol 2022; 221:213429. [PMID: 36040375 PMCID: PMC9436004 DOI: 10.1083/jcb.202201050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022] Open
Abstract
The GTPase Arl13b participates in ciliary protein transport, but its contribution to intraflagellar transport (IFT), the main motor-based protein shuttle of cilia, remains largely unknown. Chlamydomonas arl13 mutant cilia were characterized by both abnormal reduction and accumulation of select membrane-associated proteins. With respect to the latter, a similar set of proteins including phospholipase D (PLD) also accumulated in BBSome-deficient cilia. IFT and BBSome traffic were apparently normal in arl13. However, transport of PLD, which in control cells moves by BBSome-dependent IFT, was impaired in arl13, causing PLD to accumulate in cilia. ARL13 only rarely and transiently traveled by IFT, indicating that it is not a co-migrating adapter securing PLD to IFT trains. In conclusion, the loss of Chlamydomonas ARL13 impedes BBSome-dependent protein transport, resulting in overlapping biochemical defects in arl13 and bbs mutant cilia.
Collapse
Affiliation(s)
- Jin Dai
- Cellular Biology, University of Georgia, Athens, GA
| | - Gui Zhang
- Cellular Biology, University of Georgia, Athens, GA
| | | | | | | | - Bin Xue
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | | | | | - Peiwei Liu
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Karl Lechtreck
- Cellular Biology, University of Georgia, Athens, GA,Correspondence to Karl F. Lechtreck:
| |
Collapse
|
20
|
van Krugten J, Danné N, Peterman EJG. A local interplay between diffusion and intraflagellar transport distributes TRPV-channel OCR-2 along C. elegans chemosensory cilia. Commun Biol 2022; 5:720. [PMID: 35858995 PMCID: PMC9300729 DOI: 10.1038/s42003-022-03683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
To survive, Caenorhabditis elegans depends on sensing soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Cilia rely on intraflagellar transport (IFT) to facilitate the distribution of cargo, such as TPs, along the ciliary axoneme. Here, we use fluorescence imaging of living worms and perform single-molecule tracking experiments to elucidate the dynamics underlying the ciliary distribution of the sensory TP OCR-2. Quantitative analysis reveals that the ciliary distribution of OCR-2 depends on an intricate interplay between transport modes that depends on the specific location in the cilium: in dendrite and transition zone, directed transport is predominant. Along the cilium motion is mostly due to normal diffusion together with a small fraction of directed transport, while at the ciliary tip subdiffusion dominates. These insights in the role of IFT and diffusion in ciliary dynamics contribute to a deeper understanding of ciliary signal transduction and chemosensing.
Collapse
Affiliation(s)
- Jaap van Krugten
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, 1081 HV, Amsterdam, The Netherlands
| | - Noémie Danné
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
22
|
Cui G, Liew YJ, Konciute MK, Zhan Y, Hung SH, Thistle J, Gastoldi L, Schmidt-Roach S, Dekker J, Aranda M. Nutritional control regulates symbiont proliferation and life history in coral-dinoflagellate symbiosis. BMC Biol 2022; 20:103. [PMID: 35549698 PMCID: PMC9102920 DOI: 10.1186/s12915-022-01306-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background The coral-Symbiodiniaceae symbiosis is fundamental for the coral reef ecosystem. Corals provide various inorganic nutrients to their algal symbionts in exchange for the photosynthates to meet their metabolic demands. When becoming symbionts, Symbiodiniaceae cells show a reduced proliferation rate and a different life history. While it is generally believed that the animal hosts play critical roles in regulating these processes, far less is known about the molecular underpinnings that allow the corals to induce the changes in their symbionts. Results We tested symbiont cell proliferation and life stage changes in vitro in response to different nutrient-limiting conditions to determine the key nutrients and to compare the respective symbiont transcriptomic profiles to cells in hospite. We then examined the effects of nutrient repletion on symbiont proliferation in coral hosts and quantified life stage transitions in vitro using time-lapse confocal imaging. Here, we show that symbionts in hospite share gene expression and pathway activation profiles with free-living cells under nitrogen-limited conditions, strongly suggesting that symbiont proliferation in symbiosis is limited by nitrogen availability. Conclusions We demonstrate that nitrogen limitation not only suppresses cell proliferation but also life stage transition to maintain symbionts in the immobile coccoid stage. Nutrient repletion experiments in corals further confirmed that nitrogen availability is the major factor limiting symbiont density in hospite. Our study emphasizes the importance of nitrogen in coral-algae interactions and, more importantly, sheds light on the crucial role of nitrogen in symbiont life history regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01306-2.
