1
|
Hallada LP, Shirinifard A, Solecki DJ. Junctional Adhesion Molecule (JAM)-C recruitment of Pard3 and drebrin to cell contacts initiates neuron-glia recognition and layer-specific cell sorting in developing cerebella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586832. [PMID: 38585827 PMCID: PMC10996703 DOI: 10.1101/2024.03.26.586832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Sorting maturing neurons into distinct layers is critical for brain development, with disruptions leading to neurological disorders and pediatric cancers. Lamination coordinates where, when, and how cells interact, facilitating events that direct migrating neurons to their destined positions within emerging neural networks and control the wiring of connections in functional circuits. While the role of adhesion molecule expression and presentation in driving adhesive recognition during neuronal migration along glial fibers is recognized, the mechanisms by which the spatial arrangement of these molecules on the cell surface dictates adhesive specificity and translates contact-based external cues into intracellular responses like polarization and cytoskeletal organization remain largely unexplored. We used the cerebellar granule neuron (CGN) system to demonstrate that JAM-C receptor cis-binding on the same cell and trans-binding to neighboring cells controls the recruitment of the Pard3 polarity protein and drebrin microtubule-actin crosslinker at CGN to glial adhesion sites, complementing previous studies that showed Pard3 controls JAM-C exocytic surface presentation. Leveraging advanced imaging techniques, specific probes for cell recognition, and analytical methods to dissect adhesion dynamics, our findings reveal: 1) JAM-C cis or trans mutants result in reduced adhesion formation between CGNs and cerebellar glia, 2) these mutants exhibit delayed recruitment of Pard3 at the adhesion sites, and 3) CGNs with JAM-C mutations experience postponed sorting and entry into the cerebellar molecular layer (ML). By developing a conditional system to image adhesion components from two different cells simultaneously, we made it possible to investigate the dynamics of cell recognition on both sides of neuron-glial contacts and the subsequent recruitment of proteins required for CGN migration. This system and an approach that calculates local correlation based on convolution kernels at the cell adhesions site revealed that CGN to CGN JAM recognition preferentially recruits higher levels of Pard3 and drebrin than CGN to glia JAM recognition. The long latency time of CGNs in the inner external germinal layer (EGL) can be attributed to the combined strength of CGN-CGN contacts and the less efficient Pard3 recruitment by CGN-BG contacts, acting as gatekeepers to ML entry. As CGNs eventually transition to glia binding for radial migration, our research demonstrates that establishing permissive JAM-recognition sites on glia via cis and trans interactions of CGN JAM-C serves as a critical temporal checkpoint for sorting at the EGL to ML boundary. This mechanism integrates intrinsic and extrinsic cellular signals, facilitating heterotypic cell sorting into the ML and dictating the precise spatial organization within the cerebellar architecture.
Collapse
|
2
|
Jensen CC, Peifer M. Too old for hide-and-seek; cell maturation reveals hidden apical junctional organization. Proc Natl Acad Sci U S A 2024; 121:e2401735121. [PMID: 38466856 PMCID: PMC10962932 DOI: 10.1073/pnas.2401735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Corbin C. Jensen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
3
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Spitzer DC, Sun WY, Rodríguez-Vargas A, Hariharan IK. The cell adhesion molecule Echinoid promotes tissue survival and separately restricts tissue overgrowth in Drosophila imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552072. [PMID: 37577631 PMCID: PMC10418178 DOI: 10.1101/2023.08.04.552072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The interactions that cells in Drosophila imaginal discs have with their neighbors are known to regulate their ability to survive. In a screen of genes encoding cell surface proteins for gene knockdowns that affect the size or shape of mutant clones, we found that clones of cells with reduced levels of echinoid (ed) are fewer, smaller, and can be eliminated during development. In contrast, discs composed mostly of ed mutant tissue are overgrown. We find that ed mutant tissue has lower levels of the anti-apoptotic protein Diap1 and has increased levels of apoptosis which is consistent with the observed underrepresentation of ed mutant clones and the slow growth of ed mutant tissue. The eventual overgrowth of ed mutant tissue results not from accelerated growth, but from prolonged growth resulting from a failure to arrest growth at the appropriate final size. Ed has previously been shown to physically interact with multiple Hippo-pathway components and it has been proposed to promote Hippo pathway signaling, to exclude Yorkie (Yki) from the nucleus, and restrain the expression of Yki-target genes. We did not observe changes in Yki localization in ed mutant tissue and found decreased levels of expression of several Yorkie-target genes, findings inconsistent with the proposed effect of Ed on Yki. We did, however, observe increased expression of several Yki-target genes in wild-type cells neighboring ed mutant cells, which may contribute to elimination of ed mutant clones. Thus, ed has two distinct functions: an anti-apoptotic function by maintaining Diap1 levels, and a function to arrest growth at the appropriate final size. Both of these are unlikely to be explained by a simple effect on the Hippo pathway.
