1
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
2
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
3
|
Runnebohm AM, Richards KA, Irelan CB, Turk SM, Vitali HE, Indovina CJ, Rubenstein EM. Overlapping function of Hrd1 and Ste24 in translocon quality control provides robust channel surveillance. J Biol Chem 2020; 295:16113-16120. [PMID: 33033070 DOI: 10.1074/jbc.ac120.016191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Translocation of proteins across biological membranes is essential for life. Proteins that clog the endoplasmic reticulum (ER) translocon prevent the movement of other proteins into the ER. Eukaryotes have multiple translocon quality control (TQC) mechanisms to detect and destroy proteins that persistently engage the translocon. TQC mechanisms have been defined using a limited panel of substrates that aberrantly occupy the channel. The extent of substrate overlap among TQC pathways is unknown. In this study, we found that two TQC enzymes, the ER-associated degradation ubiquitin ligase Hrd1 and zinc metalloprotease Ste24, promote degradation of characterized translocon-associated substrates of the other enzyme in Saccharomyces cerevisiae Although both enzymes contribute to substrate turnover, our results suggest a prominent role for Hrd1 in TQC. Yeast lacking both Hrd1 and Ste24 exhibit a profound growth defect, consistent with overlapping function. Remarkably, two mutations that mildly perturb post-translational translocation and reduce the extent of aberrant translocon engagement by a model substrate diminish cellular dependence on TQC enzymes. Our data reveal previously unappreciated mechanistic complexity in TQC substrate detection and suggest that a robust translocon surveillance infrastructure maintains functional and efficient translocation machinery.
Collapse
Affiliation(s)
| | - Kyle A Richards
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Samantha M Turk
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Halie E Vitali
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | | |
Collapse
|
4
|
Neal S, Syau D, Nejatfard A, Nadeau S, Hampton RY. HRD Complex Self-Remodeling Enables a Novel Route of Membrane Protein Retrotranslocation. iScience 2020; 23:101493. [PMID: 32891886 PMCID: PMC7481253 DOI: 10.1016/j.isci.2020.101493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
ER-associated degradation (ERAD) targets misfolded ER proteins for degradation. Retrotranslocation, a key feature of ERAD, entails removal of ubiquitinated substrates into the cytosol for proteasomal destruction. Recently, it has been shown that the Hrd1 E3 ligase forms a retrotranslocation channel for luminal (ERAD-L) substrates. Conversely, our studies found that integral membrane (ERAD-M) substrates exit the ER through a distinct pathway mediated by the Dfm1 rhomboid protein. Those studies also revealed a second, Hrd1-dependent pathway of ERAD-M retrotranslocation can arise in dfm1Δ null. Here we show that, in the dfm1Δ null, the HRD complex undergoes remodeling to a form that mediates ERAD-M retrotranslocation. Specifically, Hrd1's normally present stochiometric partner Hrd3 is efficiently removed during suppressive remodeling, allowing Hrd1 to function in this novel capacity. Neither Hrd1 autoubiquitination nor its cytosolic domain is required for suppressive ERAD-M retrotranslocation. Thus, the HRD complex displays remarkable functional flexibility in response to ER stress.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Della Syau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anahita Nejatfard
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Samantha Nadeau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Abstract
In eukaryotic cells, about one-third of the synthesized proteins are translocated into the endoplasmic reticulum; they are membrane or lumen resident proteins and proteins direct to the Golgi apparatus. The co-translational translocation takes place through the heterotrimeric protein-conducting channel Sec61 which is associated with the ribosome and many accessory components, such as the heterotetrameric translocon-associated protein (TRAP) complex. Recently, microscopic techniques, such as cryo-electron microscopy and cryo-electron tomography, have enabled the determination of the translocation machinery structure. However, at present, there is a lack of understanding regarding the roles of some of its components; indeed, the TRAP complex function during co-translational translocation needs to be established. In addition, TRAP may play a role during unfolded protein response, endoplasmic-reticulum-associated protein degradation and congenital disorder of glycosylation (ssr4 CDG). In this article, I describe the current understanding of the TRAP complex in the light of its possible function(s).
Collapse
Affiliation(s)
- Antonietta Russo
- Medical Biochemistry and Molecular Biology, UKS, University of Saarland, Homburg, Germany
| |
Collapse
|
6
|
Kretzschmar FK, Doner NM, Krawczyk HE, Scholz P, Schmitt K, Valerius O, Braus GH, Mullen RT, Ischebeck T. Identification of Low-Abundance Lipid Droplet Proteins in Seeds and Seedlings. PLANT PHYSIOLOGY 2020; 182:1326-1345. [PMID: 31826923 PMCID: PMC7054876 DOI: 10.1104/pp.19.01255] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 05/11/2023]
Abstract
The developmental program of seed formation, germination, and early seedling growth requires not only tight regulation of cell division and metabolism, but also concerted control of the structure and function of organelles, which relies on specific changes in their protein composition. Of particular interest is the switch from heterotrophic to photoautotrophic seedling growth, for which cytoplasmic lipid droplets (LDs) play a critical role as depots for energy-rich storage lipids. Here, we present the results of a bottom-up proteomics study analyzing the total protein fractions and LD-enriched fractions in eight different developmental phases during silique (seed) development, seed germination, and seedling establishment in Arabidopsis (Arabidopsis thaliana). The quantitative analysis of the LD proteome using LD-enrichment factors led to the identification of six previously unidentified and comparably low-abundance LD proteins, each of which was confirmed by intracellular localization studies with fluorescent protein fusions. In addition to these advances in LD protein discovery and the potential insights provided to as yet unexplored aspects in plant LD functions, our data set allowed for a comparative analysis of the LD protein composition throughout the various developmental phases examined. Among the most notable of the alterations in the LD proteome were those during seedling establishment, indicating a switch in the physiological function(s) of LDs after greening of the cotyledons. This work highlights LDs as dynamic organelles with functions beyond lipid storage.
