1
|
Cheng C, Zhu G, Wang K, Bu C, Li S, Qiu Y, Lu J, Ji X, Hao W, Wang J, Zhu C, Yang Y, Gu Y, Qian X, Yu C, Gao X. Deletion of Luzp2 Does Not Cause Hearing Loss in Mice. Neurosci Bull 2024; 40:1519-1528. [PMID: 38589712 PMCID: PMC11422540 DOI: 10.1007/s12264-024-01202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 04/10/2024] Open
Abstract
Deafness is the prevailing sensory impairment among humans, impacting every aspect of one's existence. Half of congenital deafness cases are attributed to genetic factors. Studies have shown that Luzp2 is expressed in hair cells (HCs) and supporting cells of the inner ear, but its specific role in hearing remains unclear. To determine the importance of Luzp2 in auditory function, we generated mice deficient in Luzp2. Our results revealed that Luzp2 has predominant expression within the HCs and pillar cells. However, the loss of Luzp2 did not result in any changes in auditory threshold. HCs or synapse number and HC stereocilia morphology in Luzp2 knockout mice did not show any notable distinctions. This was the first study of the role of Luzp2 in hearing in mice, and our results provide important guidance for the screening of deafness genes.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Guangjie Zhu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Kaijian Wang
- Department of Otorhinolaryngology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Nantong, 226200, China
| | - Chuan Bu
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Siyu Li
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Junguo Wang
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Ye Yang
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
2
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Hussain S, Sedlacek M, Cui R, Zhang-Hooks W, Bergles D, Bum-Shin J, Kindt KS, Kachar B. Spontaneous calcium transients in hair cell stereocilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607658. [PMID: 39185174 PMCID: PMC11343103 DOI: 10.1101/2024.08.12.607658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The hair bundle of auditory and vestibular hair cells converts mechanical stimuli into electrical signals through mechanoelectrical transduction (MET). The MET apparatus is built around a tip link that connects neighboring stereocilia that are aligned in the direction of mechanosensitivity of the hair bundle. Upon stimulation, the MET channel complex responds to changes in tip-link tension and allows a cation influx into the cell. Ca2+ influx in stereocilia has been used as a signature of MET activity. Using genetically encoded Ca2+ sensors (GCaMP3, GCaMP6s) and high-performance fluorescence confocal microscopy, we detect spontaneous Ca2+ transients in individual stereocilia in developing and fully formed hair bundles. We demonstrate that this activity is abolished by MET channel blockers and thus likely originates from putative MET channels. We observe Ca2+ transients in the stereocilia of mice in tissue explants as well as in vivo in zebrafish hair cells, indicating this activity is functionally conserved. Within stereocilia, the origin of Ca2+ transients is not limited to the canonical MET site at the stereocilia tip but is also present along the stereocilia length. Remarkably, we also observe these Ca2+ transients in the microvilli-like structures on the hair cell surface in the early stages of bundle development, prior to the onset of MET. Ca2+ transients are also present in the tallest rows of stereocilia in auditory hair cells, structures not traditionally thought to contain MET channels. We hypothesize that this newly described activity may reflect stochastic and spontaneous MET channel opening. Localization of these transients to other regions of the stereocilia indicates the presence of a pool of channels or channel precursors. Our work provides insights into MET channel assembly, maturation, function, and turnover.
Collapse
Affiliation(s)
- Saman Hussain
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miloslav Sedlacek
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Zhang-Hooks
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dwight Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jung Bum-Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Katie S. Kindt
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Kassim YM, Rosenberg DB, Renero A, Das S, Rahman S, Shammaa IA, Salim S, Huang Z, Huang K, Ninoyu Y, Friedman RA, Indzhykulian A, Manor U. VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599381. [PMID: 38948743 PMCID: PMC11212889 DOI: 10.1101/2024.06.17.599381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cochlear hair cell stereocilia bundles are key organelles required for normal hearing. Often, deafness mutations cause aberrant stereocilia heights or morphology that are visually apparent but challenging to quantify. Actin-based structures, stereocilia are easily and most often labeled with phalloidin then imaged with 3D confocal microscopy. Unfortunately, phalloidin non-specifically labels all the actin in the tissue and cells and therefore results in a challenging segmentation task wherein the stereocilia phalloidin signal must be separated from the rest of the tissue. This can require many hours of manual human effort for each 3D confocal image stack. Currently, there are no existing software pipelines that provide an end-to-end automated solution for 3D stereocilia bundle instance segmentation. Here we introduce VASCilia, a Napari plugin designed to automatically generate 3D instance segmentation and analysis of 3D confocal images of cochlear hair cell stereocilia bundles stained with phalloidin. This plugin combines user-friendly manual controls with advanced deep learning-based features to streamline analyses. With VASCilia, users can begin their analysis by loading image stacks. The software automatically preprocesses these samples and displays them in Napari. At this stage, users can select their desired range of z-slices, adjust their orientation, and initiate 3D instance segmentation. After segmentation, users can remove any undesired regions and obtain measurements including volume, centroids, and surface area. VASCilia introduces unique features that measures bundle heights, determines their orientation with respect to planar polarity axis, and quantifies the fluorescence intensity within each bundle. The plugin is also equipped with trained deep learning models that differentiate between inner hair cells and outer hair cells and predicts their tonotopic position within the cochlea spiral. Additionally, the plugin includes a training section that allows other laboratories to fine-tune our model with their own data, provides responsive mechanisms for manual corrections through event-handlers that check user actions, and allows users to share their analyses by uploading a pickle file containing all intermediate results. We believe this software will become a valuable resource for the cochlea research community, which has traditionally lacked specialized deep learning-based tools for obtaining high-throughput image quantitation. Furthermore, we plan to release our code along with a manually annotated dataset that includes approximately 55 3D stacks featuring instance segmentation. This dataset comprises a total of 1,870 instances of hair cells, distributed between 410 inner hair cells and 1,460 outer hair cells, all annotated in 3D. As the first open-source dataset of its kind, we aim to establish a foundational resource for constructing a comprehensive atlas of cochlea hair cell images. Together, this open-source tool will greatly accelerate the analysis of stereocilia bundles and demonstrates the power of deep learning-based algorithms for challenging segmentation tasks in biological imaging research. Ultimately, this initiative will support the development of foundational models adaptable to various species, markers, and imaging scales to advance and accelerate research within the cochlea research community.
