1
|
Li L, Zhang X, Xu G, Xue R, Li S, Wu S, Yang Y, Lin Y, Lin J, Liu G, Gao S, Zhang Y, Ye Q. Transcriptional Regulation of De Novo Lipogenesis by SIX1 in Liver Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404229. [PMID: 39258807 PMCID: PMC11538671 DOI: 10.1002/advs.202404229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Indexed: 09/12/2024]
Abstract
De novo lipogenesis (DNL), a hallmark of cancer, facilitates tumor growth and metastasis. Therapeutic drugs targeting DNL are being developed. However, how DNL is directly regulated in cancer remains largely unknown. Here, transcription factor sine oculis homeobox 1 (SIX1) is shown to directly increase the expression of DNL-related genes, including ATP citrate lyase (ACLY), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), via histone acetyltransferases amplified in breast cancer 1 (AIB1) and lysine acetyltransferase 7 (HBO1/KAT7), thus promoting lipogenesis. SIX1 expression is regulated by insulin/lncRNA DGUOK-AS1/microRNA-145-5p axis, which also modulates DNL-related gene expression as well as DNL. The DGUOK-AS1/microRNA-145-5p/SIX1 axis regulates liver cancer cell proliferation, invasion, and metastasis in vitro and in vivo. In patients with liver cancer, SIX1 expression is positively correlated with DGUOK-AS1 and SCD1 expression and is negatively correlated with microRNA-145-5p expression. DGUOK-AS1 is a good predictor of prognosis. Thus, the DGUOK-AS1/microRNA-145-5p/SIX1 axis strongly links DNL to tumor growth and metastasis and may become an avenue for liver cancer therapeutic intervention.
Collapse
Affiliation(s)
- Ling Li
- Beijing Institute of BiotechnologyBeijing100071China
| | - Xiujuan Zhang
- Beijing Institute of BiotechnologyBeijing100071China
| | - Guang Xu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Rui Xue
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shuo Li
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shumeng Wu
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yuanjun Yang
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yanni Lin
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Beijing Institute of BiotechnologyBeijing100071China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Guoxiao Liu
- Department of General SurgeryThe First Medical Center of PLA General HospitalBeijing100853China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijing100071China
| |
Collapse
|
2
|
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024; 37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Xie Y, Yuan Q, Cao X, Qiu Y, Zeng J, Cao Y, Xie Y, Meng X, Huang K, Yi F, Zhang C. Deficiency of Nuclear Receptor Coactivator 3 Aggravates Diabetic Kidney Disease by Impairing Podocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308378. [PMID: 38483947 PMCID: PMC11109634 DOI: 10.1002/advs.202308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/28/2024] [Indexed: 05/23/2024]
Abstract
Nuclear receptors (NRs) are important transcriptional factors that mediate autophagy, preventing podocyte injury and the progression of diabetic kidney disease (DKD). However, the role of nuclear receptor coactivators that are powerful enhancers for the transcriptional activity of NRs in DKD remains unclear. In this study, a significant decrease in Nuclear Receptor Coactivator 3 (NCOA3) is observed in injured podocytes caused by high glucose treatment. Additionally, NCOA3 overexpression counteracts podocyte damage by improving autophagy. Further, Src family member, Fyn is identified to be the target of NCOA3 that mediates the podocyte autophagy process. Mechanistically, NCOA3 regulates the transcription of Fyn in a nuclear receptor, PPAR-γ dependent way. Podocyte-specific NCOA3 knockout aggravates albuminuria, glomerular sclerosis, podocyte injury, and autophagy in DKD mice. However, the Fyn inhibitor, AZD0530, rescues podocyte injury of NCOA3 knockout DKD mice. Renal NCOA3 overexpression with lentivirus can ameliorate podocyte damage and improve podocyte autophagy in DKD mice. Taken together, the findings highlight a novel target, NCOA3, that protects podocytes from high glucose injury by maintaining autophagy.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xinyi Cao
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yajuan Xie
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong ProvinceDepartment of PharmacologySchool of Basic Medical SciencesShandong UniversityJinan250100China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| |
Collapse
|
4
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
5
|
Yang K, Zhang J, Zhao Y, Shao Y, Zhai M, Liu H, Zhang L. Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. BIOLOGY 2023; 12:1397. [PMID: 37997996 PMCID: PMC10669838 DOI: 10.3390/biology12111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
As the only two You-chicken breeds in China, Baicheng-You (BCY) and Beijing-You (BJY) chickens are famous for their good meat quality. However, so far, the molecular basis of germplasm of the two You-chicken breeds is not yet clear. The genetic relationship among BCY, BJY, and European-origin broilers (BRs) was analyzed using whole genome resequencing data to contribute to this issue. A total of 18,852,372 single nucleotide polymorphisms (SNPs) were obtained in this study. After quality control, 8,207,242 SNPs were applied to subsequent analysis. The data indicated that BJY chickens possessed distant distance with BRs (genetic differentiation coefficient (FST) = 0.1681) and BCY (FST = 0.1231), respectively, while BCY and BRs had a closer relationship (FST = 0.0946). In addition, by using FST, cross-population extended haplotype homozygosity (XP-EHH), and cross-population composite likelihood ratio (XP-CLR) methods, we found 374 selected genes between BJY and BRs chickens and 279 selected genes between BCY and BJY chickens, respectively, which contained a number of important candidates or genetic variations associated with feather growth and fat deposition of BJY chickens and potential disease resistance of BCY chickens. Our study demonstrates a genome-wide view of genetic diversity and differentiation among BCY, BJY, and BRs. These results may provide useful information on a molecular basis related to the special characteristics of these broiler breeds, thus enabling us to better understand the formation mechanism of Chinese-You chickens.