Collapse
Affiliation(s)
- Guoxin Cui
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Yi Jin Liew
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Migle K Konciute
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shiou-Han Hung
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Thistle
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lucia Gastoldi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Schmidt-Roach
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Sinha D, Ivan D, Gibbs E, Chetluru M, Goss J, Chen Q. Fission yeast polycystin Pkd2p promotes cell size expansion and antagonizes the Hippo-related SIN pathway. J Cell Sci 2022; 135:274457. [PMID: 35099006 PMCID: PMC8919332 DOI: 10.1242/jcs.259046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Polycystins are conserved mechanosensitive channels whose mutations lead to the common human renal disorder autosomal dominant polycystic kidney disease (ADPKD). Previously, we discovered that the plasma membrane-localized fission yeast polycystin homolog Pkd2p is an essential protein required for cytokinesis; however, its role remains unclear. Here, we isolated a novel temperature-sensitive pkd2 mutant, pkd2-B42. Among the strong growth defects of this mutant, the most striking was that many mutant cells often lost a significant portion of their volume in just 5 min followed by a gradual recovery, a process that we termed 'deflation'. Unlike cell lysis, deflation did not result in plasma membrane rupture and occurred independently of cell cycle progression. The tip extension of pkd2-B42 cells was 80% slower than that of wild-type cells, and their turgor pressure was 50% lower. Both pkd2-B42 and the hypomorphic depletion mutant pkd2-81KD partially rescued mutants of the septation initiation network (SIN), a yeast Hippo-related signaling pathway, by preventing cell lysis, enhancing septum formation and doubling the number of Sid2p and Mob1p molecules at the spindle pole bodies. We conclude that Pkd2p promotes cell size expansion during interphase by regulating turgor pressure and antagonizes the SIN during cytokinesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Debatrayee Sinha
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Denisa Ivan
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Ellie Gibbs
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Madhurya Chetluru
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - John Goss
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA,Author for correspondence ()
| |
Collapse
|
24
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
25
|
Liu P, Lou X, Wingfield JL, Lin J, Nicastro D, Lechtreck K. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J Cell Biol 2021; 219:151720. [PMID: 32348466 PMCID: PMC7265326 DOI: 10.1083/jcb.202001122] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2–mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2–mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2–mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Xiaochu Lou
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
26
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
27
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
28
|
Fort C, Collingridge P, Brownlee C, Wheeler G. Ca 2+ elevations disrupt interactions between intraflagellar transport and the flagella membrane in Chlamydomonas. J Cell Sci 2021; 134:jcs.253492. [PMID: 33495279 DOI: 10.1242/jcs.253492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
The movement of ciliary membrane proteins is directed by transient interactions with intraflagellar transport (IFT) trains. The green alga Chlamydomonas has adapted this process for gliding motility, using retrograde IFT motors to move adhesive glycoproteins in the flagella membrane. Ca2+ signalling contributes directly to the gliding process, although uncertainty remains over the mechanism through which it acts. Here, we show that flagella Ca2+ elevations initiate the movement of paused retrograde IFT trains, which accumulate at the distal end of adherent flagella, but do not influence other IFT processes. On highly adherent surfaces, flagella exhibit high-frequency Ca2+ elevations that prevent the accumulation of paused retrograde IFT trains. Flagella Ca2+ elevations disrupt the IFT-dependent movement of microspheres along the flagella membrane, suggesting that Ca2+ acts by directly disrupting an interaction between retrograde IFT trains and flagella membrane glycoproteins. By regulating the extent to which glycoproteins on the flagella surface interact with IFT motor proteins on the axoneme, this signalling mechanism allows precise control of traction force and gliding motility in adherent flagella.