Collapse
Affiliation(s)
- Franziska K Kretzschmar
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Nathan M Doner
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Patricia Scholz
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Oliver Valerius
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Buchanan BW, Mehrtash AB, Broshar CL, Runnebohm AM, Snow BJ, Scanameo LN, Hochstrasser M, Rubenstein EM. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. J Biol Chem 2019; 294:19814-19830. [PMID: 31723032 DOI: 10.1074/jbc.ra119.010295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when the abundance of unfolded proteins in the ER exceeds the capacity of the folding machinery. Despite the expanding cadre of characterized cellular adaptations to ER stress, knowledge of the effects of ER stress on cellular physiology remains incomplete. We investigated the impact of ER stress on ER and inner nuclear membrane protein quality control mechanisms in Saccharomyces cerevisiae. We analyzed the turnover of substrates of four ubiquitin ligases (Doa10, Rkr1/Ltn1, Hrd1, and the Asi complex) and the metalloprotease Ste24 in induced models of ER stress. ER stress did not substantially impact Doa10 or Rkr1 substrates. However, Hrd1-mediated destruction of a protein that aberrantly engages the translocon (Deg1-Sec62) and substrates with luminal degradation signals was markedly impaired by ER stress; by contrast, Hrd1-dependent degradation of proteins with intramembrane degrons was largely unperturbed by ER stress. ER stress impaired the degradation of one of two Asi substrates analyzed and caused a translocon-clogging Ste24 substrate to accumulate in a form consistent with persistent translocon occupation. Degradation of Deg1-Sec62 in the absence of stress and stabilization during ER stress were independent of four ER stress-sensing pathways. Our results indicate ER stress differentially impacts degradation of protein quality control substrates, including those mediated by the same ubiquitin ligase. These observations suggest the existence of additional regulatory mechanisms dictating substrate selection during ER stress.
Collapse
Affiliation(s)
- Bryce W Buchanan
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Adrian B Mehrtash
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | | | - Brian J Snow
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Laura N Scanameo
- Department of Biology, Ball State University, Muncie, Indiana 47306
| | - Mark Hochstrasser
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
8
|
Guardia-Laguarta C, Liu Y, Lauritzen KH, Erdjument-Bromage H, Martin B, Swayne TC, Jiang X, Przedborski S. PINK1 Content in Mitochondria is Regulated by ER-Associated Degradation. J Neurosci 2019; 39:7074-7085. [PMID: 31300519 PMCID: PMC6733537 DOI: 10.1523/jneurosci.1691-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023] Open
Abstract
Maintaining a pool of functional mitochondria requires degradation of damaged ones within the cell. PINK1 is critical in this quality-control process: loss of mitochondrial membrane potential causes PINK1 to accumulate on the mitochondrial surface, triggering mitophagy. However, little is known about how PINK1 is regulated. Recently, we showed that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation of its mature form via a mechanism inconsistent with the proposed N-end rule process. Using both human female and monkey cell lines, we now demonstrate that once generated within the mitochondria, 52 kDa PINK1 adopts a mitochondrial topology most consistent with it being at the mitochondrial-endoplasmic reticulum (ER) interface. From this particular submitochondrial location, PINK1 interacts with components of the ER-associated degradation pathway, such as the E3 ligases gp78 and HRD1, which cooperate to catalyze PINK1 ubiquitination. The valosin-containing protein and its cofactor, UFD1, then target ubiquitinated PINK1 for proteasomal degradation. Our data show that PINK1 in healthy mitochondria is negatively regulated via an interplay between mitochondria and ER, and shed light on how this mitochondrial protein gains access to the proteasome.SIGNIFICANCE STATEMENT Regulation of mitochondrial content of PINK1, a contributor to mitophagy, is an important area of research. Recently, we found that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation. We now extend and refine this novel finding by showing that PINK1 localizes at the mitochondrial-endoplasmic reticulum (ER) interface, from where it interacts with the ER-associated degradation machinery, which catalyzes its ubiquitination and transfer to the proteasome. Thus, these data show that PINK1 in healthy mitochondria is negatively regulated via a mitochondria and ER interplay, and how this mitochondrial protein gains access to the proteasome.