Collapse
Affiliation(s)
- Kai Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Yonggang Shao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Manjun Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| |
Collapse
|
6
|
Zhang F, Li Q, Wu J, Ruan H, Sun C, Zhu J, Song Q, Wei X, Shi Y, Zhu L. Total Flavonoids of Drynariae Rhizoma Improve Glucocorticoid-Induced Osteoporosis of Rats: UHPLC-MS-Based Qualitative Analysis, Network Pharmacology Strategy and Pharmacodynamic Validation. Front Endocrinol (Lausanne) 2022; 13:920931. [PMID: 35846330 PMCID: PMC9279576 DOI: 10.3389/fendo.2022.920931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is a common form of secondary osteoporosis caused by the protracted or a large dosage of glucocorticoids (GCs). Total flavonoids of Drynariae rhizoma (TFDR) have been widely used in treating postmenopausal osteoporosis (POP). However, their therapeutic effects and potential mechanism against GIOP have not been fully elucidated. METHODS Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESIQ-TOF-MS) experiments were performed for qualitative analysis. We performed hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis to detect the changes in bone microstructure. The changes in biochemical parameters in the serum samples were determined by performing an enzyme-linked immunosorbent assay (ELISA). The prediction results of network pharmacology were verified via quantitative real-time polymerase chain reaction (qRT-PCR) to elucidate the potential mechanism of TFDR against GIOP. RESULTS A total of 191 ingredients were identified in vitro and 48 ingredients in vivo. In the in-vivo experiment, the levels of the serum total cholesterol (TC), the serum triglyceride (TG), Leptin (LEP), osteocalcin (OC), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2), propeptide of type I procollagen (PINP), tartrate-resistant acid phosphatase (TRACP) and type-I collagen carboxy-terminal peptide (CTX-1) in the TFDR group significantly changed compared with those in the GIOP group. Moreover, the TFDR group showed an improvement in bone mineral density and bone microstructure. Based on the results of network pharmacology analysis, 67 core targets were selected to construct the network and perform PPI analysis as well as biological enrichment analysis. Five of the targets with high "degree value" had differential gene expression between groups using qRT-PCR. CONCLUSION TFDR, which may play a crucial role between adipose metabolism and bone metabolism, may be a novel remedy for the prevention and clinical treatment of GIOP.
Collapse
Affiliation(s)
- Fangqing Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyue Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haonan Ruan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghui Song
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| |
Collapse
|
7
|
Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C, Hartig SM. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol Endocrinol Metab 2020; 319:E667-E677. [PMID: 32799658 PMCID: PMC7864240 DOI: 10.1152/ajpendo.00045.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.
Collapse
Affiliation(s)
- Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jessica B Felix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Benzophenone-3 and benzophenone-8 exhibit obesogenic activity via peroxisome proliferator-activated receptor γ pathway. Toxicol In Vitro 2020; 67:104886. [DOI: 10.1016/j.tiv.2020.104886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022]
|
9
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
10
|
Chernis N, Masschelin P, Cox AR, Hartig SM. Bisphenol AF promotes inflammation in human white adipocytes. Am J Physiol Cell Physiol 2020; 318:C63-C72. [PMID: 31596606 PMCID: PMC6985838 DOI: 10.1152/ajpcell.00175.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals interact with transcription factors essential for adipocyte differentiation. Exposure to endocrine-disrupting chemicals corresponds with elevated risks of obesity, but the effects of these compounds on human cells remain largely undefined. Widespread use of bisphenol AF (BPAF) as a bisphenol A (BPA) alternative in the plastics industry presents unknown health risks. To this end, we discovered that BPAF interferes with the metabolic function of mature human adipocytes. Although 4-day exposures to BPAF accelerated adipocyte differentiation, we observed no effect on mature fat cell marker genes. Additional gene and protein expression analysis showed that BPAF treatment during human adipocyte differentiation failed to suppress the proinflammatory transcription factor STAT1. Microscopy and respirometry experiments demonstrated that BPAF impaired mitochondrial function and structure. To test the hypothesis that BPAF fosters vulnerabilities to STAT1 activation, we treated mature adipocytes previously exposed to BPAF with interferon-γ (IFNγ). BPAF increased IFNγ activation of STAT1 and exposed mitochondrial vulnerabilities that disrupt adipocyte lipid and carbohydrate metabolism. Collectively, our data establish that BPAF activates inflammatory signaling pathways that degrade metabolic activity in human adipocytes. These findings suggest how the BPA alternative BPAF contributes to metabolic changes that correspond with obesity.
Collapse
Affiliation(s)
- Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG, Mancini MA. Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS One 2019; 14:e0224405. [PMID: 31710612 PMCID: PMC6844554 DOI: 10.1371/journal.pone.0224405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
A subset of environmental chemicals acts as "obesogens" as they increase adipose mass and lipid content in livers of treated rodents. One of the most studied class of obesogens are the tin-containing chemicals that have as a central moiety tributyltin (TBT), which bind and activate two nuclear hormone receptors, Peroxisome Proliferator Activated Receptor Gamma (PPARG) and Retinoid X Receptor Alpha (RXRA), at nanomolar concentrations. Here, we have tested whether TBT chloride at such concentrations may affect the neutral lipid level in two cell line models of human liver. Indeed, using high content image analysis (HCA), TBT significantly increased neutral lipid content in a time- and concentration-dependent manner. Consistent with the observed increased lipid accumulation, RNA fluorescence in situ hybridization (RNA FISH) and RT-qPCR experiments revealed that TBT enhanced the steady-state mRNA levels of two key genes for de novo lipogenesis, the transcription factor SREBF1 and its downstream enzymatic target, FASN. Importantly, pre-treatment of cells with 2-deoxy-D-glucose reduced TBT-mediated lipid accumulation, thereby suggesting a role for active glycolysis during the process of lipid accumulation. As other RXRA binding ligands can promote RXRA protein turnover via the 26S proteasome, TBT was tested for such an effect in the two liver cell lines. We found that TBT, in a time- and dose-dependent manner, significantly reduced steady-state RXRA levels in a proteasome-dependent manner. While TBT promotes both RXRA protein turnover and lipid accumulation, we found no correlation between these two events at the single cell level, thereby suggesting an additional mechanism may be involved in TBT promotion of lipid accumulation, such as glycolysis.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Radhika D. Dandekar
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Philip Lavere
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Charles E. Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States of America
- Dan L. Duncan Comprehensive Cancer Center; Baylor College of Medicine, Houston, TX, United States of America
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
12
|
Transcriptome Analysis Reveals the Effect of Long Intergenic Noncoding RNAs on Pig Muscle Growth and Fat Deposition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2951427. [PMID: 31341893 PMCID: PMC6614983 DOI: 10.1155/2019/2951427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/01/2019] [Indexed: 01/09/2023]
Abstract
Muscle growth and fat deposition are the two important biological processes in the development of pigs which are closely related to the pig production performance. Long intergenic noncoding RNAs (lincRNAs), with lack of coding potential and the length of at least 200nt, have been extensively studied to play important roles in many biological processes. However, the importance and molecular regulation mechanism of lincRNAs in the process of muscle growth and fat deposition in pigs are still to be further studied comprehensively. In our study, we used the data, including liver, abdominal fat, and longissimus dorsi muscle of 240 days' age of two F2 full-sib female individuals from the white Duroc and Erhualian crossbreed, to identify 581 putative lincRNAs associated with pig muscle growth and fat deposition. The 581 putative lincRNAs shared many common features with other mammalian lincRNAs, such as fewer exons, lower expression levels, and shorter transcript lengths. Cross-tissue comparisons showed that many transcripts were tissue-specific and were involved in the important biological processes in their corresponding tissues. Gene ontology and pathway analysis revealed that many potential target genes (PTGs) of putative lincRNAs were involved in pig muscle growth and fat deposition-related processes, including muscle cell proliferation, lipid metabolism, and fatty acid degradation. In Quantitative Trait Locus (QTLs) analysis, some PTGs were screened from putative lincRNAs, MRPL12 is associated with muscle growth, GCGR and SLC25A10 were associated with fat deposition, and PPP3CA, DPYD, and FGGY were related not only to muscle growth but also to fat deposition. Therefore, it implied that these lincRNAs might participate in the biological processes related to muscle growth or fat deposition through homeostatic regulation of PTGs, but the detailed molecular regulatory mechanisms still needed to be further explored. This study lays the molecular foundation for the in-depth study of the role of lincRNAs in the pig muscle growth and fat deposition and further provides the new molecular markers for understanding the complex biological mechanisms of pig muscle growth and fat deposition.