Collapse
Affiliation(s)
- Danielle C. Spitzer
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - William Y. Sun
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Anthony Rodríguez-Vargas
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| |
Collapse
|
5
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
6
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
7
|
Guru A, Saravanan S, Sharma D, Narasimha M. The microtubule end-binding proteins EB1 and Patronin modulate the spatiotemporal dynamics of myosin and pattern pulsed apical constriction. Development 2022; 149:284823. [PMID: 36440630 DOI: 10.1242/dev.199759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2022] [Indexed: 11/29/2022]
Abstract
Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.
Collapse
Affiliation(s)
- Anwesha Guru
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Deepanshu Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
8
|
Hunt EL, Rai H, Harris TJC. SCAR/WAVE complex recruitment to a supracellular actomyosin cable by myosin activators and a junctional Arf-GEF during Drosophila dorsal closure. Mol Biol Cell 2022; 33. [DOI: 10.1091/mbc.e22-03-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expansive Arp2/3 actin networks and contractile actomyosin networks can be spatially and temporally segregated within the cell, but the networks also interact closely at various sites, including adherens junctions. However, molecular mechanisms coordinating these interactions remain unclear. We found that the SCAR/WAVE complex, an Arp2/3 activator, is enriched at adherens junctions of the leading edge actomyosin cable during Drosophila dorsal closure. Myosin activators were both necessary and sufficient for SCAR/WAVE accumulation at leading edge junctions. The same myosin activators were previously shown to recruit the cytohesin Arf-GEF Steppke to these sites, and mammalian studies have linked Arf small G protein signaling to SCAR/WAVE activation. During dorsal closure, we find that Steppke is required for SCAR/WAVE enrichment at the actomyosin-linked junctions. Arp2/3 also localizes to adherens junctions of the leading edge cable. We propose that junctional actomyosin activity acts through Steppke to recruit SCAR/WAVE and Arp2/3 for regulation of the leading edge supracellular actomyosin cable during dorsal closure.
Collapse
Affiliation(s)
- Erin L. Hunt
- Department of Cell & Systems Biology, University of Toronto
| | - Hrishika Rai
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata
- International Visiting Graduate Students Study Abroad Program, University of Toronto
| | | |
Collapse
|
9
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
10
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|
11
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Sharrock TE, Sanson B. Cell sorting and morphogenesis in early Drosophila embryos. Semin Cell Dev Biol 2020; 107:147-160. [PMID: 32807642 DOI: 10.1016/j.semcdb.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The regionalisation of growing tissues into compartments that do not mix is thought to be a common motif of animal development. Compartments and compartmental boundaries were discovered by lineage studies in the model organism Drosophila. Since then, many compartment boundaries have been identified in developing tissues, from insects to vertebrates. These are important for animal development, because boundaries localize signalling centres that control tissue morphogenesis. Compartment boundaries are boundaries of lineage restriction, where specific mechanisms keep boundaries straight and cells segregated. Here, we review the mechanisms of cell sorting at boundaries found in early Drosophila embryos. The parasegmental boundaries, separating anterior from posterior compartments in the embryo, keep cells segregated by increasing actomyosin contractility at boundary cell-cell interfaces. Differential actomyosin contractility in turn promotes fold formation and orients cell division. Earlier in development, actomyosin differentials are also important for cell sorting during axis extension. Specific cell surface asymmetries and signalling pathways are required to initiate and maintain these actomyosin differentials.