Collapse
Affiliation(s)
- Yasmin M. Kassim
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - David B. Rosenberg
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Alma Renero
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Samprita Das
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Samia Rahman
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Ibraheem Al Shammaa
- Dept. of Cellular and Molecular Biology, University of California, Berkeley, CA, 94720
| | - Samer Salim
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Zhuoling Huang
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Kevin Huang
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
| | - Yuzuru Ninoyu
- Dept. of Otolaryngology, University of California, San Diego, La Jolla, CA, 92093
- Dept. of Otolaryngology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rick A. Friedman
- Dept. of Otolaryngology, University of California, San Diego, La Jolla, CA, 92093
| | - Artur Indzhykulian
- Dept. of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02115
| | - Uri Manor
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, 92093
- Dept. of Otolaryngology, University of California, San Diego, La Jolla, CA, 92093
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
5
|
Morales EA, Fitz GN, Tyska MJ. Mitotic spindle positioning protein (MISP) preferentially binds to aged F-actin. J Biol Chem 2024; 300:107279. [PMID: 38588808 PMCID: PMC11101845 DOI: 10.1016/j.jbc.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
7
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
9
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
10
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
11
|
Lee B, Kim MC, Kim YR, Kim JH, Kwon TJ, Jung DJ, Kim UK, Lee KY. Therapeutic effect of intraperitoneal dexamethasone on noise-induced permanent threshold shift in mice model. Exp Brain Res 2024; 242:257-265. [PMID: 38010535 DOI: 10.1007/s00221-023-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
The purpose of the study was to which investigate whether dexamethasone, which has anti-inflammatory and immune response suppression roles, could treat noise-induced hearing loss caused by damage to hair cells in the cochlea. The experiment used 8-week-old CBA mice exposed to white noise at an intensity of 110 dB SPL for 2 h, with hearing loss confirmed by the auditory brainstem response test. Dexamethasone was administered by intraperitoneal injection for 5 days, and the therapeutic effect was investigated for 3 weeks. The experimental groups were 3 mg/kg of dexamethasone (3 mpk) and 10 mg/kg of dexamethasone (10 mpk), and the control group was a saline-administered group. The results showed that compared to the control group, the hearing threshold value was recovered by 10 dB SPL compared to the saline group from the 14th day in the 3 mpk group. In the 10 mpk group, thresholds were recovered from the 7th day compared to the saline group. This difference was similar at 4 kHz, and in the case of the 10 mpk group, the threshold was recovered by 20 dB SPL compared to the saline group. The study also confirmed the restoration of nerve cell activity and showed a recovery effect of about 20 µV in the amplitude value change in the 10 mpk group. In conclusion, the study suggests that dexamethasone has a therapeutic effect for noise-induced hearing loss by increasing the activity of nerve cells and showing a recovery effect from hair cells damaged by noise.
Collapse
Affiliation(s)
- Byeonghyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Min-Cheol Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Korea
| | - Jong-Heun Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Da Jung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea.
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Korea.
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
12
|
Saegusa C, Kakegawa W, Miura E, Aimi T, Mogi S, Harada T, Yamashita T, Yuzaki M, Fujioka M. Brain-Specific Angiogenesis Inhibitor 3 Is Expressed in the Cochlea and Is Necessary for Hearing Function in Mice. Int J Mol Sci 2023; 24:17092. [PMID: 38069416 PMCID: PMC10707444 DOI: 10.3390/ijms242317092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying the development and maintenance of pillar cells remains to be elucidated. In this study, we examined the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore, old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute to understanding the mechanisms of hearing loss in human patients.
Collapse
Affiliation(s)
- Chika Saegusa
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa 252-0374, Japan;
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Sachiyo Mogi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, Kanagawa 252-0374, Japan; (S.M.); (T.Y.)
| | - Tatsuhiko Harada
- Department of Otolaryngology, International University of Health and Welfare, Shizuoka 413-0012, Japan;
| | - Taku Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, Kanagawa 252-0374, Japan; (S.M.); (T.Y.)
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (W.K.); (E.M.); (T.A.); (M.Y.)
