1
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 PMCID: PMC11691468 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Yano S, Asami N, Kishi Y, Takeda I, Kubotani H, Hattori Y, Kitazawa A, Hayashi K, Kubo KI, Saeki M, Maeda C, Hiraki C, Teruya RI, Taketomi T, Akiyama K, Okajima-Takahashi T, Sato B, Wake H, Gotoh Y, Nakajima K, Ichinohe T, Nagata T, Chiba T, Tsuruta F. Propagation of neuronal micronuclei regulates microglial characteristics. Nat Neurosci 2025:10.1038/s41593-024-01863-5. [PMID: 39825140 DOI: 10.1038/s41593-024-01863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period. Neurons passing through a dense region of the developing neocortex give rise to MN and release them into the extracellular space, before being incorporated into microglia and inducing morphological changes. Two-photon imaging analyses have revealed that microglia incorporating MN tend to slowly retract their processes. Loss of the cGAS gene alleviates effects on micronucleus-dependent morphological changes. Neuronal MN-harboring microglia also exhibit unique transcriptome signatures. These results demonstrate that neuronal MN serve as niche signals that transform microglia, and provide a potential mechanism for regulation of microglial characteristics in the early postnatal neocortex.
Collapse
Affiliation(s)
- Sarasa Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Chugai Life Science Park Yokohama, Chugai Pharmaceutical Co. Ltd., Yokohama, Japan
| | - Natsu Asami
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
| | - Hikari Kubotani
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Saeki
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Maeda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Hiraki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Rin-Ichiro Teruya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takumi Taketomi
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kaito Akiyama
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Ban Sato
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies SOKENDAI, Hayama, Japan
- Department of Systems Science, Center of Optical Scattering Image Science, Kobe University, Kobe, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo, Japan
| | - Takeshi Nagata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Information and Communication Research Division, Mizuho Research and Technologies Ltd., Tokyo, Japan
- Faculty of Mathematical Informatics, Meiji Gakuin University, Yokohama, Japan
| | - Tomoki Chiba
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fuminori Tsuruta
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
- Center for Quantum and Information Life Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Shinde U, Balasinor NH, Ravichandran V, Kumar AS, Gunasekaran VP. "Extracellular Vesicle DNA: Advances and Applications as a Non-Invasive Biomarker in Disease Diagnosis and Treatment". Clin Chim Acta 2025; 568:120125. [PMID: 39793847 DOI: 10.1016/j.cca.2025.120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures released by cells into the extracellular milieu. These vesicles encapsulate a diverse array of molecular constituents, including nucleic acids, proteins, and lipids, which provide insights into the physiological or pathological conditions of their parent cells. Despite their potential, the study of EV-derived DNA (EV-DNA) has gathered relatively limited attention. This review aims to present a thorough examination of the emerging knowledge surrounding the utility of EV-DNA as a non-invasive biomarker across a spectrum of diseases. The review delves into various mechanisms underlying DNA packaging within EVs and the prevalent methodologies employed for extraction of EV-DNA. The relevance of EV-DNA is assessed across numerous health conditions, notably cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, and pregnancy-related complications. The use of EV-DNA for cancer mutation detection has demonstrated remarkable sensitivity and specificity, thereby enhancing both diagnostic accuracy and therapeutic monitoring. In the context of cardiovascular diseases, EV-DNA serves as a predictive marker for events such as myocardial infarctions and shows a correlation with the severity of the disease. With respect to neurodegenerative conditions, including Parkinson's and Alzheimer's, EV-DNA contributes to the understanding of disease mechanisms and progression. Additionally, it plays an essential role in modulating immune tolerance and facilitating communication between maternal and fetal systems. Although there is a pressing need for standardized protocols for EV isolation and DNA analysis to facilitate clinical implementation, the prospect of EV-DNA as a non-invasive biomarker for diagnostic and prognostic purposes across diverse pathological conditions is considerable.
Collapse
Affiliation(s)
- Uma Shinde
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Nafisa Huseni Balasinor
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR- NIRRCH), Parel, Mumbai, India
| | - Vinothkannan Ravichandran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Aw Santhosh Kumar
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India; California University of Science & Medicine, CA, United States of America
| | - Vinoth Prasanna Gunasekaran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India.
| |
Collapse
|
4
|
Schur N, Samman L, Shah M, Dukharan V, Stegura C, Broughton L, Schlesinger T. Exosomes: Historical Evolution and Emerging Roles in Dermatology. J Cosmet Dermatol 2025; 24:e16769. [PMID: 39780461 PMCID: PMC11711925 DOI: 10.1111/jocd.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Exosomes are a nanoscale extracellular vesicles derived from different cell types that have been investigated for various clinical applications, including functioning as biomarkers and use as direct therapeutics. Given the role of exosomes in multiple pathophysiologic pathways and potential practical applications, they have garnered significant interest in the scientific community but much is still unknown about their development and use. AIMS This literature review covers the background, mechanisms of action, use as biomarkers, methods of application, and direct therapeutic applications of exosomes. METHODS A literature review on the background and uses of exosomes was conducted. Key articles describing the pathophysiologic pathways and applications of exosomes were summarized and described. RESULTS Exosomes impact several cellular pathways which allow them to function as biomarkers for malignancy and inflammatory dermatoses and may make them useful therapeutics for skin rejuvenation, hair loss, and wound repair. Limitations of exosomes include an incomplete understanding of their functions and impacts and a lack of standardization in their production and application. CONCLUSIONS Exosomes are a unique and novel cellular medium that offer promise as a diagnostic tool and therapy. While there are limitations to the uses of exosomes as well as our current understanding of them, further investigation may yield additional applications and a larger role in medicine for exosomes.