Collapse
Affiliation(s)
- Thomas E Sharrock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
|
14
|
Hashimoto H, Munro E. Differential Expression of a Classic Cadherin Directs Tissue-Level Contractile Asymmetry during Neural Tube Closure. Dev Cell 2020; 51:158-172.e4. [PMID: 31639367 DOI: 10.1016/j.devcel.2019.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022]
Abstract
Embryos control force generation at tissue boundaries, but how they do so remains poorly understood. Here we show how tissue-specific expression of the type II cadherin, Cadherin2, patterns actomyosin contractility along tissue boundaries to control zippering and neural tube closure in the basal chordate, Ciona robusta. Cadherin2 is differentially expressed and homotypically enriched in neural cells along the neural/epidermal (Ne/Epi) boundary, where RhoA and myosin are activated during zipper progression. Homotypically enriched Cadherin2 sequesters the Rho GTPase-activating protein, Gap21/23, to homotypic junctions. Gap21/23 in turn redirects RhoA/myosin activity to heterotypic Ne/Epi junctions. By activating myosin II along Ne/Epi junctions ahead of the zipper and inhibiting myosin II along newly formed Ne/Ne junctions behind the zipper, Cadherin2 promotes tissue-level contractile asymmetry to drive zipper progression. We propose that dynamic coupling of junction exchange to local changes in contractility may control fusion and separation of epithelia in many other contexts.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Yu-Kemp HC, Peifer M. Good Fences Make Good Neighbors: Crumbs Regulates Rho-Kinase Dynamics to Assemble a Tissue Boundary. Dev Cell 2020; 52:255-256. [PMID: 32049035 DOI: 10.1016/j.devcel.2020.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Boundary formation between nascent tissues prevents cell mixing, powering morphogenesis. In this issue of Developmental Cell, Sidor et al. (2020) describe a novel mechanism whereby the homophilic adhesion protein Crumbs regulates planar-polarized assembly of actomyosin cables at tissue boundaries by affecting dynamics of membrane recruitment of the myosin regulator Rho-kinase.
Collapse
Affiliation(s)
- Hui-Chia Yu-Kemp
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Hashimoto H, Munro E. Dynamic interplay of cell fate, polarity and force generation in ascidian embryos. Curr Opin Genet Dev 2018; 51:67-77. [PMID: 30007244 DOI: 10.1016/j.gde.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A fundamental challenge in developmental biology is to understand how forces produced by individual cells are patterned in space and time and then integrated to produce stereotyped changes in tissue-level or embryo-level morphology. Ascidians offer a unique opportunity to address this challenge by studying how small groups of cells collectively execute complex, but highly stereotyped morphogenetic movements. Here we highlight recent progress and open questions in the study of ascidian morphogenesis, emphasizing the dynamic interplay of cell fate determination, cellular force generation and tissue-level mechanics.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
17
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
18
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
19
|
Beati H, Peek I, Hordowska P, Honemann-Capito M, Glashauser J, Renschler FA, Kakanj P, Ramrath A, Leptin M, Luschnig S, Wiesner S, Wodarz A. The adherens junction-associated LIM domain protein Smallish regulates epithelial morphogenesis. J Cell Biol 2018; 217:1079-1095. [PMID: 29358210 PMCID: PMC5839775 DOI: 10.1083/jcb.201610098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 10/25/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cell–cell adhesion and cell shape are regulated at adherens junctions during embryonic morphogenesis. Beati et al. show that the Drosophila LIM domain protein Smallish interacts with Bazooka, Canoe, and Src42A at adherens junctions. Loss-of-function and gain-of-function phenotypes reveal a function for Smallish in regulation of actomyosin contractility and cell shape. In epithelia, cells adhere to each other in a dynamic fashion, allowing the cells to change their shape and move along each other during morphogenesis. The regulation of adhesion occurs at the belt-shaped adherens junction, the zonula adherens (ZA). Formation of the ZA depends on components of the Par–atypical PKC (Par-aPKC) complex of polarity regulators. We have identified the Lin11, Isl-1, Mec-3 (LIM) protein Smallish (Smash), the orthologue of vertebrate LMO7, as a binding partner of Bazooka/Par-3 (Baz), a core component of the Par-aPKC complex. Smash also binds to Canoe/Afadin and the tyrosine kinase Src42A and localizes to the ZA in a planar polarized fashion. Animals lacking Smash show loss of planar cell polarity (PCP) in the embryonic epidermis and reduced cell bond tension, leading to severe defects during embryonic morphogenesis of epithelial tissues and organs. Overexpression of Smash causes apical constriction of epithelial cells. We propose that Smash is a key regulator of morphogenesis coordinating PCP and actomyosin contractility at the ZA.