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa 252-0374, Japan;
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Clinical and Translational Research Center, Keio University Hospital, Tokyo 162-8582, Japan
| |
Collapse
|
13
|
Yang X, Qi J, Zhang L, Tan F, Huang H, Xu C, Cui Y, Chai R, Wu P. The role of Espin in the stereocilia regeneration and protection in Atoh1-overexpressed cochlear epithelium. Cell Prolif 2023; 56:e13483. [PMID: 37084708 PMCID: PMC10623949 DOI: 10.1111/cpr.13483] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
Hair cells (HCs) in mammals cannot spontaneously regenerate after damage. Atoh1 overexpression can promote HC regeneration in the postnatal cochlea, but the regenerated HCs do not possess the structural and functional characteristics of HCs in situ. The stereocilia on the apical surface of HCs are the first-level structure for sound conduction, and regeneration of functional stereocilia is the key basis for the reproduction of functional HCs. Espin, as an actin bundling protein, plays an important role in the development and structural maintenance of the stereocilia. Here, we found that the upregulation of Espin by AAV-ie was able to induced the aggregation of actin fibres in Atoh1-induced HCs in both cochlear organoids and explants. In addition, we found that persistent Atoh1 overexpression resulted in impaired stereocilia in both endogenous and newly formed HCs. In contrast, the forced expression of Espin in endogenous and regenerative HCs was able to eliminate the stereocilia damage caused by persistent Atoh1 overexpression. Our study shows that the enhanced expression of Espin can optimize the developmental process of stereocilia in Atoh1-induced HCs and can attenuate the damage to native HCs induced by Atoh1 overexpression. These results suggest an effective method to induce the maturation of stereocilia in regenerative HCs and pave the way for functional HC regeneration via supporting cell transdifferentiation.
Collapse
Affiliation(s)
- Xuechun Yang
- School of Medicine, South China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Liyan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Fangzhi Tan
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Hongming Huang
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Chunlai Xu
- Department of OtolaryngologyHeyuan City People's Hospital, Jinan UniversityGuangzhouChina
| | - Yong Cui
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
- Co‐Innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| | - Peina Wu
- School of Medicine, South China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
15
|
Wang D, Wang H, Fan L, Ludwig T, Wegner A, Stahl F, Harre J, Warnecke A, Zeilinger C. A Chemical Chaperone Restores Connexin 26 Mutant Activity. ACS Pharmacol Transl Sci 2023; 6:997-1005. [PMID: 37470015 PMCID: PMC10353060 DOI: 10.1021/acsptsci.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 07/21/2023]
Abstract
Mutations in connexin 26 (Cx26) cause hearing disorders of a varying degree. Herein, to identify compounds capable of restoring the function of mutated Cx26, a novel miniaturized microarray-based screening system was developed to perform an optical assay of Cx26 functionality. These molecules were identified through a viability assay using HeLa cells expressing wild-type (WT) Cx26, which exhibited sensitivity toward the HSP90 inhibitor radicicol in the submicromolar concentration range. Open Cx26 hemichannels are assumed to mediate the passage of molecules up to 1000 Da in size. Thus, by releasing radicicol, WT Cx26 active hemichannels in HeLa cells contribute to a higher survival rate and lower cell viability when Cx26 is mutated. HeLa cells expressing Cx26 mutations exhibited reduced viability in the presence of radicicol, such as the mutants F161S or R184P. Next, molecules exhibiting chemical chaperoning activity, suspected of restoring channel function, were assessed regarding whether they induced superior sensitivity toward radicicol and increased HeLa cell viability. Through a viability assay and microarray-based flux assay that uses Lucifer yellow in HeLa cells, compounds 3 and 8 were identified to restore mutant functionality. Furthermore, thermophoresis experiments revealed that only 3 (VRT-534) exhibited dose-responsive binding to recombinant WT Cx26 and mutant Cx26K188N with half maximal effective concentration values of 19 and ∼5 μM, respectively. The findings of this study reveal that repurposing compounds already being used to treat other diseases, such as cystic fibrosis, in combination with functional bioassays and binding tests can help identify novel potential candidates that can be used to treat hearing disorders.
Collapse
Affiliation(s)
- Dahua Wang
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Hongling Wang
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Lu Fan
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Tobias Ludwig
- Technische
Universität Braunschweig, Braunschweig Integrated Centre of
Systems Biology (BRICS), Department of Bioinformatics
and Biochemistry, Rebenring
56, 38106 Braunschweig, Germany
| | - Andre Wegner
- Technische
Universität Braunschweig, Braunschweig Integrated Centre of
Systems Biology (BRICS), Department of Bioinformatics
and Biochemistry, Rebenring
56, 38106 Braunschweig, Germany
| | - Frank Stahl
- Gottfried-Wilhelm-Leibniz
University of Hannover, Institut für
Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167 Hannover, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
16
|
Morales EA, Tyska MJ. Mitotic spindle positioning protein (MISP) is an actin bundler that senses ADP-actin and binds near the pointed ends of filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539649. [PMID: 37205433 PMCID: PMC10187293 DOI: 10.1101/2023.05.05.539649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. Using in vitro TIRF microscopy assays, we found that MISP exhibits a clear binding preference for filaments enriched in ADP-actin monomers. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
|
17
|
Jia S, Ratzan EM, Goodrich EJ, Abrar R, Heiland L, Tarchini B, Deans MR. The dark kinase STK32A regulates hair cell planar polarity opposite of EMX2 in the developing mouse inner ear. eLife 2023; 12:e84910. [PMID: 37144879 PMCID: PMC10202454 DOI: 10.7554/elife.84910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular maculae of the inner ear contain sensory receptor hair cells that detect linear acceleration and contribute to equilibrioception to coordinate posture and ambulatory movements. These hair cells are divided between two groups, separated by a line of polarity reversal (LPR), with oppositely oriented planar-polarized stereociliary bundles that detect motion in opposite directions. The transcription factor EMX2 is known to establish this planar polarized organization in mouse by regulating the distribution of the transmembrane receptor GPR156 at hair cell boundaries in one group of cells. However, the genes regulated by EMX2 in this context were previously not known. Using mouse as a model, we have identified the serine threonine kinase STK32A as a downstream effector negatively regulated by EMX2. Stk32a is expressed in hair cells on one side of the LPR in a pattern complementary to Emx2 expression in hair cells on the opposite side. Stk32a is necessary to align the intrinsic polarity of the bundle with the core planar cell polarity (PCP) proteins in EMX2-negative regions, and is sufficient to reorient bundles when ectopically expressed in neighboring EMX2-positive regions. We demonstrate that STK32A reinforces LPR formation by regulating the apical localization of GPR156. These observations support a model in which bundle orientation is determined through separate mechanisms in hair cells on opposite sides of the maculae, with EMX2-mediated repression of Stk32a determining the final position of the LPR.