Collapse
Affiliation(s)
- Cecile Fort
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Peter Collingridge
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.,School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Glen Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
29
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
30
|
Li W, Liang J, Outeda P, Turner S, Wakimoto BT, Watnick T. A genetic screen in Drosophila reveals an unexpected role for the KIP1 ubiquitination-promoting complex in male fertility. PLoS Genet 2020; 16:e1009217. [PMID: 33378371 PMCID: PMC7802972 DOI: 10.1371/journal.pgen.1009217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/12/2021] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A unifying feature of polycystin-2 channels is their localization to both primary and motile cilia/flagella. In Drosophila melanogaster, the fly polycystin-2 homologue, Amo, is an ER protein early in sperm development but the protein must ultimately cluster at the flagellar tip in mature sperm to be fully functional. Male flies lacking appropriate Amo localization are sterile due to abnormal sperm motility and failure of sperm storage. We performed a forward genetic screen to identify additional proteins that mediate ciliary trafficking of Amo. Here we report that Drosophila homologues of KPC1 and KPC2, which comprise the mammalian KIP1 ubiquitination-promoting complex (KPC), form a conserved unit that is required for the sperm tail tip localization of Amo. Male flies lacking either KPC1 or KPC2 phenocopy amo mutants and are sterile due to a failure of sperm storage. KPC is a heterodimer composed of KPC1, an E3 ligase, and KPC2 (or UBAC1), an adaptor protein. Like their mammalian counterparts Drosophila KPC1 and KPC2 physically interact and they stabilize one another at the protein level. In flies, KPC2 is monoubiquitinated and phosphorylated and this modified form of the protein is located in mature sperm. Neither KPC1 nor KPC2 directly interact with Amo but they are detected in proximity to Amo at the tip of the sperm flagellum. In summary we have identified a new complex that is involved in male fertility in Drosophila melanogaster.
Collapse
Affiliation(s)
- Weizhe Li
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jinqing Liang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Stacey Turner
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Barbara T. Wakimoto
- Department of Biology, University of Washington Seattle, WA, United States of America
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yoshida M, Yamamiya R, Shimizu Y, Yoshimura K. Transgenic Chlamydomonas Expressing Human Transient Receptor Potential Ankyrin 1 (TRPA1) Channels to Assess the Effect of Agonists and Antagonists. Front Pharmacol 2020; 11:578955. [PMID: 33117171 PMCID: PMC7550780 DOI: 10.3389/fphar.2020.578955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is an ion channel whose gating is controlled by agonists, such as allyl isothiocyanate (AITC), and temperature. Since TRPA1 is associated with various disease symptoms and chemotherapeutic side effects, it is a frequent target of drug development. To facilitate the screening of TRPA1 agonists and antagonists, this study aimed to develop a simple bioassay for TRPA1 activity. To this end, transgenic Chlamydomonas reinhardtii expressing human TRPA1 was constructed. The transformants exhibited positive phototaxis at high temperatures (≥20°C) but negative phototaxis at low temperatures (≤15°C); wild-type cells showed positive phototaxis at all temperatures examined. In the transgenic cells, negative phototaxis was inhibited by TRPA1 antagonists, such as HC030031, A-967079, and AP18, at low temperatures. Negative phototaxis was induced by TRPA1 agonists, such as icilin and AITC, at high temperatures. The effects of these agonists were blocked by TRPA1 antagonists. In wild-type cells, none of these substances had any effects on phototaxis. These results indicate that the action of TRPA1 agonists and antagonists can be readily assessed using the behavior of C. reinhardtii expressing human TRPA1 as an assessment tool.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Ryodai Yamamiya
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yuto Shimizu
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Bio-Inteligence for Well Being, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
32
|
Genevière AM, Derelle E, Escande ML, Grimsley N, Klopp C, Ménager C, Michel A, Moreau H. Responses to iron oxide and zinc oxide nanoparticles in echinoderm embryos and microalgae: uptake, growth, morphology, and transcriptomic analysis. Nanotoxicology 2020; 14:1342-1361. [PMID: 33078975 DOI: 10.1080/17435390.2020.1827074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated the toxicity of Iron oxide and Zinc oxide engineered nanoparticles (ENPs) on Paracentrotus lividus sea urchin embryos and three species of microalgae. Morphological responses, internalization, and potential impacts of Fe2O3 and ZnO ENPs on physiology and metabolism were assessed. Both types of ENPs affected P. lividus larval development, but ZnO ENPs had a much stronger effect. While growth of the alga Micromonas commoda was severely impaired by both ENPs, Ostreococcus tauri or Nannochloris sp. were unaffected. Transmission electron microscopy showed the internalization of ENPs in sea urchin embryonic cells while only nanoparticle interaction with external membranes was evidenced in microalgae, suggesting that marine organisms react in diverse ways to ENPs. Transcriptome-wide analysis in P. lividus and M. commoda showed that many different physiological pathways were affected, some of which were common to both species, giving insights about the mechanisms underpinning toxic responses.