Collapse
|
13
|
Peng WX, Gao CH, Huang GB. High throughput analysis to identify key gene molecules that inhibit adipogenic differentiation and promote osteogenic differentiation of human mesenchymal stem cells. Exp Ther Med 2019; 17:3021-3028. [PMID: 30936973 PMCID: PMC6434248 DOI: 10.3892/etm.2019.7287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the key genes, which cause switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells (hMSCs). The transcriptomic profile of hMSCs samples were collected from Array Express database. Differential expression network was constructed by calculating the Pearson's correlation coefficient and ranked according to their topological features. The top 5% genes with degree ≥2 were selected as ego genes. Following the KEGG pathway enrichment analysis and the relevant miRNAs prediction, the miRNA-mRNA-pathway networks were constructed by combining the miRNA-mRNA pairs and mRNA-pathway pairs together. In total, we obtained 84, 119, 94 and 97 ego-genes in B, BI, BT and BTI groups, and DLGAP5, DLGAP5, NUSAP1 and NDC80 were the ego-genes with the highest z-score of each group, respectively. Beginning from each ego-gene, we identified 2 significant ego-modules with gene size ≥4 in group BI, and the ego-genes were PBK and NCOA3, respectively. Through KEGG pathway analysis, we found that most of the pathways enriched by ego-genes were associated with gene replication and repair, and cell proliferation. According to the miRNA prediction results, we found that some of the predicted miRNAs have been validated to be the regulatory miRNAs of these corresponding mRNAs. Finally we constructed a miRNA-mRNA-pathway network by integrating the miRNA-mRNA and mRNA-pathway pairs together. The constructed network gives us a more comprehensive understanding of the mechanism of osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Wu-Xun Peng
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chang-Hong Gao
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guo-Bao Huang
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
14
|
Dutta D, Lai KY, Reyes-Ordoñez A, Chen J, van der Donk WA. Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation. J Lipid Res 2018; 59:1433-1445. [PMID: 29880530 DOI: 10.1194/jlr.m085274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
Adipogenic differentiation is a highly regulated process that is necessary for metabolic homeostasis and nutrient sensing. The expression of PPARγ and the subsequent activation of adipogenic genes is critical for the process. In this study, we identified lanthionine synthetase C-like protein 2 (LanCL2) as a positive regulator of adipogenesis in 3T3-L1 cells. Knockdown of LanCL2, but not LanCL1, inhibited adipogenic differentiation, and this effect was not mediated through cAMP or Akt signaling pathways. The expression of early adipogenic markers CCAAT enhancer binding protein β (C/EBPβ) and C/EBPδ remained intact in LanCL2 knockdown cells, but levels of late adipogenic markers PPARγ and C/EBPα were suppressed. The addition of the naturally occurring PPARγ activator 15-deoxy-Δ12,14-prostaglandin J2 or conditioned medium from differentiating cells did not restore differentiation, implying that LanCL2 may not be involved in the production of a secreted endogenous PPARγ ligand. Pulldown assays demonstrated a direct physical interaction between LanCL2 and PPARγ. Consistent with a regulatory role of LanCL2, luciferase reporter assays revealed that full transcriptional activation by PPARγ was dependent on LanCL2. Taken together, our study reveals a novel role of LanCL2 in adipogenesis, specifically involved in PPARγ-mediated transactivation of downstream adipogenic genes.
Collapse
Affiliation(s)
- Debapriya Dutta
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL .,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
15
|
Zou C, Li L, Cheng X, Li C, Fu Y, Fang C, Li C. Identification and Functional Analysis of Long Intergenic Non-coding RNAs Underlying Intramuscular Fat Content in Pigs. Front Genet 2018; 9:102. [PMID: 29662503 PMCID: PMC5890112 DOI: 10.3389/fgene.2018.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) content is an important trait that can affect pork quality. Previous studies have identified many genes that can regulate IMF. Long intergenic non-coding RNAs (lincRNAs) are emerging as key regulators in various biological processes. However, lincRNAs related to IMF in pig are largely unknown, and the mechanisms by which they regulate IMF are yet to be elucidated. Here we reconstructed 105,687 transcripts and identified 1,032 lincRNAs in pig longissimus dorsi muscle (LDM) of four stages with different IMF contents based on published RNA-seq. These lincRNAs show typical characteristics such as shorter length and lower expression compared with protein-coding genes. Combined with methylation data, we found that both the promoter and genebody methylation of lincRNAs can negatively regulate lincRNA expression. We found that lincRNAs exhibit high correlation with their protein-coding neighbors in expression. Co-expression network analysis resulted in eight stage-specific modules, gene ontology and pathway analysis of them suggested that some lincRNAs were involved in IMF-related processes, such as fatty acid metabolism and peroxisome proliferator-activated receptor signaling pathway. Furthermore, we identified hub lincRNAs and found six of them may play important roles in IMF development. This work detailed some lincRNAs which may affect of IMF development in pig, and facilitated future research on these lincRNAs and molecular assisted breeding for pig.