Collapse
Affiliation(s)
| | - Yuhui Liu
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
| | - Knut H Lauritzen
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
- Institute of Basic Medical Science, University of Oslo, 0315 Oslo, Norway
| | | | - Brittany Martin
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032
| | - Xuejun Jiang
- Program in Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, and
| | - Serge Przedborski
- Departments of Pathology & Cell Biology,
- Neurology
- Center for Motor Neuron Biology and Diseases
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032
| |
Collapse
|
9
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
10
|
Neal S, Jaeger PA, Duttke SH, Benner C, K Glass C, Ideker T, Hampton RY. The Dfm1 Derlin Is Required for ERAD Retrotranslocation of Integral Membrane Proteins. Mol Cell 2018; 69:306-320.e4. [PMID: 29351849 PMCID: PMC6049073 DOI: 10.1016/j.molcel.2017.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) removes misfolded proteins from the ER membrane and lumen by the ubiquitin-proteasome pathway. Retrotranslocation of ubiquitinated substrates to the cytosol is a universal feature of ERAD that requires the Cdc48 AAA-ATPase. Despite intense efforts, the mechanism of ER exit, particularly for integral membrane (ERAD-M) substrates, has remained unclear. Using a self-ubiquitinating substrate (SUS), which undergoes normal retrotranslocation independently of known ERAD factors, and the new SPOCK (single plate orf compendium kit) micro-library to query all yeast genes, we found the rhomboid derlin Dfm1 was required for retrotranslocation of both HRD and DOA ERAD pathway integral membrane substrates. Dfm1 recruited Cdc48 to the ER membrane with its unique SHP motifs, and it catalyzed substrate extraction through its conserved rhomboid motifs. Surprisingly, dfm1Δ can undergo rapid suppression, restoring wild-type ERAD-M. This unexpected suppression explained earlier studies ruling out Dfm1, and it revealed an ancillary ERAD-M retrotranslocation pathway requiring Hrd1.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp A Jaeger
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biocipher(X), Inc., San Diego, CA 92121, USA
| | - Sascha H Duttke
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Engle SM, Crowder JJ, Watts SG, Indovina CJ, Coffey SZ, Rubenstein EM. Acetylation of N-terminus and two internal amino acids is dispensable for degradation of a protein that aberrantly engages the endoplasmic reticulum translocon. PeerJ 2017; 5:e3728. [PMID: 28848693 PMCID: PMC5571791 DOI: 10.7717/peerj.3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Conserved homologues of the Hrd1 ubiquitin ligase target for degradation proteins that persistently or aberrantly engage the endoplasmic reticulum translocon, including mammalian apolipoprotein B (apoB; the major protein component of low-density lipoproteins) and the artificial yeast protein Deg1-Sec62. A complete understanding of the molecular mechanism by which translocon-associated proteins are recognized and degraded may inform the development of therapeutic strategies for cholesterol-related pathologies. Both apoB and Deg1-Sec62 are extensively post-translationally modified. Mass spectrometry of a variant of Deg1-Sec62 revealed that the protein is acetylated at the N-terminal methionine and two internal lysine residues. N-terminal and internal acetylation regulates the degradation of a variety of unstable proteins. However, preventing N-terminal and internal acetylation had no detectable consequence for Hrd1-mediated proteolysis of Deg1-Sec62. Our data highlight the importance of empirically validating the role of post-translational modifications and sequence motifs on protein degradation, even when such elements have previously been demonstrated sufficient to destine other proteins for destruction.
Collapse
Affiliation(s)
- Sarah M Engle
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Immunology-Translational Science, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Justin J Crowder
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Center for Medical Education, Indiana University School of Medicine, Muncie, IN, United States of America
| | - Sheldon G Watts
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Marian University College of Osteopathic Medicine, Indianapolis, IN, United States of America
| | | | - Samuel Z Coffey
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Medpace Reference Laboratories, Cincinnati, OH, United States of America
| | - Eric M Rubenstein
- Department of Biology, Ball State University, Muncie, IN, United States of America
| |
Collapse
|
12
|
Guerriero CJ, Reutter KR, Augustine AA, Preston GM, Weiberth KF, Mackie TD, Cleveland-Rubeor HC, Bethel NP, Callenberg KM, Nakatsukasa K, Grabe M, Brodsky JL. Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Mol Biol Cell 2017; 28:2076-2090. [PMID: 28539401 PMCID: PMC5509421 DOI: 10.1091/mbc.e17-03-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum-associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency.
Collapse
Affiliation(s)
| | - Karl-Richard Reutter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Andrew A Augustine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kurt F Weiberth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Neville P Bethel
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Keith M Callenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
13
|
Adnan H, Zhang Z, Park HJ, Tailor C, Che C, Kamani M, Spitalny G, Binnington B, Lingwood C. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases. PLoS One 2016; 11:e0166948. [PMID: 27935997 PMCID: PMC5147855 DOI: 10.1371/journal.pone.0166948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2–4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (<10x), cell surface expression (20x) and chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD–exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.