Collapse
Affiliation(s)
- Anne-Marie Genevière
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France.,Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Christophe Klopp
- INRA, Plateforme Bioinformatique Toulouse, Midi Pyrenees UBIA, Castanet Tolosan, France
| | - Christine Ménager
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| |
Collapse
|
33
|
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020; 287:20201309. [PMID: 32842926 DOI: 10.1098/rspb.2020.1309] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential superfamily of ion channels (TRP channels) is widely recognized for the roles its members play in sensory nervous systems. However, the incredible diversity within the TRP superfamily, and the wide range of sensory capacities found therein, has also allowed TRP channels to function beyond sensing an organism's external environment, and TRP channels have thus become broadly critical to (at least) animal life. TRP channels were originally discovered in Drosophila and have since been broadly studied in animals; however, thanks to a boom in genomic and transcriptomic data, we now know that TRP channels are present in the genomes of a variety of creatures, including green algae, fungi, choanoflagellates and a number of other eukaryotes. As a result, the organization of the TRP superfamily has changed radically from its original description. Moreover, modern comprehensive phylogenetic analyses have brought to light the vertebrate-centricity of much of the TRP literature; much of the nomenclature has been grounded in vertebrate TRP subfamilies, resulting in a glossing over of TRP channels in other taxa. Here, we provide a comprehensive review of the function, structure and evolutionary history of TRP channels, and put forth a more complete set of non-vertebrate-centric TRP family, subfamily and other subgroup nomenclature.
Collapse
Affiliation(s)
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
34
|
Wada M, Kaizuka I, Yoshimura K. Responses to transient receptor potential (TRP) channel agonists in Chlamydomonas reinhardtii. Biol Open 2020; 9:9/7/bio053140. [PMID: 32641289 PMCID: PMC7358129 DOI: 10.1242/bio.053140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pungent substances, such as capsaicin and gingerol, activate the transient receptor potential (TRP)-V1 channel and affect the feeding behaviors of animals. To gain insight into how living organisms have acquired a sense for pungent substances, we explored the response to TRP agonists in a protist, Chlamydomonas reinhardtii When capsaicin or gingerol was applied to wild-type cells, they became immotile, with flagella detaching from the cell body. The degree of deflagellation was nearly halved in a mutant defective in the TRP channel ADF1. Deflagellation in the adf1 mutant was inhibited further by Ruthenium Red, indicating ADF1 and another TRP channel are involved in the deflagellation response. The response to capsaicin and gingerol was not inhibited by TRPV1-specific blockers such as 4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide (BCTC) and capsazepine. When capsaicin or gingerol was applied to wild-type cells in the presence of Ruthenium Red, a large proportion lost motility while flagella remained attached, suggesting that flagella stop contributing to motility, at least in part, through a TRP-channel-independent pathway. These results indicate that pungent compounds such as capsaicin and gingerol induce loss of flagellar motility and flagellar detachment in C . reinhardtii cells.
Collapse
Affiliation(s)
- Mamoru Wada
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Itaru Kaizuka
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| |
Collapse
|
35
|
Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 2020; 21:ijms21114181. [PMID: 32545371 PMCID: PMC7312350 DOI: 10.3390/ijms21114181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.