Collapse
Affiliation(s)
- Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cencen Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Jang J, Jung Y, Chae S, Cho SH, Yoon M, Yang H, Shin SS, Yoon Y. Gangjihwan, a polyherbal composition, inhibits fat accumulation through the modulation of lipogenic transcription factors SREBP1C, PPARγ and C/EBPα. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:10-22. [PMID: 28842339 DOI: 10.1016/j.jep.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gangjihwan (DF) which is composed of Ephedra intermedia, Lithospermum erythrorhizon, and Rheum palmatum has been used for the treatment of obesity in traditional medical clinics in Korea. AIM OF THE STUDY This study was conducted to standardize DF and elucidate its mechanism of action for inhibiting fat accumulation in adipocytes and adipose tissues. MATERIALS AND METHODS The herbal ingredients of DF were extracted in water, 30% ethanol or 70% ethanol and freeze-dried followed by HPLC analyses. 3T3-L1 adipocytes and high-fat diet-induced obese mice were treated with each of the three DF preparations. Messenger RNA and protein expression levels were measured by real-time qPCR and Western blotting. RNA-Seq analyses were conducted to examine the effects of DF treatment on whole transcriptome of adipocyte. RESULTS (-)-Ephedrine and (+)-pseudoephedrine from E. intermedia, aloe-emodin and chrysophanol from R. palmatum and shikonin from L. erythrorhizon were identified as phytochemical components of DF. DF caused dose-dependent inhibition of fat accumulation in 3T3-L1 adipocytes. It also significantly reduced adipose tissue mass and adipocyte size in high-fat diet-induced obese mice. DF was found to down-regulate the expressions of the lipogenic transcription factors such as sterol regulatory element binding protein 1C (SREBP1C), peroxisome proliferator activated receptor gamma (PPARγ), and CCAAT/enhancer binding protein alpha (C/EBPα). Among the three preparations of DF, the 70% ethanol extract was the most effective. RNA-Seq analyses showed that DF treatment decreased the expression levels of up-regulators and increased those of down-regulators of lipogenic transcription factors. CONCLUSIONS DF preparations, among which 70% ethanol extract was the most effective, reduced fat accumulation in 3T3-L1 adipocytes and high-fat diet-induced obese mice through the down-regulation of lipogenic transcription factors SREBP1C, PPARγ and C/EBPα.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonju Jung
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seyeon Chae
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soo Hyun Cho
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejon 35349, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Soon Shik Shin
- Department of Formula Sciences and Research Center of Korean Medicine for Diabetes and Obesity, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
Ma X, Wang D, Zhao W, Xu L. Deciphering the Roles of PPARγ in Adipocytes via Dynamic Change of Transcription Complex. Front Endocrinol (Lausanne) 2018; 9:473. [PMID: 30186237 PMCID: PMC6110914 DOI: 10.3389/fendo.2018.00473] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-dependent transcription factor highly expressed in adipocytes, is a master regulator of adipogenesis and lipid storage, a central player in thermogenesis and an active modulator of lipid metabolism and insulin sensitivity. As a nuclear receptor governing numerous target genes, its specific signaling transduction relies on elegant transcriptional and post-translational regulations. Notably, in response to different metabolic stimuli, PPARγ recruits various cofactors and forms distinct transcriptional complexes that change dynamically in components and epigenetic modification to ensure specific signal transduction. Clinically, PPARγ activation via its full agonists, thiazolidinediones, has been shown to improve insulin sensitivity and induce browning of white fat, while undesirably induce weight gain, visceral obesity and other adverse effects. Thus, deciphering the combinatorial interactions between PPARγ and its transcriptional partners and their preferential regulatory network in the processes of development, function and senescence of adipocytes would provide us the molecular basis for developing novel partial agonists that promote benefits of PPARγ signaling without detrimental side effects. In this review, we discuss the dynamic components and precise regulatory mechanisms of the PPARγ-cofactors complexes in adipocytes, as well as perspectives in treating metabolic diseases via specific PPARγ signaling.
Collapse
|
18
|
Cao H, Zhang S, Shan S, Sun C, Li Y, Wang H, Yu S, Liu Y, Guo F, Zhai Q, Wang YC, Jiang J, Wang H, Yan J, Liu W, Ying H. Ligand-dependent corepressor (LCoR) represses the transcription factor C/EBPβ during early adipocyte differentiation. J Biol Chem 2017; 292:18973-18987. [PMID: 28972158 DOI: 10.1074/jbc.m117.793984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/20/2017] [Indexed: 01/02/2023] Open
Abstract
Nuclear receptors (NRs) regulate gene transcription by recruiting coregulators, involved in chromatin remodeling and assembly of the basal transcription machinery. The NR-associated protein ligand-dependent corepressor (LCoR) has previously been shown to suppress hepatic lipogenesis by decreasing the binding of steroid receptor coactivators to thyroid hormone receptor. However, the role of LCoR in adipogenesis has not been established. Here, we show that LCoR expression is reduced in the early stage of adipogenesis in vitro LCoR overexpression inhibited 3T3-L1 adipocyte differentiation, whereas LCoR knockdown promoted it. Using an unbiased affinity purification approach, we identified CCAAT/enhancer-binding protein β (C/EBPβ), a key transcriptional regulator in early adipogenesis, and corepressor C-terminal binding proteins as potential components of an LCoR-containing complex in 3T3-L1 adipocytes. We found that LCoR directly interacts with C/EBPβ through its C-terminal helix-turn-helix domain, required for LCoR's inhibitory effects on adipogenesis. LCoR overexpression also inhibited C/EBPβ transcriptional activity, leading to inhibition of mitotic clonal expansion and transcriptional repression of C/EBPα and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, LCoR overexpression did not affect the recruitment of C/EBPβ to the promoters of C/EBPα and PPARγ2 in 3T3-L1 adipocytes. Of note, restoration of PPARγ2 or C/EBPα expression attenuated the inhibitory effect of LCoR on adipogenesis. Mechanistically, LCoR suppressed C/EBPβ-mediated transcription by recruiting C-terminal binding proteins to the C/EBPα and PPARγ2 promoters and by modulating histone modifications. Taken together, our results indicate that LCoR negatively regulates early adipogenesis by repressing C/EBPβ transcriptional activity and add LCoR to the growing list of transcriptional corepressors of adipogenesis.