Collapse
Affiliation(s)
- Nina Schur
- Lake Erie College of Osteopathic MedicineFloridaUSA
| | - Luna Samman
- Department of DermatologyGarnet Health Medical CenterMiddletown, New YorkUSA
| | - Milaan Shah
- Department of DermatologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Victoria Dukharan
- Department of DermatologyKansas City University ‐ GME Consortium/Advanced Dermatology and Cosmetic SurgeryOrlando, FloridaUSA
| | - Carol Stegura
- School of Medicine, Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Luke Broughton
- School of Medicine, Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Todd Schlesinger
- Clinical Research Center of the CarolinasCharlestonSouth CarolinaUSA
| |
Collapse
|
5
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ovčar A, Kovačič B. Biogenesis of Extracellular Vesicles (EVs) and the Potential Use of Embryo-Derived EVs in Medically Assisted Reproduction. Int J Mol Sci 2024; 26:42. [PMID: 39795901 PMCID: PMC11719982 DOI: 10.3390/ijms26010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation. In the field of EVs, only a limited number of studies have been conducted on embryo-conditioned medium, indicating a significant gap in knowledge regarding the potential role of EVs in embryo development and implantation. Therefore, this review aims to evaluate current research findings on EVs enriched from animal and human embryo spent medium. By unraveling the potential link between embryo-derived EVs and embryo selection in clinical settings, such research might enhance embryo-selection methods in assisted reproductive technologies, eventually increasing the success rates of fertility treatments and advancing our understanding of mechanisms underlying successful embryo development and implantation in humans.
Collapse
Affiliation(s)
| | - Borut Kovačič
- Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
7
|
Jeppesen DK, Zhang Q, Coffey RJ. Extracellular vesicles and nanoparticles at a glance. J Cell Sci 2024; 137:jcs260201. [PMID: 39641198 DOI: 10.1242/jcs.260201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions. Steady progress in the field has uncovered a great diversity and heterogeneity of distinct vesicle types that appear to be secreted from most, if not all, cell types. Recently, it has become apparent that cells also release non-vesicular extracellular nanoparticles (NVEPs), including the newly discovered exomeres and supermeres. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the diversity of EVs and nanoparticles that are released from cells into the extracellular space, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Gu J, Chen X, Luo Z, Li R, Xu Q, Liu M, Liu X, Liu Y, Jiang S, Zou M, Ling S, Liu S, Liu N. Cardiomyocyte-derived exosomes promote cardiomyocyte proliferation and neonatal heart regeneration. FASEB J 2024; 38:e70186. [PMID: 39560071 DOI: 10.1096/fj.202400737rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Heart regeneration was mainly achieved by intrinsic capacity. Exosomes are crucial in cardiovascular disease, yet their involvement in myocardial regeneration remains underexplored. To understand the role of cardiomyocyte-derived exosomes (CM-Exos) in heart regeneration. We established mouse models of myocardial infarction and apical resection in neonates to investigate the potential benefits of exosomes in response to injury. Rab27a knockout (KO) mice were constructed as an exosome decrease model. Distinct fibrosis appears in the infarcted and resection area in the KO mice 21 days after heart injury. The proliferation marker pH 3, Ki67, and Aurora B were detected 3 days after surgery, which decreased in KO mice compared to WT mice. Intravenous injection of CM-Exos increased cardiomyocyte proliferation and partially restored heart function in KO mice. Rab27a knockdown in vitro reduced the expression of pH 3, Ki67, and Aurora B positive cardiomyocytes. However, the supplementation of CM-Exos increased the proliferation of cardiomyocytes. Exosomal miRNA sequencing was subsequently applied, and miR-21-5p was a promising candidate that promoted cardiomyocyte proliferation through its target genes Spry-1 and PDCD4. Intravenous injection of miR-21-5p exhibited similar proliferative effects as CM-Exos. Our results indicate that CM-Exos promotes cardiomyocyte cycle reentry by delivering miR-21-5p, highlighting the endogenous factors of myocardial regeneration.