Collapse
|
36
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
37
|
Zhao L, Hou Y, McNeill NA, Witman GB. The unity and diversity of the ciliary central apparatus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190164. [PMID: 31884923 PMCID: PMC7017334 DOI: 10.1098/rstb.2019.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Nearly all motile cilia and flagella (terms here used interchangeably) have a '9+2' axoneme containing nine outer doublet microtubules and two central microtubules. The central pair of microtubules plus associated projections, termed the central apparatus (CA), is involved in the control of flagellar motility and is essential for the normal movement of '9+2' cilia. Research using the green alga Chlamydomonas reinhardtii, an important model system for studying cilia, has provided most of our knowledge of the protein composition of the CA, and recent work using this organism has expanded the number of known and candidate CA proteins nearly threefold. Here we take advantage of this enhanced proteome to examine the genomes of a wide range of eukaryotic organisms, representing all of the major phylogenetic groups, to identify predicted orthologues of the C. reinhardtii CA proteins and explore how widely the proteins are conserved and whether there are patterns to this conservation. We also discuss in detail two contrasting groups of CA proteins-the ASH-domain proteins, which are broadly conserved, and the PAS proteins, which are restricted primarily to the volvocalean algae. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | | | | | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
38
|
Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal 2019; 69:109519. [PMID: 31881326 DOI: 10.1016/j.cellsig.2019.109519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle. The polycystins and fibrocystin, through an unknown mechanism, monitor the diameter of the kidney tubules and regulate the proliferation and differentiation of the cells lining the tubule. When the polycystins, fibrocystin or cilia themselves are defective, the cell perceives this as a pro-proliferative signal, which leads to tubule dilation and cystic disease. In addition to critical roles in preventing cyst formation in the kidney, cilia are also important in cystic and fibrotic diseases of the liver and pancreas, and ciliary defects lead to a variety of developmental abnormalities that cause structural birth defects in most organs.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America.
| | - Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany.
| |
Collapse
|
39
|
Luxmi R, Kumar D, Mains RE, King SM, Eipper BA. Cilia-based peptidergic signaling. PLoS Biol 2019; 17:e3000566. [PMID: 31809498 PMCID: PMC6919629 DOI: 10.1371/journal.pbio.3000566] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/18/2019] [Accepted: 11/15/2019] [Indexed: 01/05/2023] Open
Abstract
Peptide-based intercellular communication is a ubiquitous and ancient process that predates evolution of the nervous system. Cilia are essential signaling centers that both receive information from the environment and secrete bioactive extracellular vesicles (ectosomes). However, the nature of these secreted signals and their biological functions remain poorly understood. Here, we report the developmentally regulated release of the peptide amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), and the presence of peptidergic signaling machinery (including propeptide precursors, subtilisin-like prohormone convertases, amidated products, and receptors) in ciliary ectosomes from the green alga Chlamydomonas. One identified amidated PAM product serves as a chemoattractant for mating-type minus gametes but repels plus gametes. Thus, cilia provide a previously unappreciated route for the secretion of amidated signaling peptides. Our study in Chlamydomonas and the presence of PAM in mammalian cilia suggest that ciliary ectosome-mediated peptidergic signaling dates to the early eukaryotes and plays key roles in metazoan physiology.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
40
|
Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun 2019; 10:4180. [PMID: 31519888 PMCID: PMC6744473 DOI: 10.1038/s41467-019-12121-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Algae produce the largest amount of oxygen on earth and are invaluable for human nutrition and biomedicine, as well as for the chemical industry, energy production and agriculture. The mechanisms by which algae can detect and respond to changes in their environments can rely on membrane receptors, including TRP ion channels. Here we present a 3.5-Å resolution cryo-EM structure of the transient receptor potential (TRP) channel crTRP1 from the alga Chlamydomonas reinhardtii that opens in response to increased temperature and is positively regulated by the membrane lipid PIP2. The structure of crTRP1 significantly deviates from the structures of other TRP channels and has a unique 2-fold symmetrical rose-shape architecture with elbow domains and ankyrin repeat domains submerged and dipping into the membrane, respectively. Our study provides a structure of a TRP channel from a micro-organism and a structural framework for better understanding algae biology and TRP channel evolution.