Collapse
Affiliation(s)
- Shihai Jia
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Evan M Ratzan
- Interdepartmental Program in Neuroscience, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
- Departments of Otolaryngology and Neurology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Ellison J Goodrich
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Raisa Abrar
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Luke Heiland
- Department of Otolaryngology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Basile Tarchini
- The Jackson LaboratoryBar HarborUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
- Department of Otolaryngology, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| |
Collapse
|
18
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
19
|
Jung J, Müller U. Mechanoelectrical transduction-related genetic forms of hearing loss. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100632. [PMID: 36936795 PMCID: PMC10022594 DOI: 10.1016/j.cophys.2023.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hair cells of the mammalian cochlea are specialized mechanosensory cells that convert mechanical stimuli into electrical signals to initiate the neuronal responses that lead to the perception of sound. The mechanoelectrical transduction (MET) machinery of cochlear hair cells is a multimeric protein complex that consists of the pore forming subunits of the MET channel and several essential accessory subunits that are crucial to regulate channel function and render the channel mechanically sensitive. Mutations have been discovered in the genes that encode all known components of the MET machinery. These mutations cause hearing loss with or without vestibular dysfunction. Some mutations also affect other tissues such as the retina. In this brief review, we will summarize gene mutations that affect the MET machinery of hair cells and how the study of the affected genes has illuminated our understanding of the physiological role of the encoded proteins.
Collapse
Affiliation(s)
- Jinsei Jung
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Li J. Liquid-liquid phase separation in hair cell stereocilia development and maintenance. Comput Struct Biotechnol J 2023; 21:1738-1745. [PMID: 36890881 PMCID: PMC9986246 DOI: 10.1016/j.csbj.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
As an emerging concept, liquid-liquid phase separation (LLPS) in biological systems has shed light on the formation mechanisms of membrane-less compartments in cells. The process is driven by multivalent interactions of biomolecules such as proteins and/or nucleic acids, allowing them to form condensed structures. In the inner ear hair cells, LLPS-based biomolecular condensate assembly plays a vital role in the development and maintenance of stereocilia, the mechanosensing organelles located at the apical surface of hair cells. This review aims to summarize recent findings on the molecular basis governing the LLPS of Usher syndrome-related gene-encoding proteins and their binding partners, which may ultimately result in the formation of upper tip-link density and tip complex density in hair cell stereocilia, offering a better understanding of this severe inherited disease that causes deaf-blindness.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
22
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Selective binding and transport of protocadherin 15 isoforms by stereocilia unconventional myosins in a heterologous expression system. Sci Rep 2022; 12:13764. [PMID: 35962067 PMCID: PMC9374675 DOI: 10.1038/s41598-022-17757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.
Collapse
|
24
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Deafness-related protein PDZD7 forms complex with the C-terminal tail of FCHSD2. Biochem J 2022; 479:1393-1405. [PMID: 35695292 PMCID: PMC9317961 DOI: 10.1042/bcj20220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
In cochlea, deafness-related protein PDZD7 is an indispensable component of the ankle link complex, which is critical for the maturation of inner-ear hair cell for sound perception. Ankle links, connecting the different rows of cochlear stereocilia, are essential for the staircase-like development of stereocilia. However, the molecular mechanism of how PDZD7 governs stereociliary development remains unknown. Here, we reported a novel PDZD7-binding partner, FCHSD2, identified by yeast two-hybrid screening. FCHSD2 was reported to be expressed in hair cell, where it co-operated with CDC42 and N-WASP to regulate the formation of cell protrusion. The association between FCHSD2 and PDZD7 was further confirmed in COS-7 cells. More importantly, we solved the complex structure of FCHSD2 tail with PDZD7 PDZ3 domain at 2.0 Å resolution. The crystal structure shows that PDZD7 PDZ3 adopts a typical PDZ domain topology, comprising five β strands and two α helixes. The PDZ-binding motif of FCHSD2 tail stretches through the αB/βB groove of PDZD7 PDZ3. Our study not only uncovers the interaction between FCHSD2 tail and PDZD7 PDZ3 at the atomic level, but also provides clues of connecting the ankle link complex with cytoskeleton dynamics for exploiting the molecular mechanism of stereociliary development.
Collapse
|
26
|
Abstract
We study microvilli of Caenorhabditis elegans larvae and mouse intestinal tissues by combining high-pressure freezing, cryo-focused ion-beam milling, cryo-electron tomography, and subtomogram averaging. We find that many radial nanometer bristles, referred to as nanobristles, project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long. We show that nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from their tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity. Microvilli are actin-bundle-supported membrane protrusions essential for absorption, secretion, and sensation. Microvilli defects cause gastrointestinal disorders; however, mechanisms controlling microvilli formation and organization remain unresolved. Here, we study microvilli by vitrifying the Caenorhabditis elegans larvae and mouse intestinal tissues with high-pressure freezing, thinning them with cryo-focused ion-beam milling, followed by cryo-electron tomography and subtomogram averaging. We find that many radial nanometer bristles referred to as nanobristles project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long and 4.5 nm wide. Nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity.