Collapse
Affiliation(s)
- Jielei Gu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Luo
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongxue Li
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yajing Liu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Siqin Jiang
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Min Zou
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sisi Ling
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Oh C, Mazan-Mamczarz K, Gorospe M, Noh JH, Kim KM. Impact of UPF2 on the levels of CD81 on extracellular vesicles. Front Cell Dev Biol 2024; 12:1469080. [PMID: 39655046 PMCID: PMC11625909 DOI: 10.3389/fcell.2024.1469080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication. Following uptake, EV cargo molecules, including DNA, RNA, lipids, and proteins, influence gene expression and molecular signaling in recipient cells. Although various studies have identified disease-specific EV molecules, further research into their biogenesis and secretion mechanisms is needed for clinical application. Here, we investigated the role of UPF2 in regulating the biogenesis and components of EVs. Notably, UPF2 promoted the expression of CD81, a membrane protein marker of EVs, as UPF2 silencing decreased CD81 levels in EVs, both inside the cell and secreted. In contrast, the expression levels of CD63 increased, without altering the size or numbers of EVs. In addition, reducing UPF2 levels did not affect the total number of EVs but lowered production of CD81-positive EVs and reduced the efficiency of uptake by recipient cells. Collectively, our findings uncover a novel function for UPF2 in regulating the production of CD81 and changing EV properties.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Xu Z, Foster JB, Lashley R, Wang X, Muhleman AJ, Masters CE, Lin CLG. Comparison of the protein composition of isolated extracellular vesicles from mouse brain and dissociated brain cell culture medium. PLoS One 2024; 19:e0309716. [PMID: 39531446 PMCID: PMC11556680 DOI: 10.1371/journal.pone.0309716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication. Characterizing EV protein composition is essential to understand EV function(s). Isolating EVs from cell culture medium is a common approach to study EVs, but it remains unclear whether EVs isolated from in vitro conditions accurately reflect physiological conditions of the same source in vivo tissues. Here, we analyzed the protein composition of EVs isolated from freshly dissected mouse forebrain and primary dissociated mouse forebrain culture medium. In total, 3,204 and 3,583 proteins were identified in EVs isolated in vivo and in vitro, respectively. Among the proteins identified from both EV sources, there was substantial overlap (~86%). While the overall proteome compositions were very similar, in vitro EVs were relatively enriched with transmembrane/GPI-anchored membrane and cytosolic proteins (MISEV2023 category 1 and 2) typically associated with EVs. Conversely, while both in vivo and in vitro EVs express likely non-EV proteins (MISEV2023 category 3), the in vivo samples were significantly more enriched with these probable contaminants, specifically ribosomal proteins. Our findings highlight that in vitro EVs may be representative of in vivo EVs when isolated from the same source tissue using similar methodology; however, each population of EVs have differences in both total and, primarily, relative protein expression likely due to differing levels of co-eluting contaminants. Therefore, these points must be considered when interpreting results of EV studies further suggesting that improved methods of isolation to reduce non-EV contaminants should be further investigated.
Collapse
Affiliation(s)
- Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Joshua Brian Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Albert John Muhleman
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher Eli Masters
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
11
|
Duret T, Elmallah M, Rollin J, Gatault P, Jiang LH, Roger S. Role of purinoreceptors in the release of extracellular vesicles and consequences on immune response and cancer progression. Biomed J 2024:100805. [PMID: 39510381 DOI: 10.1016/j.bj.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Cell-to-cell communication is a major process for accommodating cell functioning to changes in the environments and to preserve tissue and organism homeostasis. It is achieved by different mechanisms characterized by the origin of the message, the molecular nature of the messenger, its speed of action and its reach. Purinergic signalling is a powerful mechanism initiated by extracellular nucleotides, such as ATP, acting on plasma membrane purinoreceptors. Purinergic signalling is tightly controlled in time and space by the action of ectonucleotidases. Recent studies have highlighted the critical role of purinergic signalling in controlling the generation, release and fate of extracellular vesicles and, in this way, mediating long-distance responses. Most of these discoveries have been made in immune and cancer cells. This review is aimed at establishing the current knowledge on the way which purinoreceptors control extracellular vesicle-mediated communications and consequences for recipient cells.
Collapse
Affiliation(s)
- Thomat Duret
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival optimization in organ Transplantation (FHU SUPORT), Tours, France
| | - Mohammed Elmallah
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France
| | - Jérôme Rollin
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service d'Hématologie-Hémostase, CHRU de Tours, Tours, France
| | - Philippe Gatault
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service de Néphrologie, Hypertension, Dialyse et Transplantation Rénale, CHRU Tours, Tours, France; Fédération Hospitalo-Universitaire Survival optimization in organ Transplantation (FHU SUPORT), Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; School of Basic Medical Sciences, Xinxiang Medical University, China; School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival optimization in organ Transplantation (FHU SUPORT), Tours, France.
| |
Collapse
|
12
|
Han T, Hao Q, Chao T, Sun Q, Chen Y, Gao B, Guan L, Ren W, Zhou X. Extracellular vesicles in cancer: golden goose or Trojan horse. J Mol Cell Biol 2024; 16:mjae025. [PMID: 38796692 PMCID: PMC11540518 DOI: 10.1093/jmcb/mjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Tao Han
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinggang Sun
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yitian Chen
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Gao
- Umibio Co. Ltd, Shanghai 201210, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M, Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 2024; 201:106663. [PMID: 39251030 DOI: 10.1016/j.nbd.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
The functionality of the central nervous system (CNS) relies on the connection, integration, and the exchange of information among neural cells. The crosstalk among glial cells and neurons is pivotal for a series of neural functions, such as development of the nervous system, electric conduction, synaptic transmission, neural circuit establishment, and brain homeostasis. Glial cells are crucial players in the maintenance of brain functionality in physiological and disease conditions. Neuroinflammation is a common pathological process in various brain disorders, such as neurodegenerative diseases, and infections. Glial cells, including astrocytes, microglia, and oligodendrocytes, are the main mediators of neuroinflammation, as they can sense and respond to brain insults by releasing pro-inflammatory or anti-inflammatory factors. Recent evidence indicates that extracellular vesicles (EVs) are pivotal players in the intercellular communication that underlies physiological and pathological processes. In particular, glia-derived EVs play relevant roles in modulating neuroinflammation, either by promoting or inhibiting the activation of glial cells and neurons, or by facilitating the clearance or propagation of pathogenic proteins. The involvement of EVs in neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Multiple Sclerosis (MS)- which share hallmarks such as neuroinflammation and oxidative stress to DNA damage, alterations in neurotrophin levels, mitochondrial impairment, and altered protein dynamics- will be dissected, showing how EVs act as pivotal cell-cell mediators of toxic stimuli, thereby propagating degeneration and cell death signaling. Thus, this review focuses on the EVs secreted by microglia, astrocytes, oligodendrocytes and in neuroinflammatory conditions, emphasizing on their effects on neurons and on central nervous system functions, considering both their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo".