Collapse
|
41
|
Daniel JG, Panizzi JR. Spatiotemporal expression profile of embryonic and adult ankyrin repeat and EF-hand domain containing protein 1-encoding genes ankef1a and ankef1b in zebrafish. Gene Expr Patterns 2019; 34:119069. [PMID: 31520739 DOI: 10.1016/j.gep.2019.119069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Recent human next-generation sequencing (NGS) studies indicate a correlation between ANKEF1 (ankyrin repeat and EF-hand domain containing protein 1) expression and cilia formation or function. Additionally, a single study conducted in the African clawed frog (Xenopus laevis) showed ankef1 is down-regulated after pharmacological fibroblast growth factor (FGF) inhibition and plays a role in protocadherin-mediated cell protrusion and adhesion. That study also revealed a critical role for ankef1 in the embryonic development of the frog, with morphants exhibiting phenotypes including spina bifida and a shortened body axis. Interestingly, while little is known about ANKEF1 function in other vertebrate systems, recent proteomic data has shown ANKEF1 enriched in ciliated cells. Likewise, publicly available EST profile databases imply ANKEF1 expression in multiple human tissues, including high levels in the testes. Together, these previous studies suggest an important role for ANKEF1 in ciliated tissues and during embryonic development. Here, we report cloning of zebrafish (Danio rerio) ankef1a, as well as its paralog, ankef1b, and expression analyses by whole-mount in situ hybridization (WISH) and quantitative polymerase chain reaction (qPCR) during embryonic development and in adult tissues. WISH shows both forms are ubiquitously expressed early in development, with more discrete expression of both transcripts in embryonic tissues known to precede or possess motile cilia, including dorsal forerunner cells (DFC) and the otic vesicles, respectively. Additionally, both transcripts are enriched in the developing pharynx and swim bladder. Our qPCR results indicate enhanced expression in the testes, along with increased expression in brain. Certainly, our experiments in the zebrafish model system with ankef1a and ankef1b provide a solid foundation for future studies to uncover the molecular pathways through which Ankef1 acts in both healthy and disease states.
Collapse
Affiliation(s)
- Jeffrey G Daniel
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Jennifer R Panizzi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA.
| |
Collapse
|
42
|
Cronmiller E, Toor D, Shao NC, Kariyawasam T, Wang MH, Lee JH. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep 2019; 9:12204. [PMID: 31434930 PMCID: PMC6704257 DOI: 10.1038/s41598-019-48523-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
An intact cell wall is critical for cellular interactions with the environment and protecting the cell from environmental challenges. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas, has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of >100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that osmotic stress is required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation of cell walls is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at a level that is only achieved by treatment with g-lysin in wild-type cells. Our study suggests a cell wall integrity monitoring mechanism that senses both osmotic stress and mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas, which may relate to cell wall integrity signaling mechanisms in other organisms.
Collapse
Affiliation(s)
- Evan Cronmiller
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada.
| |
Collapse
|
43
|
Ranjan P, Awasthi M, Snell WJ. Transient Internalization and Microtubule-Dependent Trafficking of a Ciliary Signaling Receptor from the Plasma Membrane to the Cilium. Curr Biol 2019; 29:2942-2947.e2. [PMID: 31422889 DOI: 10.1016/j.cub.2019.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
Cilia are ancient organelles used by unicellular and multicellular organisms not only for motility but also to receive and respond to multiple environmental cues, including light, odorants, morphogens, growth factors, and contact with cilia of other cells. Much is known about the cellular mechanisms that deliver membrane proteins to cilia during ciliogenesis. Execution of a ciliary signaling pathway, however, can critically depend on rapid alterations in the receptor composition of the cilium itself, and our understanding of the mechanisms that underlie these rapid, regulated alterations remains limited [1-6]. In the bi-ciliated, unicellular alga Chlamydomonas reinhardtii, interactions between cilia of mating type plus and mating type minus gametes mediated by adhesion receptors SAG1 and SAD1 activate a ciliary signaling pathway [7]. In response, a large, inactive pool of SAG1 on the plasma membrane of plus gametes rapidly becomes enriched in the peri-ciliary membrane and enters the cilia to become active and maintain and enhance ciliary adhesion and signaling [8-14]. Ciliary entry per se of SAG1 is independent of anterograde intraflagellar transport (IFT) [13], but the rapid apical enrichment requires cytoplasmic microtubules and the retrograde IFT motor, dynein 1b [14]. Whether the receptors move laterally within the plasma membrane or transit internally during redistribution is unknown. Here, in coupled immunolocalization/biochemical studies on SAG1, we show that, within minutes after gamete activation is initiated, cell-surface SAG1 is internalized, associates with an apico-basally polarized array of cytoplasmic microtubules, and returns to the cell surface at a peri-ciliary staging area for entry into cilia.