Collapse
Affiliation(s)
- Hongchao Cao
- From the Key Laboratories of Food Safety Research and
| | | | - Shifang Shan
- Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Sun
- From the Key Laboratories of Food Safety Research and
| | - Yan Li
- From the Key Laboratories of Food Safety Research and
| | - Hui Wang
- From the Key Laboratories of Food Safety Research and
| | - Shuxian Yu
- From the Key Laboratories of Food Safety Research and
| | - Yi Liu
- Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feifan Guo
- Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiwei Zhai
- Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Cheng Wang
- Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Hui Wang
- From the Key Laboratories of Food Safety Research and.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China, and
| | - Jun Yan
- Model Animal Research Center, and Ministry of Eduction Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Liu
- From the Key Laboratories of Food Safety Research and
| | - Hao Ying
- From the Key Laboratories of Food Safety Research and .,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China, and
| |
Collapse
|
19
|
de Vera IMS, Zheng J, Novick S, Shang J, Hughes TS, Brust R, Munoz-Tello P, Gardner WJ, Marciano DP, Kong X, Griffin PR, Kojetin DJ. Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. Structure 2017; 25:1506-1518.e4. [PMID: 28890360 DOI: 10.1016/j.str.2017.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 07/28/2017] [Indexed: 11/15/2022]
Abstract
Nuclear receptor (NR) transcription factors bind various coreceptors, small-molecule ligands, DNA response element sequences, and transcriptional coregulator proteins to affect gene transcription. Small-molecule ligands and DNA are known to influence receptor structure, coregulator protein interaction, and function; however, little is known on the mechanism of synergy between ligand and DNA. Using quantitative biochemical, biophysical, and solution structural methods, including 13C-detected nuclear magnetic resonance and hydrogen/deuterium exchange (HDX) mass spectrometry, we show that ligand and DNA cooperatively recruit the intrinsically disordered steroid receptor coactivator-2 (SRC-2/TIF2/GRIP1/NCoA-2) receptor interaction domain to peroxisome proliferator-activated receptor gamma-retinoid X receptor alpha (PPARγ-RXRα) heterodimer and reveal the binding determinants of the complex. Our data reveal a thermodynamic mechanism by which DNA binding propagates a conformational change in PPARγ-RXRα, stabilizes the receptor ligand binding domain dimer interface, and impacts ligand potency and cooperativity in NR coactivator recruitment.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Scott Novick
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Travis S Hughes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - William J Gardner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; TSRI High School Student Summer Internship Program, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - David P Marciano
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Xiangming Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
20
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
Yu M, Gilbert S, Li Y, Zhang H, Qiao Y, Lu Y, Tang Y, Zhen Q, Cheng Y, Liu Y. Association of NCOA3 polymorphisms with Dyslipidemia in the Chinese Han population. Lipids Health Dis 2015; 14:124. [PMID: 26449542 PMCID: PMC4599759 DOI: 10.1186/s12944-015-0126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/30/2015] [Indexed: 01/18/2023] Open
Abstract
Background Nuclear receptor coactivator-3 (NCOA3) is involved in various physiological processes. Emerging evidence from previous studies using animal models suggests that the NCOA3 gene (NCOA3) plays a critical role in lipid metabolism as well as adipogenesis and obesity. The present study aims to investigate the association between NCOA3 SNPs and dyslipidemia in the Chinese Han population. Methods Five hundred and twenty-nine (529) Chinese Han subjects were recruited. Four tag SNPs (rs2425955G > T, rs6066394T > C, rs10485463C > G, and rs6094753G > A) in NCOA3, selected from the HapMap website, were genotyped using MALDI-TOF mass spectrometry. Data analysis was performed using SPSS 16.0, SNPStats and haploview 4.2. Results Four SNPs (rs2425955, rs6066394, rs10485463, and rs6094753) were associated with triglyceride levels. Except for SNP rs10485463, genotype distributions and allele frequencies of the other three NCOA3 SNPs (rs2425955, rs6066394, and rs6094753) were significantly different between hypertriglyceridemia subjects and normal group. Significant differences were also observed in allele frequencies and genotype distributions of SNP rs10485463 between low-HDL cholesterolemia subjects and normal group. Carriers of rs2425955 T allele had a lower risk of hypertriglyceridemia compared to GG genotype. Similar results were observed from rs6094753. Subjects with rs6066394 CT genotype had a lower risk of hypertriglyceridemia than those with the TT genotype; however, CC and TT genotypes showed no significant difference in the risk of hypertriglyceridemia. Similar results were found in the association between rs6066394 and hypercholesterolemia. The variant alleles of rs2425955, rs6066394 and rs6094753 were associated with a lower risk of hypertriglyceridemia compared with the wild-type alleles. The G allele of rs10485463 was associated with an increased risk of low-HDL cholesterolemia. In the log-additive model the association between rs2425955 and hypertriglyceridemia remained significant after Bonferroni correction, and genotypes with variant alleles were associated with a lower risk of hypertriglyceridemia. Conclusions In summary, this study demonstrated that variation in NCOA3 might influence the risk of dyslipidemia and serum lipid levels in Chinese Han population.
Collapse
Affiliation(s)
- Mingxi Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Siame Gilbert
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, VA Medical, Center/116A2, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yuping Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yuan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Qing Zhen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yi Cheng
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
Hartig SM, Bader DA, Abadie KV, Motamed M, Hamilton MP, Long W, York B, Mueller M, Wagner M, Trauner M, Chan L, Bajaj M, Moore DD, Mancini MA, McGuire SE. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes. Mol Endocrinol 2015; 29:1320-33. [PMID: 26192107 DOI: 10.1210/me.2015-1084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.