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| |
Collapse
|
14
|
Ikezu T, Yang Y, Verderio C, Krämer-Albers EM. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J Neurosci 2024; 44:e1170242024. [PMID: 39358029 PMCID: PMC11450539 DOI: 10.1523/jneurosci.1170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Claudia Verderio
- Department of Biomedical Sciences, CNR Institute of Neuroscience, Università Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Rhineland Palatinate, Germany
| |
Collapse
|
15
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
16
|
Egami Y, Kawai K, Araki N. Rit1-TBC1D10B signaling modulates FcγR-mediated phagosome formation in RAW264 macrophages. Life Sci Alliance 2024; 7:e202402651. [PMID: 39084876 PMCID: PMC11291910 DOI: 10.26508/lsa.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Phagocytosis is an important immune response that protects the host from pathogen invasion. Rit1 GTPase is known to be involved in diverse cellular processes. However, its role in FcγR-mediated phagocytosis remains unclear. Our live-cell imaging analysis revealed that Rit1 was localized to the membranes of F-actin-rich phagocytic cups in RAW264 macrophages. Rit1 knockout and expression of the GDP-locked Rit1 mutant suppressed phagosome formation. We also found that TBC1D10B, a GAP for the Rab family GTPases, colocalizes with Rit1 in the membranes of phagocytic cups. Expression and knockout studies have shown that TBC1D10B decreases phagosome formation in both Rab-GAP activity-dependent and -independent manners. Notably, the expression of the GDP-locked Rit1 mutant or Rit1 knockout inhibited the dissociation of TBC1D10B from phagocytic cups. In addition, the expression of the GTP-locked Rit1 mutant promoted the dissociation of TBC1D10B in phagocytic cups and restored the rate of phagosome formation in TBC1D10B-expressing cells. These data suggest that Rit1-TBC1D10B signaling regulates FcγR-mediated phagosome formation in macrophages.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| |
Collapse
|
17
|
Li TY, Qin C, Zhao BB, Li ZR, Wang YY, Zhao YT, Wang WB. Construction of a prognostic model with exosome biogenesis- and release-related genes and identification of RAB27B in immune infiltration of pancreatic cancer. Transl Cancer Res 2024; 13:4846-4865. [PMID: 39430819 PMCID: PMC11483359 DOI: 10.21037/tcr-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/19/2024] [Indexed: 10/22/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and fatal disease. Exosomes are extracellular vesicles that plays a vital rule in the progression and metastasis of PDAC. However, the specific mechanism of exosome biogenesis and release in the tumorigenesis and development of pancreatic cancer remains elusive. The aim of this study is to develop novel biomarkers and construct a reliable prognostic signature to accurately stratify patients and optimize clinical decision-making. Methods Gene expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression analysis, random forest analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis were used to construct the risk signature. The effectiveness of the model was validated by survival point plot, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curve in training, testing and entire cohorts. Meanwhile, single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithm were utilized to assess the association of the risk signature with the immune status in the PDAC tumor microenvironment. We also performed functional enrichment, tumor mutation analysis, and DNA methylation analyses based on the risk signature. The function of the core gene was further verified by polymerase chain reaction (PCR), western blot, bicinchoninic acid (BCA), immunohistochemistry (IHC) and in vitro experiments including cell proliferation, migration, and apoptosis experiments. Results We constructed an exosome biogenesis- and release-related risk model which could serve as an effective and independent prognosis predictor for PDAC patients. The immune infiltration analysis revealed that our signature was related to the PDAC immune microenvironment, mainly associated with a lower proportion of natural killer (NK) cells and CD8+ T cells. Tissue microarray IHC confirmed the association of RAB27B with poor prognosis in PDAC. Knockdown of RAB27B expression promoted PDAC cells' apoptosis, while decreased cellular proliferation and migration. Also, knockdown of RAB27B expression led to reduced exosome secretion, while RAB27B overexpression promoted exosome secretion. Conclusions The predictive signature can predict overall survival, help elucidate the mechanism of exosome biogenesis and release, and provide immunotherapy guidance for PDAC patients.