Collapse
Affiliation(s)
- Humaira Adnan
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Joo Park
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetankumar Tailor
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mustafa Kamani
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Beth Binnington
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clifford Lingwood
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Römisch K. A Case for Sec61 Channel Involvement in ERAD. Trends Biochem Sci 2016; 42:171-179. [PMID: 27932072 DOI: 10.1016/j.tibs.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
Proteins that misfold in the endoplasmic reticulum (ER) need to be transported back to the cytosol for degradation by proteasomes, a process known as ER-associated degradation (ERAD). The first candidate discussed as a retrograde protein transport conduit was the Sec61 channel which is responsible for secretory protein transport into the ER during biogenesis. The Sec61 channel binds the proteasome 19S regulatory particle which can extract an ERAD substrate from the ER. Nevertheless its role as a general export channel has been dismissed, and Hrd1 and Der1 have been proposed as alternatives. The discovery of export-specific sec61 mutants and of mammalian ERAD substrates whose export is dependent on the 19S regulatory particle suggest that dismissal of a role of Sec61 in export may have been premature.
Collapse
Affiliation(s)
- Karin Römisch
- Department of Biology, Naturwissenschaftlich-technische Fakultät 8, Saarland University, 66123 Saarbruecken, Germany.
| |
Collapse
|
15
|
To M, Peterson CWH, Roberts MA, Counihan JL, Wu TT, Forster MS, Nomura DK, Olzmann JA. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Mol Biol Cell 2016; 28:270-284. [PMID: 27881664 PMCID: PMC5231896 DOI: 10.1091/mbc.e16-07-0483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question. Using chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)-dependent LD biogenesis, we provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.
Collapse
Affiliation(s)
- Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Clark W H Peterson
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Melissa A Roberts
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Jessica L Counihan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Tiffany T Wu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Mercedes S Forster
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
16
|
van de Weijer ML, van Muijlwijk GH, Visser LJ, Costa AI, Wiertz EJHJ, Lebbink RJ. The E3 Ubiquitin Ligase TMEM129 Is a Tri-Spanning Transmembrane Protein. Viruses 2016; 8:v8110309. [PMID: 27854284 PMCID: PMC5127023 DOI: 10.3390/v8110309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Misfolded proteins from the endoplasmic reticulum (ER) are transported back into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 hijacks this ER-associated protein degradation (ERAD) pathway to downregulate human leukocyte antigen (HLA) class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. Recently, we identified the E3 ubiquitin ligase transmembrane protein 129 (TMEM129) as a key player in this process, where interference with TMEM129 activity in human cells completely abrogates US11-mediated class I degradation. Here, we set out to further characterize TMEM129. We show that TMEM129 is a non-glycosylated protein containing a non-cleaved signal anchor sequence. By glycosylation scanning mutagenesis, we show that TMEM129 is a tri-spanning ER-membrane protein that adopts an Nexo–Ccyto orientation. This insertion in the ER membrane positions the C-terminal really interesting new gene (RING) domain of TMEM129 in the cytosol, making it available to catalyze ubiquitination reactions that are required for cytosolic degradation of secretory proteins.
Collapse
Affiliation(s)
| | - Guus H van Muijlwijk
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Linda J Visser
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Ana I Costa
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
17
|
Smith N, Adle DJ, Zhao M, Qin X, Kim H, Lee J. Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane. J Biol Chem 2016; 291:15082-92. [PMID: 27226596 DOI: 10.1074/jbc.m116.726265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays a critical role in the destruction of terminally misfolded proteins at the secretory pathway. The system also regulates expression levels of several proteins such as Pca1p, a cadmium exporter in yeast. To gain better insight into the mechanisms underlying ERAD of Pca1p and other polytopic proteins by the proteasome in the cytosol, our study determined the roles for the molecular factors of ERAD in dislodging Pca1p from the endoplasmic reticulum (ER). Inactivation of the 20S proteasome leads to accumulation of ubiquitinated Pca1p in the ER membrane, suggesting a role for the proteasome in extraction of Pca1p from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10p E3 ligase-dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. Although the Ufd2p E4 ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, Ufd2p-deficient cells did not affect the formation of a complex between Pca1p and the proteasome. Two other polytopic membrane proteins undergoing ERAD, Ste6*p and Hmg2p, also displayed the same outcomes observed for Pca1p. However, poly-ubiquitinated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of proteolytic activities of the proteasome. These results indicate that extraction and degradation of polytopic membrane proteins at the ER is a coupled event. This mechanism would relieve the cost of exposed hydrophobic domains in the cytosol during ERAD.