Collapse
Affiliation(s)
- Sean M Hartig
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - David A Bader
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Kathleen V Abadie
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Massoud Motamed
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Weiwen Long
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Brian York
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michaela Mueller
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Martin Wagner
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michael Trauner
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Lawrence Chan
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mandeep Bajaj
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - David D Moore
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michael A Mancini
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sean E McGuire
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
23
|
Lu Y, Habtetsion TG, Li Y, Zhang H, Qiao Y, Yu M, Tang Y, Zhen Q, Cheng Y, Liu Y. Association of NCOA2 gene polymorphisms with obesity and dyslipidemia in the Chinese Han population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7341-9. [PMID: 26261634 PMCID: PMC4525968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Nuclear receptor coactivator 2 (NCOA2) gene plays an important role in adipogenesis and lipid metabolism. NCOA2 gene null mice exhibited less fat accumulation and lower serum lipid levels, and were protected against obesity. Few studies are known to have analyzed the association of NCOA2 gene single nucleotide polymorphisms with obesity and serum lipid profile. Our study aimed to evaluate the association of NCOA2 gene polymorphisms with the risk of obesity and dyslipidemia in the Chinese Han population. METHODS Two NCOA2 gene polymorphisms (rs41391448 and rs10504473) were selected and genotyped in a Chinese Han cohort with 529 participants. The effect of different genotypes on BMI and serum lipid levels (TG, TC, LDL-C and HDL-C) was performed by the analysis of covariance. Association of NCOA2 polymorphisms with obesity and dyslipidemia was assessed by odds ratios (OR) and 95% confidence intervals (CI) under the unconditional logistic regression analysis. RESULTS Significant association was observed between rs10504473 polymorphism and obesity under the recessive model (OR = 1.88, 95% CI 1.02-3.45, P = 0.047; adjusted OR = 1.87, 95% CI 1.02-3.44, P = 0.048). However, no association remained significant after Bonferroni correction. CONCLUSION Our study suggests a possible association between NCOA2 rs10504473 polymorphism and obesity, and this SNP may influence the susceptibility of obesity in the Chinese Han population.
Collapse
Affiliation(s)
- Yuping Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | | | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, VA Medical Center/116A2950 Campbell Avenue, West Haven, CT 06516, USA
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Mingxi Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Yuan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Qing Zhen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Yi Cheng
- The Cardiovascular Center, The First Hospital of Jilin UniversityChangchun 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| |
Collapse
|
24
|
Szafran AT, Mancini MA. The myImageAnalysis project: a web-based application for high-content screening. Assay Drug Dev Technol 2014; 12:87-99. [PMID: 24547743 DOI: 10.1089/adt.2013.532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge faced by screening centers developing image-based assays is the wide range of assays needed compared to the limited resources that are available to effectively analyze and manage them. To overcome this limitation, we have developed the web-based myImageAnalysis (mIA) application, integrated with an open database connectivity compliant database and powered by Pipeline Pilot (PLP) that incorporates dataset tracking, scheduling and archiving, image analysis, and data reporting. For system administrators, mIA provides automated methods for managing and archiving data. For the biologist, this application allows those without any programming or image analysis experience to quickly develop, validate, and share results of complex image-based assays. Further, the structure of the application within PLP allows those with experience in PLP programming to easily add additional analysis tools as required. The tools within mIA allow users to assess basic (cell count, protein per cell, protein subcellular localization) and more advanced (engineered cell lines analysis, cell toxicity) biological image-based assays that employ advanced statistics and provides key assay performance metrics.
Collapse
Affiliation(s)
- Adam T Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | | |
Collapse
|
25
|
Stashi E, York B, O'Malley BW. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 2014; 25:337-47. [PMID: 24953190 PMCID: PMC4108168 DOI: 10.1016/j.tem.2014.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Coregulator recruitment to nuclear receptors (NRs) and other transcription factors is essential for proper metabolic gene regulation, with coactivators enhancing and corepressors attenuating gene transcription. The steroid receptor coactivator (SRC) family is composed of three homologous members (SRC-1, SRC-2, and SRC-3), which are uniquely important for mediating steroid hormone and mitogenic actions. An accumulating body of work highlights the diverse array of metabolic functions regulated by the SRCs, including systemic metabolite homeostasis, inflammation, and energy regulation. We discuss here the cooperative and unique functions among the SRCs to provide a comprehensive atlas of systemic SRC metabolic regulation. Deciphering the fractional and synergistic contributions of the SRCs to metabolic homeostasis is crucial to understanding fully the networks underlying metabolic transcriptional regulation.
Collapse
Affiliation(s)
- Erin Stashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Liu S, Lin SJ, Li G, Kim E, Chen YT, Yang DR, Tan MHE, Yong EL, Chang C. Differential roles of PPARγ vs TR4 in prostate cancer and metabolic diseases. Endocr Relat Cancer 2014; 21:R279-300. [PMID: 24623743 DOI: 10.1530/erc-13-0529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity. Second, PPARγ attenuates atherosclerosis but TR4 might increase the risk of atherosclerosis. Third, PPARγ suppresses prostate cancer (PCa) development and TR4 suppresses prostate carcinogenesis yet promotes PCa metastasis. Importantly, the deregulation of either PPARγ or TR4 in PCa alone might then alter the other receptor's influences on PCa progression. Knocking out PPARγ altered the ability of TR4 to promote prostate carcinogenesis and knocking down TR4 also resulted in TZD treatment promoting PCa development, indicating that both PPARγ and TR4 might coordinate with each other to regulate PCa initiation, and the loss of either one of them might switch the other one from a tumor suppressor to a tumor promoter. These results indicate that further and detailed studies of both receptors at the same time in the same cells/organs may help us to better dissect their distinct physiological roles and develop better drug(s) with fewer side effects to battle PPARγ- and TR4-related diseases including tumor and cardiovascular diseases as well as metabolic disorders.
Collapse
Affiliation(s)
- Su Liu
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Shin-Jen Lin
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Gonghui Li
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Eungseok Kim
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Yei-Tsung Chen
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Dong-Rong Yang
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - M H Eileen Tan
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Eu Leong Yong
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, TaiwanGeorge Whipple Laboratory for Cancer ResearchDepartments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USADepartment of Obstetrics and GynecologyNational University of Singapore, Singapore, SingaporeChawnshang Chang Liver Cancer Center and Department of UrologySir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, ChinaDepartment of Biological SciencesChonnam National University, Youngbong, Buk-Gu, Gwangju 500-757 KoreaCardiovascular Research InstituteNational University Health System and The Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSex Hormone Research CenterChina Medical University/Hospital, Taichung 404, Taiwan
| |
Collapse
|
27
|
Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun 2014; 4:2656. [PMID: 24141283 DOI: 10.1038/ncomms3656] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/27/2023] Open
Abstract
Transcriptional coregulators, including the acetyltransferase Tip60, have a key role in complex cellular processes such as differentiation. Whereas post-translational modifications have emerged as an important mechanism to regulate transcriptional coregulator activity, the identification of the corresponding demodifying enzymes has remained elusive. Here we show that the expression of the Tip60 protein, which is essential for adipocyte differentiation, is regulated through polyubiquitination on multiple residues. USP7, a dominant deubiquitinating enzyme in 3T3-L1 adipocytes and mouse adipose tissue, deubiquitinates Tip60 both in intact cells and in vitro and increases Tip60 protein levels. Furthermore, inhibition of USP7 expression and activity decreases adipogenesis. Transcriptome analysis reveals several cell cycle genes to be co-regulated by both Tip60 and USP7. Knockdown of either factor results in impaired mitotic clonal expansion, an early step in adipogenesis. These results reveal deubiquitination of a transcriptional coregulator to be a key mechanism in the regulation of early adipogenesis.