Collapse
Affiliation(s)
- Tian-Yu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Yu-Tong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
18
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
19
|
Liu J, Qin J, Liang L, Zhang X, Gao J, Hao Y, Zhao P. Novel insights into the regulation of exosomal PD-L1 in cancer: From generation to clinical application. Eur J Pharmacol 2024; 979:176831. [PMID: 39047964 DOI: 10.1016/j.ejphar.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death 1 (PD-1), leading to T cell exhaustion and promoting tumor cell survival, ultimately mediating immunosuppression. While FDA-approved monoclonal antibodies targeting the PD-1/PD-L1 interaction have shown success in cancer treatment, some patients experience limited and short-lived therapeutic outcomes. Recent studies have identified PD-L1 expression not only on tumor cell surfaces but also on exosomes, with secretion pathways including both conventional and unconventional endocytosis routes, presenting a unique therapeutic opportunity. Emerging evidence suggests that exosomal PD-L1 contributes to systemic immunosuppression, potentially counteracting the effects of anti-PD-1 checkpoint therapies. However, the significance of exosomal PD-L1 in clinical cancer patients unresponsive to anti-PD-1/PD-L1 immunotherapy, as well as the factors regulating its generation, remain unclear. Moreover, the mechanisms underlying PD-L1 expression on exosomes and its regulation in cancer are yet to be fully elucidated. This review primarily focuses on the mechanisms modulating exosomal PD-L1 generation in cancer, while also outlining its involvement in immunosuppression, tumor proliferation, and response to cancer immunotherapy. Additionally, we explore the potential of exosomal PD-L1 as a cancer biomarker and therapeutic target, aiming to provide a comprehensive overview of this emerging field and its implications for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China; Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Junxia Qin
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Lili Liang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xinzhong Zhang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Jie Gao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Youwei Hao
- Department of Cardiology, Taiyuan People's Hospital, Taiyuan, 030000, China
| | - Peng Zhao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
20
|
Komori T, Fukuda M. Two roads diverged in a cell: insights from differential exosome regulation in polarized cells. Front Cell Dev Biol 2024; 12:1451988. [PMID: 39286483 PMCID: PMC11402822 DOI: 10.3389/fcell.2024.1451988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Exosomes are extracellular vesicles involved in intercellular signaling, carrying various cargo from microRNAs to metabolites and proteins. They are released by practically all cells and are highly heterogenous due to their origin and content. Several groups of exosomes are known to be involved in various pathological conditions including autoimmune, neurodegenerative, and infectious diseases as well as cancer, and therefore a substantial understanding of their biogenesis and release is crucial. Polarized cells display an array of specific functions originated from differentiated membrane trafficking systems and could lead to hints in untangling the complex process of exosomes. Indeed, recent advances have successfully revealed specific regulation pathways for releasing different subsets of exosomes from different sides of polarized epithelial cells, underscoring the importance of polarized cells in the field. Here we review current evidence on exosome biogenesis and release, especially in polarized cells, highlight the challenges that need to be combatted, and discuss potential applications related to exosomes of polarized-cell origin.
Collapse
Affiliation(s)
- Tadayuki Komori
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
21
|
Yang Y, Liu H, Guo K, Yu Q, Zhao Y, Wang J, Huang Y, Li W. Extracellular Vesicles from Compression-Loaded Cementoblasts Promote the Tissue Repair Function of Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402529. [PMID: 39101239 PMCID: PMC11423227 DOI: 10.1002/advs.202402529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Indexed: 08/06/2024]
Abstract
Treatment strategies for hard tissue defects aim to establish a mineralized microenvironment that facilitates tissue remodeling. As a mineralized tissue, cementum shares a similar structure with bone and exhibits an excellent capacity to resist resorption under compression. Macrophages are crucial for mineralized remodeling; however, their functional alterations in the microenvironment of cementum remain poorly understood. Therefore, this study explores the mechanisms by which cementum resists resorption under compression and the regulatory roles of cementoblasts in macrophage functions. As a result, extracellular vesicles from compression-loaded cementoblasts (Comp-EVs) promote macrophage M2 polarization and enhance the clearance of apoptotic cells (efferocytosis) by 2- to 3-fold. Local injection of Comp-EVs relieves cementum destruction in mouse root resorption model by activating the tissue repair function of macrophages. Moreover, Comp-EV-loaded hydrogels achieve significant bone healing in calvarial bone defect. Unexpectedly, under compression, EV secretion in cementoblasts is reduced by half. RNA-Seq analysis and verification reveal that Rab35 expression decreases by 60% under compression, thereby hampering the release of EVs. Rab35 overexpression is proposed as a modification of cementoblasts to boost the yield of Comp-EVs. Collectively, Comp-EVs activate the repair function of macrophages, which will be a potential therapeutic strategy for hard tissue repair and regeneration.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Kunyao Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Qianyao Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Jiayi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
22
|
Kang Y, Wu W, Yang Y, Luo J, Lu Y, Yin L, Cui X. Progress in extracellular vesicle homeostasis as it relates to cardiovascular diseases. J Physiol Biochem 2024; 80:511-522. [PMID: 38687443 DOI: 10.1007/s13105-024-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Extracellular vesicles (EVs) are involved in both physiological and pathological processes in many organ systems and are essential in mediating intercellular communication and maintaining organismal homeostasis. It is helpful to propose new strategies for disease treatment by elucidating the mechanisms of EV release and sorting. An increasing number of studies have shown that there is specific homeostasis in EVs, which is helpful for the human body to carry out physiological activities. In contrast, an EV homeostasis im-balance promotes or accelerates disease onset and development. Alternatively, regulating the quality of EVs can maintain homeostasis and even achieve the purpose of treating conditions. An analysis of the role of EV homeostasis in the onset and development of cardiovascular disease is presented in this review. This article also summarizes the methods that regulate EV homeostasis and their application in cardiovascular diseases. In particular, this study focuses on the connection between EV steady states and the cardiovascular system and the potential value of EVs in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yunan Kang
- College of Anesthesiology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yi Yang
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yajie Lu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Luchang Yin
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Shandong Second Medical University, Weifang, P.R. China.