Collapse
Affiliation(s)
- Nathan Smith
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - David J Adle
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Miaoyun Zhao
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Xiaojuan Qin
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and the College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| |
Collapse
|
18
|
Buchanan BW, Lloyd ME, Engle SM, Rubenstein EM. Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae. J Vis Exp 2016. [PMID: 27167179 DOI: 10.3791/53975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulation of protein abundance is crucial to virtually every cellular process. Protein abundance reflects the integration of the rates of protein synthesis and protein degradation. Many assays reporting on protein abundance (e.g., single-time point western blotting, flow cytometry, fluorescence microscopy, or growth-based reporter assays) do not allow discrimination of the relative effects of translation and proteolysis on protein levels. This article describes the use of cycloheximide chase followed by western blotting to specifically analyze protein degradation in the model unicellular eukaryote, Saccharomyces cerevisiae (budding yeast). In this procedure, yeast cells are incubated in the presence of the translational inhibitor cycloheximide. Aliquots of cells are collected immediately after and at specific time points following addition of cycloheximide. Cells are lysed, and the lysates are separated by polyacrylamide gel electrophoresis for western blot analysis of protein abundance at each time point. The cycloheximide chase procedure permits visualization of the degradation kinetics of the steady state population of a variety of cellular proteins. The procedure may be used to investigate the genetic requirements for and environmental influences on protein degradation.
Collapse
Affiliation(s)
| | - Michael E Lloyd
- Department of Biology, Ball State University; Bioproduct Research & Development, Eli Lilly and Company
| | | | | |
Collapse
|
19
|
Ross NL, Sullivan MO. Importin-4 Regulates Gene Delivery by Enhancing Nuclear Retention and Chromatin Deposition by Polyplexes. Mol Pharm 2015; 12:4488-97. [PMID: 26465823 PMCID: PMC4733562 DOI: 10.1021/acs.molpharmaceut.5b00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For successful gene delivery, plasmid DNA must be able to access the nucleus in order to be transcribed. Numerous studies have shown that gene delivery occurs more readily in dividing cells, which is attributed to increased nuclear access when the nuclear envelope disassembles during mitosis; however, nonviral carriers continue to have low transfection efficiencies and require large quantities of DNA per cell to achieve reasonable gene transfer, even in dividing cells. Therefore, we hypothesized that using histone-derived nuclear localization sequences (NLS)s to target polyplexes might enhance nuclear delivery by facilitating interactions with histone effectors that mediate nuclear partitioning and retention during mitosis. We discovered a novel interaction between polyplexes linked to histone 3 (H3) N-terminal tail peptides and the histone nuclear import protein importin-4, as evidenced by strong spatial colocalization as well as significantly decreased transfection when importin-4 expression was reduced. A fraction of the histone-targeted polyplexes was also found to colocalize with the retrotranslocon of the endoplasmic reticulum, Sec61. Super resolution microscopy demonstrated a high level of polyplex binding to chromatin postmitosis, and there also was a significant decrease in the amount of chromatin binding following importin-4 knockdown. These results provide evidence that natural histone effectors mediate both nuclear entry and deposition on chromatin by histone-targeted polyplexes, and a translocation event from the endoplasmic reticulum into the cytosol may occur before mitosis to enable the polyplexes to interact with these essential cytoplasmic proteins.
Collapse
Affiliation(s)
- Nikki L Ross
- Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
21
|
Benyair R, Ogen-Shtern N, Lederkremer GZ. Glycan regulation of ER-associated degradation through compartmentalization. Semin Cell Dev Biol 2015; 41:99-109. [DOI: 10.1016/j.semcdb.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
|
22
|
Watts SG, Crowder JJ, Coffey SZ, Rubenstein EM. Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae. J Vis Exp 2015:e52428. [PMID: 25742191 DOI: 10.3791/52428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated protein degradation is crucial for virtually every cellular function. Much of what is known about the molecular mechanisms and genetic requirements for eukaryotic protein degradation was initially established in Saccharomyces cerevisiae. Classical analyses of protein degradation have relied on biochemical pulse-chase and cycloheximide-chase methodologies. While these techniques provide sensitive means for observing protein degradation, they are laborious, time-consuming, and low-throughput. These approaches are not amenable to rapid or large-scale screening for mutations that prevent protein degradation. Here, a yeast growth-based assay for the facile identification of genetic requirements for protein degradation is described. In this assay, a reporter enzyme required for growth under specific selective conditions is fused to an unstable protein. Cells lacking the endogenous reporter enzyme but expressing the fusion protein can grow under selective conditions only when the fusion protein is stabilized (i.e. when protein degradation is compromised). In the growth assay described here, serial dilutions of wild-type and mutant yeast cells harboring a plasmid encoding a fusion protein are spotted onto selective and non-selective medium. Growth under selective conditions is consistent with degradation impairment by a given mutation. Increased protein abundance should be biochemically confirmed. A method for the rapid extraction of yeast proteins in a form suitable for electrophoresis and western blotting is also demonstrated. A growth-based readout for protein stability, combined with a simple protocol for protein extraction for biochemical analysis, facilitates rapid identification of genetic requirements for protein degradation. These techniques can be adapted to monitor degradation of a variety of short-lived proteins. In the example presented, the His3 enzyme, which is required for histidine biosynthesis, was fused to Deg1-Sec62. Deg1-Sec62 is targeted for degradation after it aberrantly engages the endoplasmic reticulum translocon. Cells harboring Deg1-Sec62-His3 were able to grow under selective conditions when the protein was stabilized.