Collapse
|
27
|
Schwarzer S, Rekhade DR, Machate A, Spieß S, Geffarth M, Ezhkova D, Hans S. Reactivation of the Neurogenic Niche in the Adult Zebrafish Statoacoustic Ganglion Following a Mechanical Lesion. Front Cell Dev Biol 2022; 10:850624. [PMID: 35372332 PMCID: PMC8964994 DOI: 10.3389/fcell.2022.850624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells and/or their innervating neurons within the inner ear and affects millions of people worldwide. In mammals, including humans, the underlying cell types are only produced during fetal stages making loss of these cells and the resulting consequences irreversible. In contrast, zebrafish produce sensory hair cells throughout life and additionally possess the remarkable capacity to regenerate them upon lesion. Recently, we showed that also inner ear neurogenesis continues to take place in the zebrafish statoacoustic ganglion (SAG) well into adulthood. The neurogenic niche displays presumptive stem cells, proliferating Neurod-positive progenitors and a high level of neurogenesis at juvenile stages. It turns dormant at adult stages with only a few proliferating presumptive stem cells, no proliferating Neurod-positive progenitors, and very low levels of newborn neurons. Whether the neurogenic niche can be reactivated and whether SAG neurons can regenerate upon damage is unknown. To study the regenerative capacity of the SAG, we established a lesion paradigm using injections into the otic capsule of the right ear. Upon lesion, the number of apoptotic cells increased, and immune cells infiltrated the SAG of the lesioned side. Importantly, the Neurod-positive progenitor cells re-entered the cell cycle displaying a peak in proliferation at 8 days post lesion before they returned to homeostatic levels at 57 days post lesion. In parallel to reactive proliferation, we observed increased neurogenesis from the Neurod-positive progenitor pool. Reactive neurogenesis started at around 4 days post lesion peaking at 8 days post lesion before the neurogenesis rate decreased again to low homeostatic levels at 57 days post lesion. Additionally, administration of the thymidine analog BrdU and, thereby, labeling proliferating cells and their progeny revealed the generation of new sensory neurons within 19 days post lesion. Taken together, we show that the neurogenic niche of the adult zebrafish SAG can indeed be reactivated to re-enter the cell cycle and to increase neurogenesis upon lesion. Studying the underlying genes and pathways in zebrafish will allow comparative studies with mammalian species and might provide valuable insights into developing cures for auditory and vestibular neuropathies.
Collapse
|
28
|
Cole E, Gaertig J. Anterior-posterior pattern formation in ciliates. J Eukaryot Microbiol 2022; 69:e12890. [PMID: 35075744 PMCID: PMC9309198 DOI: 10.1111/jeu.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
Collapse
Affiliation(s)
- Eric Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
29
|
Xu P, Wang L, Peng H, Liu H, Liu H, Yuan Q, Lin Y, Xu J, Pang X, Wu H, Yang T. Disruption of Hars2 in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice. Front Cell Neurosci 2022; 15:804345. [PMID: 34975414 PMCID: PMC8715924 DOI: 10.3389/fncel.2021.804345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiuhong Pang
- Department of Otolaryngology-Head and Neck Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
30
|
Pablos M, Casanueva-Álvarez E, González-Casimiro CM, Merino B, Perdomo G, Cózar-Castellano I. Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Front Endocrinol (Lausanne) 2022; 13:922825. [PMID: 35832432 PMCID: PMC9271624 DOI: 10.3389/fendo.2022.922825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a narrow organelle located at the surface of the cell in contact with the extracellular environment. Once underappreciated, now is thought to efficiently sense external environmental cues and mediate cell-to-cell communication, because many receptors, ion channels, and signaling molecules are highly or differentially expressed in primary cilium. Rare genetic disorders that affect cilia integrity and function, such as Bardet-Biedl syndrome and Alström syndrome, have awoken interest in studying the biology of cilium. In this review, we discuss recent evidence suggesting emerging roles of primary cilium and cilia-mediated signaling pathways in the regulation of pancreatic β- and α-cell functions, and its implications in regulating glucose homeostasis.