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
| |
Collapse
|
23
|
Concha JO, Gutierrez K, Barbosa N, Rodrigues RL, de Carvalho AN, Tavares LA, Rudd JS, Costa CS, Andrade BYG, Espreafico EM, Crump CM, daSilva LLP. Rab27a GTPase and its effector Myosin Va are host factors required for efficient Oropouche virus cell egress. PLoS Pathog 2024; 20:e1012504. [PMID: 39213446 PMCID: PMC11392402 DOI: 10.1371/journal.ppat.1012504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Oropouche fever, a debilitating illness common in South America, is caused by Oropouche virus (OROV), an arbovirus. OROV belongs to the Peribunyaviridae family, a large group of RNA viruses. Little is known about the biology of Peribunyaviridae in host cells, especially assembly and egress processes. Our research reveals that the small GTPase Rab27a mediates intracellular transport of OROV induced compartments and viral release from infected cells. We show that Rab27a interacts with OROV glycoproteins and colocalizes with OROV during late phases of the infection cycle. Moreover, Rab27a activity is required for OROV trafficking to the cell periphery and efficient release of infectious particles. Consistently, depleting Rab27a's downstream effector, Myosin Va, or inhibiting actin polymerization also hinders OROV compartments targeting to the cell periphery and infectious viral particle egress. These data indicate that OROV hijacks Rab27a activity for intracellular transport and cell externalization. Understanding these crucial mechanisms of OROV's replication cycle may offer potential targets for therapeutic interventions and aid in controlling the spread of Oropouche fever.
Collapse
Affiliation(s)
- Juan O Concha
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kristel Gutierrez
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Barbosa
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Roger L Rodrigues
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia N de Carvalho
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas A Tavares
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jared S Rudd
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina S Costa
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Barbara Y G Andrade
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza M Espreafico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Luis L P daSilva
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
25
|
Nambiar D, Le QT, Pucci F. A case for the study of native extracellular vesicles. Front Oncol 2024; 14:1430971. [PMID: 39091922 PMCID: PMC11292793 DOI: 10.3389/fonc.2024.1430971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Three main areas of research revolve around extracellular vesicles (EVs): their use as early detection diagnostics for cancer prevention, engineering of EVs or other enveloped viral-like particles for therapeutic purposes and to understand how EVs impact biological processes. When investigating the biology of EVs, it is important to consider strategies able to track and alter EVs directly in vivo, as they are released by donor cells. This can be achieved by suitable engineering of EV donor cells, either before implantation or directly in vivo. Here, we make a case for the study of native EVs, that is, EVs released by cells living within a tissue. Novel genetic approaches to detect intercellular communications mediated by native EVs and profile recipient cells are discussed. The use of Rab35 dominant negative mutant is proposed for functional in vivo studies on the roles of native EVs. Ultimately, investigations on native EVs will tremendously advance our understanding of EV biology and open novel opportunities for therapy and prevention.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Ferdinando Pucci
- Otolaryngology Department, Head and Neck Surgery, Oregon Health & Science University, Portland, OR, United States
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
26
|
Zanirati G, Dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
27
|
Lin PW, Chu ML, Liu YW, Chen YC, Shih YH, Lan SH, Wu SY, Kuo IY, Chang HY, Liu HS, Lee YR. Revealing potential Rab proteins participate in regulation of secretory autophagy machinery. Kaohsiung J Med Sci 2024; 40:642-649. [PMID: 38804615 DOI: 10.1002/kjm2.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1β, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic β-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cing Chen
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Yi Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Ying-Ray Lee
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Lin Y, Wei D, He X, Huo L, Wang J, Zhang X, Wu Y, Zhang R, Gao Y, Kang T. RAB22A sorts epithelial growth factor receptor (EGFR) from early endosomes to recycling endosomes for microvesicles release. J Extracell Vesicles 2024; 13:e12494. [PMID: 39051763 PMCID: PMC11270584 DOI: 10.1002/jev2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Microvesicles (MVs) containing proteins, nucleic acid or organelles are shed from the plasma membrane. Although the mechanisms of MV budding are well elucidated, the connection between endosomal trafficking and MV formation remains poorly understood. In this report, RAB22A is revealed to be crucial for EGFR-containing MVs formation by the RAB GTPase family screening. RAB22A recruits TBC1D2B, a GTPase-activating protein (GAP) of RAB7A, to inactivate RAB7A, thus preventing EGFR from being transported to late endosomes and lysosomes. RAB22A also engages SH3BP5L, a guanine-nucleotide exchange factor (GEF) of RAB11A, to activate RAB11A on early endosomes. Consequently, EGFR is recycled to the cell surface and packaged into MVs. Furthermore, EGFR can phosphorylate RAB22A at Tyr136, which in turn promotes EGFR-containing MVs formation. Our findings illustrate that RAB22A acts as a sorter on early endosomes to sort EGFR to recycling endosomes for MV shedding by both activating RAB11A and inactivating RAB7A.