Collapse
Affiliation(s)
| | | | - Samuel Z Coffey
- Department of Biology, Ball State University; Division of Nephrology, Cincinnati Children's Hospital
| | | |
Collapse
|
23
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
24
|
Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. ACTA ACUST UNITED AC 2014; 204:869-79. [PMID: 24637321 PMCID: PMC3998802 DOI: 10.1083/jcb.201312042] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 88 08003 Barcelona, Spain
| | | | | |
Collapse
|
25
|
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 2014; 9:e94089. [PMID: 24732305 PMCID: PMC3986054 DOI: 10.1371/journal.pone.0094089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.
Collapse
Affiliation(s)
- Petra B. Wampfler
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Cornelia Spycher
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (ABH); (CS)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CS)
| |
Collapse
|
26
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
27
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
28
|
Tretter T, Pereira FP, Ulucan O, Helms V, Allan S, Kalies KU, Römisch K. ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7. BMC Cell Biol 2013; 14:56. [PMID: 24314051 PMCID: PMC3897919 DOI: 10.1186/1471-2121-14-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role. Results We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected. Conclusions We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Campus A1,5, 66123 Saarbrücken, Germany.
| |
Collapse
|
29
|
Servas C, Römisch K. The Sec63p J-domain is required for ERAD of soluble proteins in yeast. PLoS One 2013; 8:e82058. [PMID: 24324744 PMCID: PMC3852996 DOI: 10.1371/journal.pone.0082058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/02/2022] Open
Abstract
How misfolded proteins are exported from the ER to the cytosol for degradation (ER-associated Degradation, ERAD) and which proteins are participating in this process is not understood. Several studies using a single, leaky mutant indicated that Sec63p might be involved in ERAD. More recently, Sec63p was also found strongly associated with proteasomes attached to the protein-conducting channel in the ER membrane which presumably form part of the export machinery. These observations prompted us to reinvestigate the role of Sec63p in ERAD by generating new mutants which were selected in a screen monitoring the intracellular accumulation of the ERAD substrate CPY*. We show that a mutation in the DnaJ-domain of Sec63p causes a defect in ERAD, whereas mutations in the Brl, acidic, and transmembrane domains only affect protein import into the ER. Unexpectedly, mutations in the acidic domain which mediates interaction of Sec63p with Sec62p also caused defects in cotranslational import. In contrast to mammalian cells where SEC63 expression levels affect steady-state levels of multi-spanning transmembrane proteins, the sec63 J-domain mutant was only defective in ERAD of soluble substrates.
Collapse
Affiliation(s)
- Christina Servas
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
30
|
Olzmann JA, Kopito RR, Christianson JC. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013185. [PMID: 23232094 DOI: 10.1101/cshperspect.a013185] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
31
|
Needham PG, Brodsky JL. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2447-57. [PMID: 23557783 DOI: 10.1016/j.bbamcr.2013.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022]
Abstract
All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
32
|
Thibault G, Ng DTW. The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 2012; 4:4/12/a013193. [PMID: 23209158 DOI: 10.1101/cshperspect.a013193] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast.
Collapse
Affiliation(s)
- Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
33
|
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. ACTA ACUST UNITED AC 2012; 197:761-73. [PMID: 22689655 PMCID: PMC3373407 DOI: 10.1083/jcb.201203061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hrd1 ubiquitin ligase plays a role in quality control of two substrates associated with the Sec61 translocon. Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Abada PB, Larson CA, Manorek G, Adams P, Howell SB. Sec61β controls sensitivity to platinum-containing chemotherapeutic agents through modulation of the copper-transporting ATPase ATP7A. Mol Pharmacol 2012; 82:510-20. [PMID: 22710939 PMCID: PMC3422700 DOI: 10.1124/mol.112.079822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/18/2012] [Indexed: 11/22/2022] Open
Abstract
The Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61β subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61β was constitutively knocked down in 2008 ovarian cancer cells. Sec61β knockdown (KD) resulted in 8-, 16.8-, and 9-fold resistance to cisplatin (cDDP), carboplatin, and oxaliplatin, respectively. Sec61β KD reduced the cellular accumulation of cDDP to 67% of that in parental cells. Baseline copper levels, copper uptake, and copper cytotoxicity were also reduced. Because copper transporters and chaperones regulate platinum drug accumulation and efflux, their expression in 2008 Sec61β-KD cells was analyzed; ATP7A was found to be 2- to 3-fold overexpressed, whereas there was no change in ATP7B, ATOX1, CTR1, or CTR2 levels. Cells lacking ATP7A did not exhibit increased cDDP resistance upon knockdown of Sec61β. Sec61β-KD cells also exhibited altered ATP7A cellular distribution. We conclude that Sec61β modulates the cytotoxicity of many chemotherapeutic agents, with the largest effect being on the platinum drugs. This modulation occurs through effects of Sec61β on the expression and distribution of ATP7A, which was shown previously to control platinum drug sequestration and cytotoxicity.