Collapse
Affiliation(s)
- Marta Pablos
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- *Correspondence: Marta Pablos,
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos M. González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
31
|
Zheng L, Adam SA, García‐Anoveros J, Mitchell BJ, Bartles JR. Espin overexpression causes stereocilia defects and provides an anti-capping effect on actin polymerization. Cytoskeleton (Hoboken) 2022; 79:64-74. [PMID: 35844198 PMCID: PMC9796729 DOI: 10.1002/cm.21719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/30/2023]
Abstract
Stereocilia are actin-based projections of hair cells that are arranged in a step like array, in rows of increasing height, and that constitute the mechanosensory organelle used for the senses of hearing and balance. In order to function properly, stereocilia must attain precise sizes in different hair cell types and must coordinately form distinct rows with varying lengths. Espins are actin-bundling proteins that have a well-characterized role in stereocilia formation; loss of function mutations in Espin result in shorter stereocilia and deafness in the jerker mouse. Here we describe the generation of an Espin overexpressing transgenic mouse line that results in longer first row stereocilia and discoordination of second-row stereocilia length. Furthermore, Espin overexpression results in the misregulation of other stereocilia factors including GNAI3, GPSM2, EPS8, WHRN, and MYO15A, revealing that GNAI3 and GPSM2 are dispensable for stereocilia overgrowth. Finally, using an in vitro actin polymerization assay we show that espin provides an anti-capping function that requires both the G-actin binding WH2 domain as well as either the C-terminal F-actin binding domain or the internal xAB actin-binding domain. Our results provide a novel function for Espins at the barbed ends of actin filaments distinct from its previous known function of actin bundling that may account for their effects on stereocilia growth.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Stephen A. Adam
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jaime García‐Anoveros
- Department of Anesthesiology Neurology and NeuroscienceNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Brian J. Mitchell
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - James R. Bartles
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
32
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3068-3082. [DOI: 10.1093/hmg/ddac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
|
33
|
Ion channel-related hereditary hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
34
|
Jamieson SE, Fakiola M, Tang D, Scaman E, Syn G, Francis RW, Coates HL, Anderson D, Lassmann T, Cordell HJ, Blackwell JM. Common and Rare Genetic Variants That Could Contribute to Severe Otitis Media in an Australian Aboriginal Population. Clin Infect Dis 2021; 73:1860-1870. [PMID: 33693626 PMCID: PMC8599203 DOI: 10.1093/cid/ciab216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Our goal was to identify genetic risk factors for severe otitis media (OM) in Aboriginal Australians. METHODS Illumina® Omni2.5 BeadChip and imputed data were compared between 21 children with severe OM (multiple episodes chronic suppurative OM and/or perforations or tympanic sclerosis) and 370 individuals without this phenotype, followed by FUnctional Mapping and Annotation (FUMA). Exome data filtered for common (EXaC_all ≥ 0.1) putative deleterious variants influencing protein coding (CADD-scaled scores ≥15] were used to compare 15 severe OM cases with 9 mild cases (single episode of acute OM recorded over ≥3 consecutive years). Rare (ExAC_all ≤ 0.01) such variants were filtered for those present only in severe OM. Enrichr was used to determine enrichment of genes contributing to pathways/processes relevant to OM. RESULTS FUMA analysis identified 2 plausible genetic risk loci for severe OM: NR3C1 (Pimputed_1000G = 3.62 × 10-6) encoding the glucocorticoid receptor, and NREP (Pimputed_1000G = 3.67 × 10-6) encoding neuronal regeneration-related protein. Exome analysis showed: (i) association of severe OM with variants influencing protein coding (CADD-scaled ≥ 15) in a gene-set (GRXCR1, CDH23, LRP2, FAT4, ARSA, EYA4) enriched for Mammalian Phenotype Level 4 abnormal hair cell stereociliary bundle morphology and related phenotypes; (ii) rare variants influencing protein coding only seen in severe OM provided gene-sets enriched for "abnormal ear" (LMNA, CDH23, LRP2, MYO7A, FGFR1), integrin interactions, transforming growth factor signaling, and cell projection phenotypes including hair cell stereociliary bundles and cilium assembly. CONCLUSIONS This study highlights interacting genes and pathways related to cilium structure and function that may contribute to extreme susceptibility to OM in Aboriginal Australian children.
Collapse
Affiliation(s)
- Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | | | - Dave Tang
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Elizabeth Scaman
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Richard W Francis
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Harvey L Coates
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia
| | - Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
35
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Tu H, Zhang A, Fu X, Xu S, Bai X, Wang H, Gao J. SMPX Deficiency Causes Stereocilia Degeneration and Progressive Hearing Loss in CBA/CaJ Mice. Front Cell Dev Biol 2021; 9:750023. [PMID: 34722533 PMCID: PMC8551870 DOI: 10.3389/fcell.2021.750023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.
Collapse
Affiliation(s)
- Hailong Tu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xiaolong Fu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shiqi Xu
- University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiaohui Bai
- Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Haibo Wang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.,Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Jiangang Gao
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
37
|
Tarchini B. A Reversal in Hair Cell Orientation Organizes Both the Auditory and Vestibular Organs. Front Neurosci 2021; 15:695914. [PMID: 34646115 PMCID: PMC8502876 DOI: 10.3389/fnins.2021.695914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023] Open
Abstract
Sensory hair cells detect mechanical stimuli with their hair bundle, an asymmetrical brush of actin-based membrane protrusions, or stereocilia. At the single cell level, stereocilia are organized in rows of graded heights that confer the hair bundle with intrinsic directional sensitivity. At the organ level, each hair cell is precisely oriented so that its intrinsic directional sensitivity matches the direction of mechanical stimuli reaching the sensory epithelium. Coordinated orientation among neighboring hair cells usually ensures the delivery of a coherent local group response. Accordingly, hair cell orientation is locally uniform in the auditory and vestibular cristae epithelia in birds and mammals. However, an exception to this rule is found in the vestibular macular organs, and in fish lateral line neuromasts, where two hair cell populations show opposing orientations. This mirror-image hair cell organization confers bidirectional sensitivity at the organ level. Here I review our current understanding of the molecular machinery that produces mirror-image organization through a regional reversal of hair cell orientation. Interestingly, recent evidence suggests that auditory hair cells adopt their normal uniform orientation through a global reversal mechanism similar to the one at work regionally in macular and neuromast organs. Macular and auditory organs thus appear to be patterned more similarly than previously appreciated during inner ear development.