Collapse
Affiliation(s)
- Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
29
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
30
|
Clearman KR, Timpratoom N, Patel D, Rains AB, Haycraft CJ, Croyle MJ, Reiter JF, Yoder BK. Rab35 Is Required for Embryonic Development and Kidney and Ureter Homeostasis through Regulation of Epithelial Cell Junctions. J Am Soc Nephrol 2024; 35:719-732. [PMID: 38530365 PMCID: PMC11164122 DOI: 10.1681/asn.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Key Points Loss of Rab35 leads to nonobstructive hydronephrosis because of loss of ureter epithelium. Rab35 regulates kidney and ureter epithelial cell adhesion and polarity. Rab35 is required for embryonic development. Background Rab35 is a member of a GTPase family of endocytic trafficking proteins. Studies in cell lines have indicated that Rab35 participates in cell adhesion, polarity, cytokinesis, and primary cilia length and composition. In addition, sea urchin Rab35 regulates actin organization and is required for gastrulation. In mice, loss of Rab35 in the central nervous system disrupts hippocampal development and neuronal organization. Outside of the central nervous system, the functions of mammalian Rab35 in vivo are unknown. Methods We generated and analyzed the consequences of both congenital and conditional null Rab35 mutations in mice. Using a LacZ reporter allele, we assessed Rab35 expression during development and postnatally. We assessed Rab35 loss in the kidney and ureter using histology, immunofluorescence microscopy, and western blotting. Results Congenital Rab35 loss of function caused embryonic lethality: homozygous mutants arrested at E7.5 with cardiac edema. Conditional loss of Rab35, either during gestation or postnatally, caused hydronephrosis. The kidney and ureter phenotype were associated with disrupted actin cytoskeletal architecture, altered Arf6 epithelial polarity, reduced adherens junctions, loss of tight junction formation, defects in epithelial growth factor receptor expression and localization, disrupted cell differentiation, and shortened primary cilia. Conclusions Rab35 may be essential for mammalian development and the maintenance of kidney and ureter architecture. Loss of Rab35 leads to nonobstructive hydronephrosis, making the Rab35 mutant mouse a novel mammalian model to study mechanisms underlying this disease.
Collapse
Affiliation(s)
- Kelsey R. Clearman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Napassawon Timpratoom
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dharti Patel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Addison B. Rains
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Courtney J. Haycraft
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J. Croyle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
32
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
33
|
Xu X, Xu L, Wang J, Wen C, Xia J, Zhang Y, Liang Y. Bioinspired cellular membrane-derived vesicles for mRNA delivery. Theranostics 2024; 14:3246-3266. [PMID: 38855184 PMCID: PMC11155408 DOI: 10.7150/thno.93755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
The rapid advancement of mRNA as vaccines and therapeutic agents in the biomedical field has sparked hope in the fight against untreatable diseases. Successful clinical application of mRNA therapeutics largely depends on the carriers. Recently, a new and exciting focus has emerged on natural cell-derived vesicles. These nanovesicles offer many functions, including enhanced drug delivery capabilities and immune evasion, thereby presenting a unique and promising platform for the effective and safe delivery of mRNA therapeutics. In this study, we summarize the characteristics and properties of biomimetic delivery systems for mRNA therapeutics. In particular, we discuss the unique features of cellular membrane-derived vesicles (CDVs) and the combination of synthetic nanovesicles with CDVs.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jingzhi Wang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
34
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
35
|
Aguila A, Salah S, Kulasekaran G, Shweiki M, Shaul-Lotan N, Mor-Shaked H, Daana M, Harel T, McPherson PS. A neurodevelopmental disorder associated with a loss-of-function missense mutation in RAB35. J Biol Chem 2024; 300:107124. [PMID: 38432637 PMCID: PMC10966776 DOI: 10.1016/j.jbc.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Moatasem Shweiki
- Neurosurgery Department, Hadassah Medical Center, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Yokne'am Illit, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
37
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
38
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
39
|
Arya SB, Collie SP, Parent CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol 2024; 34:90-108. [PMID: 37507251 PMCID: PMC10811273 DOI: 10.1016/j.tcb.2023.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Exosomes are specialized cargo delivery vesicles secreted from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane (PM). While the function of exosomes during physiological and pathological events has been extensively reported, there remains a lack of understanding of the mechanisms that regulate exosome biogenesis, secretion, and internalization. Recent technological and methodological advances now provide details about MVB/exosome structure as well as the pathways of exosome biogenesis, secretion, and uptake. In this review, we outline our current understanding of these processes and highlight outstanding questions following on recent discoveries in the field.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Yang Y, Luo J, Kang Y, Wu W, Lu Y, Fu J, Zhang X, Cheng M, Cui X. Progression in the Relationship between Exosome Production and Atherosclerosis. Curr Pharm Biotechnol 2024; 25:1099-1111. [PMID: 37493161 DOI: 10.2174/1389201024666230726114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yi Yang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yunan Kang
- College of Anesthesiology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yajie Lu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jie Fu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| |
Collapse
|
41
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
43
|