Collapse
|
28
|
Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. Eur J Cell Biol 2014; 93:170-7. [PMID: 24810880 DOI: 10.1016/j.ejcb.2014.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis is a complex process strictly regulated by a well-established cascade that has been thoroughly studied in the last two decades. This process is governed by complex regulatory networks that involve the activation/inhibition of multiple functional genes, and is controlled by histone-modifying enzymes. Among such modification enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the transcriptional regulation and post-translational modification of protein acetylation. HATs and HDACs have been shown to respond to signals that regulate cell differentiation, participate in the regulation of protein acetylation, mediate transcription and post-translation modifications, and directly acetylate/deacetylate various transcription factors and regulatory proteins. In this paper, we review the role of HATs and HDACs in white and brown adipocyte differentiation and adipogenesis, to expand our knowledge on fat formation and adipose tissue biology.
Collapse
|
29
|
Stashi E, Lanz RB, Mao J, Michailidis G, Zhu B, Kettner NM, Putluri N, Reineke EL, Reineke LC, Dasgupta S, Dean A, Stevenson CR, Sivasubramanian N, Sreekumar A, Demayo F, York B, Fu L, O'Malley BW. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep 2014; 6:633-45. [PMID: 24529706 PMCID: PMC4096300 DOI: 10.1016/j.celrep.2014.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 01/31/2023] Open
Abstract
Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2) recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circadian clock.
Collapse
Affiliation(s)
- Erin Stashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianqiang Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - George Michailidis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Statistics, University of Michigan, 500 South State Street, Ann Arbor, MI 48109, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nicole M Kettner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Erin L Reineke
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza Houston, TX 77030, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adam Dean
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Connor R Stevenson
- Department of Biochemistry and Molecular Biology, Trinity University, One Trinity Place, San Antonio, TX 78212-7200, USA
| | - Natarajan Sivasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Francesco Demayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Motamed M, Rajapakshe KI, Hartig SM, Coarfa C, Moses RE, Lonard DM, O'Malley BW. Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis. Mol Endocrinol 2014; 28:395-405. [PMID: 24438340 DOI: 10.1210/me.2013-1404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid receptor coactivator 1 (SRC-1) drives diverse gene expression programs necessary for the dynamic regulation of cancer metastasis, inflammation and gluconeogenesis, pointing to its overlapping roles as an oncoprotein and integrator of cell metabolic programs. Nutrient utilization has been intensely studied with regard to cellular adaptation in both cancer and noncancerous cells. Nonproliferating cells consume glucose through the citric acid cycle to generate NADH to fuel ATP generation via mitochondrial oxidative phosphorylation. In contrast, cancer cells undergo metabolic reprogramming to support rapid proliferation. To generate lipids, nucleotides, and proteins necessary for cell division, most tumors switch from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg Effect. Because SRC-1 is a key coactivator responsible for driving a hepatic gluconeogenic program under fasting conditions, we asked whether SRC-1 responds to alterations in nutrient availability to allow for adaptive metabolism. Here we show SRC-1 is stabilized by the 26S proteasome in the absence of glucose. RNA profiling was used to examine the effects of SRC-1 perturbation on gene expression in the absence or presence of glucose, revealing that SRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability.
Collapse
Affiliation(s)
- Massoud Motamed
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
31
|
Assay validation for the assessment of adipogenesis of multipotential stromal cells--a direct comparison of four different methods. Cytotherapy 2013; 15:89-101. [PMID: 23260089 PMCID: PMC3539160 DOI: 10.1016/j.jcyt.2012.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Background aims Mesenchymal stromal cells (MSCs) are regenerative and immuno-privileged cells that are used for both tissue regeneration and treatment of severe inflammation-related disease. For quality control of manufactured MSC batches in regard to mature fat cell contamination, a quantitative method for measuring adipogenesis is needed. Methods Four previously proposed methods were validated with the use of bone marrow (BM) MSCs during a 21-day in vitro assay. Oil red staining was scored semiquantitatively; peroxisome proliferator activated receptor-γ and fatty acid binding protein (FABP)4 transcripts were measured by quantitative real-time polymerase chain reaction; FABP4 protein accumulation was evaluated by flow cytometry; and Nile red/4′,6-diamidino-2-phenylindole (DAPI) ratios were measured in fluorescent microplate assay. Skin fibroblasts and MSCs from fat pad, cartilage and umbilical cord were used as controls. Results Oil red staining indicated considerable heterogeneity between BM donors and individual cells within the same culture. FABP4 transcript levels increased 100- to 5000-fold by day 21, with large donor variability observed. Flow cytometry revealed increasing intra-culture heterogeneity over time; more granular cells accumulated more FABP4 protein and Nile red fluorescence compared with less granular cells. Nile red increase in day-21 MSCs was ∼5- and 4-fold, measured by flow cytometry or microplate assay, respectively. MSC proliferation/apoptosis was accounted through the use of Nile red/DAPI ratios; adipogenesis levels in day-21 BM MSCs increased ∼13-fold, with significant correlations with oil red scoring observed for MSC from other sources. Conclusions Flow cytometry permits the study of MSC differentiation at the single-cell level and sorting more and less mature cells from mixed cell populations. The microplate assay with the use of the Nile red/DAPI ratio provides rapid quantitative measurements and could be used as a low-cost, high-throughput method to quality-control MSC batches from different tissue sources.