Collapse
Affiliation(s)
- Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, United States.,Department of Medicine, Tufts University, Boston, MA, United States.,Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME, United States
| |
Collapse
|
38
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
39
|
Abstract
We often think about regeneration in terms of replacing missing structures, such as organs or tissues, with new structures generated via cell proliferation and differentiation. But at a smaller scale, single cells, themselves, are capable of regenerating when part of the cell has been removed. A classic model organism that facilitates the study of cellular regeneration in the giant ciliate Stentor coeruleus. These cells, which can grow to more than a millimeter in size, have the ability to survive after extensive wounding of their surface, and are able to regenerate missing structures. Even a small piece of a cell can regenerate a whole cell with normal geometry, in a matter of hours. Such regeneration requires cells to be able to trigger organelle biogenesis in response to loss of structures. But subcellular regeneration also relies on intracellular mechanisms to create and maintain global patterning within the cell. These mechanisms are not understood, but at a conceptual level they involve processes that resemble those seen in animal development and regeneration. Here we discuss single-celled regeneration in Stentor from the viewpoint of standard regeneration paradigms in animals. For example, there is evidence that regeneration of the oral apparatus in Stentor follows a sender-receiver model similar to crustacean eyestalk regeneration. By drawing these analogies, we find that many of the concepts already known from the study of animal-scale regeneration and development can be applied to the study of regeneration at the cellular level, such as the concepts of determination, induction, mosaic vs. regulative development, and epimorphosis vs. morphallaxis. We propose that the similarities may go beyond analogy, and that some aspects of animal development and regeneration may have evolved by exploiting pre-existing subcellular developmental strategies from unicellular ancestors.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
40
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
41
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
42
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Schmitz J, Abbondanza F, Paracchini S. Genome-wide association study and polygenic risk score analysis for hearing measures in children. Am J Med Genet B Neuropsychiatr Genet 2021; 186:318-328. [PMID: 34476894 DOI: 10.1002/ajmg.b.32873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/11/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
An efficient auditory system contributes to cognitive and psychosocial development. A right ear advantage in hearing thresholds (HTs) has been described in adults and atypical patterns of left/right hearing threshold asymmetry (HTA) have been described for psychiatric and neurodevelopmental conditions. Previous genome-wide association studies (GWASs) on HT have mainly been conducted in elderly participants whose hearing is more likely to be affected by external environmental factors. Here, we investigated HT and HTA in a children population cohort (ALSPAC, n = 6,743). Better hearing was associated with better cognitive performance and higher socioeconomic status. At the group level, HTA suggested a left ear advantage (mean = -0.28 dB) that was mainly driven by females. SNP heritability for HT and HTA was 0.13 and 0.02, respectively (n = 4,989). We found a modest negative genetic correlation between HT and reading ability. GWAS for HT (n = 5,344) did not yield significant hits but polygenic risk scores for higher educational attainment (EA, ß = -1,564.72, p = .008) and schizophrenia (ß = -241.14, p = .004) were associated with lower HT, that is, better hearing. In summary, we report new data supporting associations between hearing measures and cognitive abilities at the behavioral level. Genetic analysis suggests shared biological pathways between cognitive and sensory systems and provides evidence for a positive outcome of genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, UK
| | | | | |
Collapse
|
44
|
Gaeta IM, Meenderink LM, Postema MM, Cencer CS, Tyska MJ. Direct visualization of epithelial microvilli biogenesis. Curr Biol 2021; 31:2561-2575.e6. [PMID: 33951456 PMCID: PMC8222192 DOI: 10.1016/j.cub.2021.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022]
Abstract
Microvilli are actin-bundle-supported surface protrusions that play essential roles in diverse epithelial functions. To develop our understanding of microvilli biogenesis, we used live imaging to directly visualize protrusion growth at early stages of epithelial differentiation. Time-lapse data revealed that specific factors, including epidermal growth factor pathway substrate 8 (EPS8) and insulin-receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1), appear in diffraction-limited puncta at the cell surface and mark future sites of microvillus growth. New core actin bundles elongate from these puncta in parallel with the arrival of ezrin and subsequent plasma membrane encapsulation. In addition to de novo growth, we also observed that new microvilli emerge from pre-existing protrusions. Moreover, we found that nascent microvilli can also collapse, characterized first by loss of membrane wrapping and ezrin enrichment, followed by a sharp decrease in distal tip EPS8 and IRTKS levels, and ultimately disassembly of the core actin bundle itself. These studies are the first to offer a temporally resolved microvillus growth mechanism and highlight factors that participate in this process; they also provide important insights on the growth of apical specializations that will likely apply to diverse epithelial contexts.
Collapse
Affiliation(s)
- Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Ghilardi A, Diana A, Bacchetta R, Santo N, Ascagni M, Prosperi L, Del Giacco L. Inner Ear and Muscle Developmental Defects in Smpx-Deficient Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22126497. [PMID: 34204426 PMCID: PMC8235540 DOI: 10.3390/ijms22126497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.
Collapse
Affiliation(s)
- Anna Ghilardi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Alberto Diana
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Renato Bacchetta
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Nadia Santo
- Unitech NOLIMITS, Università degli Studi di Milano, 20133 Milan, Italy; (N.S.); (M.A.)
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, 20133 Milan, Italy; (N.S.); (M.A.)
| | - Laura Prosperi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
| | - Luca Del Giacco
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (A.G.); (A.D.); (L.P.)