Collapse
Affiliation(s)
- Paolo B Abada
- Moores UCSD Cancer Center, La Jolla, CA 92093-0819, USA.
| | | | | | | | | |
Collapse
|
35
|
Hampton RY, Sommer T. Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 2012; 24:460-6. [PMID: 22854296 DOI: 10.1016/j.ceb.2012.05.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/29/2012] [Indexed: 12/01/2022]
Abstract
ER-associated degradation (ERAD) is a mechanism by which numerous ER-localized proteins are targeted for cytosolic degradation by the ubiquitin-proteasome system. A surprising and still-cryptic requirement of this process is the energy dependent retrotranslocation of both lumenal and membrane-embedded ER proteins into the cytosol for ongoing ubiquitination and proteasomal destruction. The current understanding, results, and open questions are discussed below for this intriguing and critical process of ERAD.
Collapse
Affiliation(s)
- Randolph Y Hampton
- UCSD Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, CA, United States.
| | | |
Collapse
|
36
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
37
|
Bendikov-Bar I, Horowitz M. Gaucher disease paradigm: from ERAD to comorbidity. Hum Mutat 2012; 33:1398-407. [PMID: 22623374 DOI: 10.1002/humu.22124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 01/28/2023]
Abstract
Mutations in the GBA gene, encoding the lysosomal acid beta-glucocerebrosidase (GCase), lead to deficient activity of the enzyme in the lysosomes, to glucosylceramide accumulation and to development of Gaucher disease (GD). More than 280 mutations in the GBA gene have been directly associated with GD. Mutant GCase variants present variable levels of endoplasmic reticulum (ER) retention, due to their inability to correctly fold, and undergo ER-associated degradation (ERAD) in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity. In the present review, we discuss ERAD of mutant GCase variants and its possible consequences in GD patients and in carriers of GD mutations.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
38
|
Sanyal S, Claessen JHL, Ploegh HL. A viral deubiquitylating enzyme restores dislocation of substrates from the endoplasmic reticulum (ER) in semi-intact cells. J Biol Chem 2012; 287:23594-603. [PMID: 22619172 DOI: 10.1074/jbc.m112.365312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminally misfolded glycoproteins are ejected from the endoplasmic reticulum (ER) to the cytosol and are destroyed by the ubiquitin proteasome system. A dominant negative version of the deubiquitylating enzyme Yod1 (Yod1C160S) causes accumulation of dislocation substrates in the ER. Failure to remove ubiquitin from the dislocation substrate might therefore stall the reaction at the exit site from the ER. We hypothesized that addition of a promiscuous deubiquitylase should overcome this blockade and restore dislocation. We monitored ER-to-cytosol transport of misfolded proteins in cells permeabilized at high cell density by perfringolysin O, a pore-forming cytolysin. This method allows ready access of otherwise impermeant reagents to the intracellular milieu with minimal dilution of cytoplasmic components. We show that addition of the purified Epstein-Barr virus deubiquitylase to semi-intact cells indeed initiates dislocation of a stalled substrate intermediate, resulting in stabilization of substrates in the cytosol. Our data provide new mechanistic insight in the dislocation reaction and support a model where failure to deubiquitylate an ER-resident protein occludes the dislocon and causes upstream misfolded intermediates to accumulate.
Collapse
Affiliation(s)
- Sumana Sanyal
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
39
|
St Pierre P, Nabi IR. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity. PROTOPLASMA 2012; 249 Suppl 1:S11-S18. [PMID: 22045301 DOI: 10.1007/s00709-011-0344-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain.
Collapse
Affiliation(s)
- Pascal St Pierre
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
40
|
Wolf DH, Stolz A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:117-24. [PMID: 21945179 DOI: 10.1016/j.bbamcr.2011.09.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | |
Collapse
|
41
|
Klemm EJ, Spooner E, Ploegh HL. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J Biol Chem 2011; 286:37602-14. [PMID: 21857022 PMCID: PMC3199505 DOI: 10.1074/jbc.m111.284794] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.
Collapse
Affiliation(s)
- Elizabeth J Klemm
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
42
|
Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 2011; 23:464-75. [PMID: 21664808 DOI: 10.1016/j.ceb.2011.05.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 12/16/2022]
Abstract
The evolution of eukaryotes was accompanied by an increased need for intracellular communication and cellular specialization. Thus, a more complex collection of secreted and membrane proteins had to be synthesized, modified, and folded. The endoplasmic reticulum (ER) thereby became equipped with devoted enzymes and associated factors that both catalyze the production of secreted proteins and remove damaged proteins. A means to modify ER function to accommodate and destroy misfolded proteins also evolved. Not surprisingly, a growing number of human diseases are linked to various facets of ER function. Each of these topics will be discussed in this article, with an emphasis on recent reports in the literature that employed diverse models.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
43
|
Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 2011; 21:867-83. [PMID: 21537343 PMCID: PMC3203708 DOI: 10.1038/cr.2011.75] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To deal with the constant challenge of protein misfolding in the endoplasmic reticulum (ER), eukaryotic cells have evolved an ER protein quality control (ERQC) mechanism that is integrated with an adaptive stress response. The ERQC pathway is comprised of factors residing in the ER lumen that function in the identification and retention of aberrantly folded proteins, factors in the ER membrane for retrotranslocation of misfolded polypeptides, and enzymes in the cytosol that degrade retrotranslocated proteins. The integrated stress response (termed ER stress or unfolded protein response, UPR) contains several signaling branches elicited from the ER membrane, which fine-tune the rate of protein synthesis and entry into the ER to match the ER folding capacity. The fitness of the cell, particularly those bearing a high secretory burden, is critically dependent on functional integrity of the ER, which in turn relies on these stress-attenuating mechanisms to maintain protein homeostasis, or proteostasis. Aberrant proteostasis can trigger cellular apoptosis, making these adaptive stress response systems attractive targets for perturbation in treatment of cell malignancies. Here, we review our current understanding of how the cell preserves ER proteostasis and discuss how we may harness the mechanistic information on this process to develop new cancer therapeutics.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| |
Collapse
|
44
|
|
45
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Bernon C, Carré Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S. Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 2010; 21:363-75. [PMID: 20978011 DOI: 10.1093/glycob/cwq169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.