Collapse
Affiliation(s)
- Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
44
|
Valentine MS, Yano J, Van Houten J. A Novel Role for Polycystin-2 (Pkd2) in P. tetraurelia as a Probable Mg 2+ Channel Necessary for Mg 2+-Induced Behavior. Genes (Basel) 2019; 10:genes10060455. [PMID: 31207979 PMCID: PMC6627415 DOI: 10.3390/genes10060455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/26/2023] Open
Abstract
A human ciliopathy gene codes for Polycystin-2 (Pkd2), a non-selective cation channel. Here, the Pkd2 channel was explored in the ciliate Paramecium tetraurelia using combinations of RNA interference, over-expression, and epitope-tagging, in a search for function and novel interacting partners. Upon depletion of Pkd2, cells exhibited a phenotype similar to eccentric (XntA1), a Paramecium mutant lacking the inward Ca2+-dependent Mg2+ conductance. Further investigation showed both Pkd2 and XntA localize to the cilia and cell membrane, but do not require one another for trafficking. The XntA-myc protein co-immunoprecipitates Pkd2-FLAG, but not vice versa, suggesting two populations of Pkd2-FLAG, one of which interacts with XntA. Electrophysiology data showed that depletion and over-expression of Pkd2 led to smaller and larger depolarizations in Mg2+ solutions, respectively. Over-expression of Pkd2-FLAG in the XntA1 mutant caused slower swimming, supporting an increase in Mg2+ permeability, in agreement with the electrophysiology data. We propose that Pkd2 in P. tetraurelia collaborates with XntA for Mg2+-induced behavior. Our data suggest Pkd2 is sufficient and necessary for Mg2+ conductance and membrane permeability to Mg2+, and that Pkd2 is potentially a Mg2+-permeable channel.
Collapse
Affiliation(s)
- Megan S Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA.
| | - Junji Yano
- University of Vermont, Department of Biology, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA.
| | - Judith Van Houten
- University of Vermont, Department of Biology, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
45
|
Kumar D, Mains RE, Eipper BA, King SM. Ciliary and cytoskeletal functions of an ancient monooxygenase essential for bioactive amidated peptide synthesis. Cell Mol Life Sci 2019; 76:2329-2348. [PMID: 30879092 PMCID: PMC6529398 DOI: 10.1007/s00018-019-03065-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Many secreted peptides used for cell-cell communication require conversion of a C-terminal glycine to an amide for bioactivity. This reaction is catalyzed only by the integral membrane protein peptidylglycine α-amidating monooxygenase (PAM). PAM has been highly conserved and is found throughout the metazoa; PAM-like sequences are also present in choanoflagellates, filastereans, unicellular and colonial chlorophyte green algae, dinoflagellates and haptophytes. Recent studies have revealed that in addition to playing a key role in peptidergic signaling, PAM also regulates ciliogenesis in vertebrates, planaria and chlorophyte algae, and is required for the stability of actin-based microvilli. Here we briefly introduce the basic principles involved in ciliogenesis, the sequential reactions catalyzed by PAM and the trafficking of PAM through the secretory and endocytic pathways. We then discuss the multi-faceted roles this enzyme plays in the formation and maintenance of cytoskeleton-based cellular protrusions and propose models for how PAM protein and amidating activity might contribute to ciliogenesis. Finally, we consider why some ciliated organisms lack PAM, and discuss the potential ramifications of ciliary localized PAM for the endocrine features commonly observed in patients with ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
46
|
Abstract
We report a complete 3D structural model of typical epithelial primary cilia based on structural maps of full-length primary cilia obtained by serial section electron tomography. Our data demonstrate the architecture of primary cilia differs extensively from the commonly acknowledged 9+0 paradigm. The axoneme structure is relatively stable but gradually evolves from base to tip with a decreasing number of microtubule complexes (MtCs) and a reducing diameter. The axonemal MtCs are cross-linked by previously unrecognized fibrous protein networks. Such an architecture explains why primary cilia can elastically withstand liquid flow for mechanosensing. The nine axonemal MtCs in a cilium are found to differ significantly in length indicating intraflagellar transport processes in primary cilia may be more complicated than that reported for motile cilia. The 3D maps of microtubule doublet-singlet transitions generally display longitudinal gaps at the inner junction between the A- and B-tubules, which indicates the inner junction protein is a major player in doublet-singlet transitions. In addition, vesicles releasing from kidney primary cilia were observed in the structural maps, supporting that ciliary vesicles budding may serve as ectosomes for cell-cell communication.