- Correspondence:
| |
Collapse
|
46
|
Dunsky K, Menezes M, Ferkol TW. Advances in the Diagnosis and Treatment of Primary Ciliary Dyskinesia: A Review. JAMA Otolaryngol Head Neck Surg 2021; 147:2781298. [PMID: 34137802 DOI: 10.1001/jamaoto.2021.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Primary ciliary dyskinesia (PCD) is a rare, inherited condition involving motile cilia that line the upper and lower respiratory tracts, leading to chronic infections of the paranasal sinuses, middle ear, and bronchi that begin during infancy. Unfortunately, despite its early presentation, PCD is often recognized late. OBSERVATIONS People with PCD have diverse clinical manifestations, including chronic upper and lower respiratory tract disease, laterality defects, and subfertility. Through efforts of multinational clinical collaboratives, 4 cardinal features have been described that identify people who likely have PCD: unexplained neonatal respiratory distress, left-right laterality defects, daily wet cough, and nonseasonal rhinosinusitis beginning before 6 months of age. Recent advances in the understanding of the genetics and pathogenesis of the disease have led to a revolution in the approach to screening and diagnostic testing. Moreover, PCD has a broad clinical spectrum, and genotype-phenotype associations are beginning to be recognized. CONCLUSIONS AND RELEVANCE A high index of suspicion remains critical in diagnosing PCD. Children who have at least 2 of the major clinical features should be considered for further evaluation. Nevertheless, while newer tools have improved diagnostic capabilities, there is no single test that will diagnose every person with the disease. In people suspected of having PCD, nasal nitric oxide measurement is a useful screen, followed by diagnostic genetic testing and if negative, ciliary ultrastructural analysis. Despite otolaryngologic manifestations being common in infancy and persisting into adulthood, they have been understudied. Indeed, there are few randomized clinical trials examining the medicosurgical approaches to respiratory disease.
Collapse
Affiliation(s)
- Katherine Dunsky
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Maithilee Menezes
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| |
Collapse
|
47
|
Li N, Xi Y, Du H, Zhou H, Xu Z. Annexin A4 Is Dispensable for Hair Cell Development and Function. Front Cell Dev Biol 2021; 9:680155. [PMID: 34150775 PMCID: PMC8209329 DOI: 10.3389/fcell.2021.680155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
Annexin A4 (ANXA4) is a Ca2+-dependent phospholipid-binding protein that is specifically expressed in the cochlear and vestibular hair cells, but its function in the hair cells remains unknown. In the present study, we show that besides localizing on the plasma membrane, ANXA4 immunoreactivity is also localized at the tips of stereocilia in the hair cells. In order to investigate the role of ANXA4 in the hair cells, we established Anxa4 knockout mice using CRISPR/Cas9 technique. Unexpectedly, the development of both cochlear and vestibular hair cells is normal in Anxa4 knockout mice. Moreover, stereocilia morphology of Anxa4 knockout mice is normal, so is the mechano-electrical transduction (MET) function. Consistently, the auditory and vestibular functions are normal in the knockout mice. In conclusion, we show here that ANXA4 is dispensable for the development and function of hair cells, which might result from functional redundancy between ANXA4 and other annexin(s) in the hair cells.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hao Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
48
|
Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K. Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 2021; 13:339-357. [PMID: 34168685 PMCID: PMC8214652 DOI: 10.1007/s12551-021-00811-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Dimitra Vasilaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | | | - Konstantinos Michalakis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Division of Graduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA USA
- University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Mohri H, Ninoyu Y, Sakaguchi H, Hirano S, Saito N, Ueyama T. Nox3-Derived Superoxide in Cochleae Induces Sensorineural Hearing Loss. J Neurosci 2021; 41:4716-4731. [PMID: 33849947 PMCID: PMC8260246 DOI: 10.1523/jneurosci.2672-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidases (Nox) contribute to the development of different types of sensorineural hearing loss (SNHL), a common impairment in humans with no established treatment. Although the essential role of Nox3 in otoconia biosynthesis and its possible involvement in hearing have been reported in rodents, immunohistological methods targeted at detecting Nox3 expression in inner ear cells reveal ambiguous results. Therefore, the mechanism underlying Nox3-dependent SNHL remains unclear and warrants further investigation. We generated Nox3-Cre knock-in mice, in which Nox3 was replaced with Cre recombinase (Cre). Using Nox3-Cre;tdTomato mice of either sex, in which tdTomato is expressed under the control of the Nox3 promoter, we determined Nox3-expressing regions and cell types in the inner ear. Nox3-expressing cells in the cochlea included various types of supporting cells, outer hair cells, inner hair cells, and spiral ganglion neurons. Nox3 expression increased with cisplatin, age, and noise insults. Moreover, increased Nox3 expression in supporting cells and outer hair cells, especially at the basal turn of the cochlea, played essential roles in ROS-related SNHL. The extent of Nox3 involvement in SNHL follows the following order: cisplatin-induced hearing loss > age-related hearing loss > noise-induced hearing loss. Here, on the basis of Nox3-Cre;tdTomato, which can be used as a reporter system (Nox3-Cre+/-;tdTomato+/+ and Nox3-Cre+/+;tdTomato+/+), and Nox3-KO (Nox3-Cre+/+;tdTomato+/+) mice, we demonstrate that Nox3 inhibition in the cochlea is a promising strategy for ROS-related SNHL, such as cisplatin-induced HL, age-related HL, and noise-induced HL.SIGNIFICANCE STATEMENT We found Nox3-expressing regions and cell types in the inner ear, especially in the cochlea, using Nox3-Cre;tdTomato mice, a reporter system generated in this study. Nox3 expression increased with cisplatin, age, and noise insults in specific cell types in the cochlea and resulted in the loss (apoptosis) of outer hair cells. Thus, Nox3 might serve as a molecular target for the development of therapeutics for sensorineural hearing loss, particularly cisplatin-induced, age-related, and noise-induced hearing loss.
Collapse
Affiliation(s)
- Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
50
|
Abstract
Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels.
Collapse
Affiliation(s)
- Wang Zheng
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|