Collapse
Affiliation(s)
- Coralie Bernon
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goeckeler JL, Brodsky JL. Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation. Diabetes Obes Metab 2010; 12 Suppl 2:32-8. [PMID: 21029298 PMCID: PMC3071497 DOI: 10.1111/j.1463-1326.2010.01273.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) must contend with a large protein flux, which is especially notable in cells dedicated to secreting hormone-regulated gene products. Because of the complexity of the protein folding pathway and the potential for genetic or stochastic errors, a significant percentage of these nascent secreted proteins fail to acquire their native conformations. If these species cannot be cleared from the ER, they may aggregate, which leads to cell death. To lessen the effects of potentially toxic polypeptides, aberrant ER proteins are destroyed via a process known as ER-associated degradation (ERAD). ERAD substrates are selected by molecular chaperones and chaperone-like proteins, and prior to degradation most substrates are ubiquitin-modified. Together with the unfolded protein response, the ERAD pathway is a critical component of the protein quality control machinery in the ER. Although emerging data continue to link ERAD with human diseases, most of our knowledge of this pathway arose from studies using a model eukaryote, the yeast Saccharomyces cerevisiae. In this review, we will summarize the discoveries that led to our current understanding of this pathway, focusing primarily on experiments in yeast. We will also indicate links between ERAD and disease and emphasize future research avenues.
Collapse
Affiliation(s)
- J L Goeckeler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
48
|
Tsai YC, Weissman AM. The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer 2010; 1:764-778. [PMID: 21331300 DOI: 10.1177/1947601910383011] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle involved in many cellular functions including protein folding and secretion, lipid biosynthesis and calcium homeostasis. Proteins destined for the cell surface or for secretion are made in the ER, where they are folded and assembled into multi-subunit complexes. The ER plays a vital role in cellular protein quality control by extracting and degrading proteins that are not correctly folded or assembled into native complexes. This process, known as ER-associated degradation (ERAD), ensures that only properly folded and assembled proteins are transported to their final destinations. Besides its role in protein folding and transport in the secretory pathway, the ER regulates the biosynthesis of cholesterol and other membrane lipids. ERAD is an important means to ensure that levels of the responsible enzymes are appropriately maintained. The ER is also a major organelle for oxygen and nutrient sensing as cells adapt to their microenvironment. Stresses that disrupt ER function leads to accumulation of unfolded proteins in the ER, a condition known as ER stress. Cells adapt to ER stress by activating an integrated signal transduction pathway called the unfolded protein response (UPR) (1). The UPR represents a survival response by the cells to restore ER homeostasis. If ER stress persists, cells activate mechanisms that result in cell death. Chronic ER stress is increasingly being recognized as a factor in many human diseases such as diabetes, neurodegenerative disorders and cancer. In this review we discuss the roles of the UPR and ERAD in cancer and suggest directions for future research.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling Center for Cancer Research National Cancer Institute - Frederick Frederick, Maryland
| | | |
Collapse
|
49
|
Tamura T, Sunryd JC, Hebert DN. Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 2010; 27:412-27. [PMID: 20553226 DOI: 10.3109/09687688.2010.495354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized and specialized organelle optimized for the production of proteins. It is comprised of a highly interconnected network of tubules that contain a large set of resident proteins dedicated to the maturation and processing of proteins that traverse the eukaryotic secretory pathway. As protein maturation is an imperfect process, frequently resulting in misfolding and/or the formation of aggregates, proteins are subjected to a series of evaluation processes within the ER. Proteins deemed native are sorted for anterograde trafficking, while immature or non-native proteins are initially retained in the ER in an attempt to rescue the aberrant products. Terminally misfolded substrates are eventually targeted for turnover through the ER-associated degradation or ERAD pathway to protect the cell from the release of a defective product. A clearer picture of the identity of the machinery involved in these quality control evaluation processes and their mechanisms of actions has emerged over the past decade.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
50
|
Wilson JD, Barlowe C. Yet1p and Yet3p, the yeast homologs of BAP29 and BAP31, interact with the endoplasmic reticulum translocation apparatus and are required for inositol prototrophy. J Biol Chem 2010; 285:18252-61. [PMID: 20378542 DOI: 10.1074/jbc.m109.080382] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Delta and yet3Delta mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Delta or yet3Delta mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|