Collapse
|
32
|
Bolt MJ, Stossi F, Newberg JY, Orjalo A, Johansson HE, Mancini MA. Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Res 2013; 41:4036-48. [PMID: 23444138 PMCID: PMC3627592 DOI: 10.1093/nar/gkt100] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nuclear receptors (NRs) are central regulators of pathophysiological processes; however, how their responses intertwine is still not fully understood. The aim of this study was to determine whether and how steroid NRs can influence each other’s activity under co-agonist treatment. We used a unique system consisting of a multicopy integration of an estrogen receptor responsive unit that allows direct visualization and quantification of estrogen receptor alpha (ERα) DNA binding, co-regulator recruitment and transcriptional readout. We find that ERα DNA loading is required for other type I nuclear receptors to be co-recruited after dual agonist treatment. We focused on ERα/glucocorticoid receptor interplay and demonstrated that it requires steroid receptor coactivators (SRC-2, SRC-3) and the mediator component MED14. We then validated this cooperative interplay on endogenous target genes in breast cancer cells. Taken together, this work highlights another layer of mechanistic complexity through which NRs cross-talk with each other on chromatin under multiple hormonal stimuli.
Collapse
Affiliation(s)
- Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 2012; 36:536-53. [PMID: 22795478 DOI: 10.1016/j.clinre.2012.06.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Collapse
|
34
|
Hartig SM, He B, Newberg JY, Ochsner SA, Loose DS, Lanz RB, McKenna NJ, Buehrer BM, McGuire SE, Marcelli M, Mancini MA. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. CHEMISTRY & BIOLOGY 2012; 19:1126-41. [PMID: 22999881 PMCID: PMC4259876 DOI: 10.1016/j.chembiol.2012.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023]
Abstract
We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.
Collapse
Affiliation(s)
- Sean M. Hartig
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Justin Y. Newberg
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A. Ochsner
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David S. Loose
- Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - Rainer B. Lanz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Neil J. McKenna
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Sean E. McGuire
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Marcelli
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Uray IP, Rodenberg JM, Bissonnette RP, Brown PH, Mancini MA. Cancer-preventive rexinoid modulates neutral lipid contents of mammary epithelial cells through a peroxisome proliferator-activated receptor γ-dependent mechanism. Mol Pharmacol 2011; 81:228-38. [PMID: 22053058 DOI: 10.1124/mol.111.072967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synthetic rexinoids effectively suppress both estrogen receptor-positive and estrogen receptor-negative mammary tumors in animal models, which makes them prime candidates for a novel class of cancer-preventive agents. When used in combination with chemotherapy for non-small-cell lung cancer, the rexinoid bexarotene was most effective for patients who developed hypertriglyceridemia as a side effect. Although serum triglycerides originate from the liver, the effect of bexarotene on lipogenesis in breast epithelial cells is not known. Gene expression studies with normal mammary epithelial cells indicated that rexinoids modulate lipid metabolism, particularly enzymes involved in triglyceride synthesis. High-content analysis revealed dose-dependent accumulation of neutral lipids within adipocyte differentiation-related protein-associated cytoplasmic lipid droplets after long-term bexarotene treatment. Bexarotene also induced mRNA and protein levels for peroxisome proliferator-activated receptor (PPAR) γ, whereas selective knockdown of PPARγ attenuated the induction of both lipid droplets and adipocyte differentiation-related protein. Pharmacological activation of PPARγ, but not PPARα or retinoic acid receptors, effectively induced lipid accumulation. Furthermore, the combination of the PPARγ agonist rosiglitazone with bexarotene synergistically suppressed the growth of human mammary epithelial cells and revealed a strong, nonlinear, inverse correlation of cell growth with lipid droplet accumulation in the cell population. These findings indicate that rexinoids activate a lipogenic program in mammary epithelial cells through a retinoid X receptor/PPARγ-mediated mechanism. It is noteworthy that combining low doses of bexarotene with the PPARγ agonist rosiglitazone provides effective growth suppression of mammary epithelial cells, potentially dissociating systemic adverse effects associated with standard bexarotene treatment from the antiproliferative effects on mammary epithelium.
Collapse
Affiliation(s)
- Iván P Uray
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Hevezi PA, Tom E, Wilson K, Lambert P, Gutierrez-Reyes G, Kershenobich D, Zlotnik A. Gene expression patterns in livers of Hispanic patients infected with hepatitis C virus. Autoimmunity 2011; 44:532-42. [PMID: 21864061 DOI: 10.3109/08916934.2011.592881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a gene expression study aimed at the identification of genes differentially expressed in the livers of Hispanic patients infected with hepatitis C virus (HCV). Six uninfected controls were compared with 14 HCV(+) patients in which the liver biopsies were obtained at the time of diagnosis. Among the latter, five patients were also analyzed 4 weeks after the onset of standard anti-HCV therapy (pegylated interferon-α + ribavirin). We identified many genes up- or down-regulated by the infection with HCV in the human livers. When these genes were subjected to pathway analysis, several prominent pathways were revealed including many interferon (IFN)-inducible pathways as well as immune cell trafficking, inflammation, anti-microbial responses, and even cancer. We detected expression of many genes that have previously been associated with HCV infection, as well as several novel genes including CD47. The genes induced by HCV infection showed large expression changes, whereas the genes induced by the IFN-α combination therapy were relatively few (including MX2, ORMDL3, GPAM, KOPX18, TMEM56, and HBP1) and they reflected relatively small expression changes. This is the first study to identify changes in gene expression in livers of HCV(+) Hispanic patients and the first to identify genes induced by anti-HCV combination therapy in the human liver.
Collapse
Affiliation(s)
- Peter A Hevezi
- FACET Biotech, 1500 Seaport Blvd, Redwood City, CA 94063, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ashcroft FJ, Newberg JY, Jones ED, Mikic I, Mancini MA. High content imaging-based assay to classify estrogen receptor-α ligands based on defined mechanistic outcomes. Gene 2011; 477:42-52. [PMID: 21256200 PMCID: PMC3086628 DOI: 10.1016/j.gene.2011.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 01/18/2023]
Abstract
Estrogen receptor-α (ER) is an important target both for therapeutic compounds and endocrine disrupting chemicals (EDCs); however, the mechanisms involved in chemical modulation of regulating ER transcriptional activity are inadequately understood. Here, we report the development of a high content analysis-based assay to describe ER activity that uniquely exploits a microscopically visible multi-copy integration of an ER-regulated promoter. Through automated single-cell analyses, we simultaneously quantified promoter occupancy, recruitment of transcriptional cofactors and large-scale chromatin changes in response to a panel of ER ligands and EDCs. Image-derived multi-parametric data was used to classify a panel of ligand responses at high resolution. We propose this system as a novel technology providing new mechanistic insights into EDC activities in a manner useful for both basic mechanistic studies and drug testing.
Collapse
Affiliation(s)
- F J Ashcroft
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|