Collapse
|
47
|
Wang Q, Peng Z, Long H, Deng X, Huang K. Polyubiquitylation of α-tubulin at K304 is required for flagellar disassembly in Chlamydomonas. J Cell Sci 2019; 132:jcs.229047. [PMID: 30765466 DOI: 10.1242/jcs.229047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Cilia/flagella are structurally conserved and dynamic organelles; their assembly and disassembly are coordinated with the cell cycle and cell differentiation. Several post-translational modifications, including acetylation, methylation, phosphorylation and ubiquitylation, participate in ciliary disassembly. However, the detailed mechanism and the role of ubiquitylation in ciliary disassembly are unclear. This study identified 20 proteins that were ubiquitylated in shortening flagella of Chlamydomonas α-Tubulin was the most abundant ubiquitylated protein and it was labeled with K63 polyubiquitin chains primarily at K304. Expression of an α-tubulin mutant (K304R), which could not be ubiquitylated, decreased the rate of flagellar disassembly and resulted in an enrichment of the mutant form in the axoneme, suggesting that ubiquitylation of α-tubulin is required for the normal kinetics of axonemal disassembly. Immunoprecipitation and glutathione-S-transferase pulldown assays demonstrated that the retrograde intraflagellar transport (IFT) protein, IFT139, interacted with a variety of ubiquitylated proteins, including α-tubulin, suggesting that IFT-A was responsible for transporting ubiquitylated proteins out of the flagella. Our data suggest an important role for ubiquitylation and retrograde IFT in ciliary disassembly.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Qiyu Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhao Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
48
|
Bloodgood RA, Tetreault J, Sloboda RD. The flagellar membrane glycoprotein FMG-1B Is necessary for expression of force at the flagellar surface. J Cell Sci 2019; 132:jcs.233429. [DOI: 10.1242/jcs.233429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
In addition to bend propagation for swimming, Chlamydomonas cells use their flagella to glide along a surface. When polystyrene microspheres are added to cells, they attach to and move along the flagellar surface, thus serving as a proxy for gliding that can be used to assay for the flagellar components required for gliding motility. Gliding and microsphere movement are dependent on intraflagellar transport (IFT). Circumstantial evidence suggests that mechanical coupling of the IFT force-transducing machinery to a substrate is mediated by the flagellar transmembrane glycoprotein FMG-1B. Cells carrying an insertion in the 5’-UTR of the FMG-1B gene lack FMG-1B protein, yet assemble normal length flagella despite the loss of the major protein component of the flagellar membrane. Transmission electron microscopy shows a complete loss of the glycocalyx normally observed on the flagellar surface, suggesting it is composed of the ectodomains of FMG-1B molecules. Microsphere movements and gliding motility are also greatly reduced in the 5’-UTR mutant. Together, these data provide the first rigorous demonstration that FMG-1B is necessary for the normal expression of force at the flagellar surface in Chlamydomonas.
Collapse
Affiliation(s)
- Robert A. Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joseph Tetreault
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03750, USA
| | - Roger D. Sloboda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03750, USA
- The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
49
|
Sekiguchi M, Kameda S, Kurosawa S, Yoshida M, Yoshimura K. Thermotaxis in Chlamydomonas is brought about by membrane excitation and controlled by redox conditions. Sci Rep 2018; 8:16114. [PMID: 30382191 PMCID: PMC6208428 DOI: 10.1038/s41598-018-34487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Temperature is physiologically critical for all living organisms, which cope with temperature stress using metabolic and behavioral responses. In unicellular and some multicellular organisms, thermotaxis is a behavioral response to avoid stressful thermal environments and promote accumulation in an optimal thermal environment. In this study, we examined whether Chlamydomonas reinhardtii, a unicellular green alga, demonstrated thermotaxis. We found that between 10 °C and 30 °C, Chlamydomonas cells migrated toward lower temperatures independent of cultivation temperature. Interestingly, when we applied reagents to change intracellular reduction-oxidation (redox) conditions, we saw that thermotaxis was enhanced, suppressed, or reversed, depending on the redox conditions and cultivation temperature. Thermotaxis was almost absent in ppr2 and ppr3 mutants, which cannot swim backward because of a defect in generating calcium current in flagella. The frequency of spontaneous backward swimming was lower at more favorable temperature, suggesting a pivotal role of spontaneous backward swimming generated by flagellar membrane excitation.
Collapse
Affiliation(s)
- Masaya Sekiguchi
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Shigetoshi Kameda
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Satoshi Kurosawa
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan.
| |
Collapse
|
50
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|