Alam MR, Rahman MM, Li Z. The link between intracellular calcium signaling and exosomal PD-L1 in cancer progression and immunotherapy. Genes Dis 2024; 11:321-334. [PMID: 37588227 PMCID: PMC10425812 DOI: 10.1016/j.gendis.2023.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are small membrane vesicles containing microRNA, RNA, DNA fragments, and proteins that are transferred from donor cells to recipient cells. Tumor cells release exosomes to reprogram the factors associated with the tumor microenvironment (TME) causing tumor metastasis and immune escape. Emerging evidence revealed that cancer cell-derived exosomes carry immune inhibitory molecule program death ligand 1 (PD-L1) that binds with receptor program death protein 1 (PD-1) and promote tumor progression by escaping immune response. Currently, some FDA-approved monoclonal antibodies are clinically used for cancer treatment by blocking PD-1/PD-L1 interaction. Despite notable treatment outcomes, some patients show poor drug response. Exosomal PD-L1 plays a vital role in lowering the treatment response, showing resistance to PD-1/PD-L1 blockage therapy through recapitulating the effect of cell surface PD-L1. To enhance therapeutic response, inhibition of exosomal PD-L1 is required. Calcium signaling is the central regulator of tumorigenesis and can regulate exosome biogenesis and secretion by modulating Rab GTPase family and membrane fusion factors. Immune checkpoints are also connected with calcium signaling and calcium channel blockers like amlodipine, nifedipine, lercanidipine, diltiazem, and verapamil were also reported to suppress cellular PD-L1 expression. Therefore, to enhance the PD-1/PD-L1 blockage therapy response, the reduction of exosomal PD-L1 secretion from cancer cells is in our therapeutic consideration. In this review, we proposed a therapeutic strategy by targeting calcium signaling to inhibit the expression of PD-L1-containing exosome levels that could reduce the anti-PD-1/PD-L1 therapy resistance and increase the patient's drug response rate.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Md Mizanur Rahman
- Department of Medicine (Nephrology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6E2H7, Canada
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
44
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|
45
|
Menaceur C, Dusailly O, Gosselet F, Fenart L, Saint-Pol J. Vesicular Trafficking, a Mechanism Controlled by Cascade Activation of Rab Proteins: Focus on Rab27. BIOLOGY 2023; 12:1530. [PMID: 38132356 PMCID: PMC10740503 DOI: 10.3390/biology12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Vesicular trafficking is essential for the cell to internalize useful proteins and soluble substances, for cell signaling or for the degradation of pathogenic elements such as bacteria or viruses. This vesicular trafficking also enables the cell to engage in secretory processes for the elimination of waste products or for the emission of intercellular communication vectors such as cytokines, chemokines and extracellular vesicles. Ras-related proteins (Rab) and their effector(s) are of crucial importance in all of these processes, and mutations/alterations to them have serious pathophysiological consequences. This review presents a non-exhaustive overview of the role of the major Rab involved in vesicular trafficking, with particular emphasis on their involvement in the biogenesis and secretion of extracellular vesicles, and on the role of Rab27 in various pathophysiological processes. Therefore, Rab and their effector(s) are central therapeutic targets, given their involvement in vesicular trafficking and their importance for cell physiology.
Collapse
Affiliation(s)
| | | | | | | | - Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France; (C.M.); (O.D.); (F.G.); (L.F.)
| |
Collapse
|
46
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
47
|
Xu X, Wu T, Lin R, Zhu S, Ji J, Jin D, Huang M, Zheng W, Ni W, Jiang F, Xuan S, Xiao M. Differences between migrasome, a 'new organelle', and exosome. J Cell Mol Med 2023; 27:3672-3680. [PMID: 37665060 PMCID: PMC10718147 DOI: 10.1111/jcmm.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named 'migracytosis'. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future.
Collapse
Affiliation(s)
- Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Tong Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Renjie Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Shengze Zhu
- Medical School of Nantong University oral medcine192NantongChina
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Wenjie Zheng
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Shihai Xuan
- Department of Clinical LaboratoryAffiliated Dongtai Hospital of Nantong UniversityDongtaiChina
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
48
|
Liu DA, Tao K, Wu B, Yu Z, Szczepaniak M, Rames M, Yang C, Svitkina T, Zhu Y, Xu F, Nan X, Guo W. A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion. Nat Commun 2023; 14:6883. [PMID: 37898620 PMCID: PMC10613218 DOI: 10.1038/s41467-023-42661-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.
Collapse
Affiliation(s)
- Di-Ao Liu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tao
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Bin Wu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malwina Szczepaniak
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Matthew Rames
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Changsong Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana Svitkina
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaolin Nan
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Lee Y, Ni J, Wasinger VC, Graham P, Li Y. Comparison Study of Small Extracellular Vesicle Isolation Methods for Profiling Protein Biomarkers in Breast Cancer Liquid Biopsies. Int J Mol Sci 2023; 24:15462. [PMID: 37895140 PMCID: PMC10607056 DOI: 10.3390/ijms242015462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the approach for sEV isolation and sEV proteomic analysis to identify potential sEV protein biomarkers for BC diagnosis. sEVs derived from BC cell lines, BC patients' plasma, and non-cancer controls were isolated using ultracentrifugation (UC), a Total Exosome Isolation kit (TEI), and a combined approach named UCT. In BC cell lines, the UC isolates showed a higher sEV purity and marker expression, as well as a higher number of sEV proteins. In BC plasma samples, the UCT isolates showed the highest proportion of sEV-related proteins and the lowest percentage of lipoprotein-related proteins. Our data suggest that the assessment of both the quantity and quality of sEV isolation methods is important in selecting the optimal approach for the specific sEV research purpose, depending on the sample types and downstream analysis.
Collapse
Affiliation(s)
- Yujin Lee
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Jie Ni
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
50
|
Vrablova V, Kosutova N, Blsakova A, Bertokova A, Kasak P, Bertok T, Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol Adv 2023; 67:108196. [PMID: 37307942 DOI: 10.1016/j.biotechadv.2023.108196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine. The review also provides a short introduction into advanced methods for the characterization of EVs, new insights into the biomolecular corona covering EVs and bioanalytical tools available for glycan analysis.
Collapse
Affiliation(s)
- Veronika Vrablova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Aniko Bertokova
- Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic.
| |
Collapse
|