Collapse
Affiliation(s)
- Hamze Beati
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany.,Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Irina Peek
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence - Cellular Stress Response in Aging-Associated Diseases, Cologne, Germany
| | - Paulina Hordowska
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Mona Honemann-Capito
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Jade Glashauser
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Andreas Ramrath
- Institute for Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Luschnig
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Neurobiology, Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andreas Wodarz
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany .,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence - Cellular Stress Response in Aging-Associated Diseases, Cologne, Germany.,Institute for Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Harris TJC. Sculpting epithelia with planar polarized actomyosin networks: Principles from Drosophila. Semin Cell Dev Biol 2017; 81:54-61. [PMID: 28760393 DOI: 10.1016/j.semcdb.2017.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/04/2023]
Abstract
Drosophila research has revealed how planar polarized actomyosin networks affect various types of tissue morphogenesis. The networks are positioned by both tissue-wide patterning factors (including Even-skipped, Runt, Engrailed, Invected, Hedgehog, Notch, Wingless, Epidermal Growth Factor, Jun N-terminal kinase, Sex combs reduced and Fork head) and local receptor complexes (including Echinoid, Crumbs and Toll receptors). Networks with differing super-structure and contractile output have been discovered. Their contractility can affect individual cells or can be coordinated across groups of cells, and such contractility can drive or resist physical change. For what seem to be simple tissue changes, multiple types of actomyosin networks can contribute, acting together as contractile elements or braces within the developing structure. This review discusses the positioning and effects of planar polarized actomyosin networks for a number of developmental events in Drosophila, including germband extension, dorsal closure, head involution, tracheal pit formation, salivary gland development, imaginal disc boundary formation, and tissue rotation of the male genitalia and the egg chamber.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Chan EH, Chavadimane Shivakumar P, Clément R, Laugier E, Lenne PF. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife 2017; 6. [PMID: 28537220 PMCID: PMC5443664 DOI: 10.7554/elife.22796] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI:http://dx.doi.org/10.7554/eLife.22796.001
Collapse
|
23
|
Smurf Downregulates Echinoid in the Amnioserosa To Regulate Drosophila Dorsal Closure. Genetics 2017; 206:985-992. [PMID: 28428287 DOI: 10.1534/genetics.116.196527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Drosophila dorsal closure is a morphogenetic movement that involves flanking epidermal cells, assembling actomyosin cables, and migrating dorsally over the underlying amnioserosa to seal at the dorsal midline. Echinoid (Ed)-a cell adhesion molecule of adherens junctions (AJs)-participates in several developmental processes. The disappearance of Ed from the amnioserosa is required to define the epidermal leading edge for actomyosin cable assembly and coordinated cell migration. However, the mechanism by which Ed is cleared from amnioserosa is unknown. Here, we show that Ed is cleared in amnioserosa by both transcriptional and post-translational mechanisms. First, Ed mRNA transcription was repressed in amnioserosa prior to the onset of dorsal closure. Second, the ubiquitin ligase Smurf downregulated pretranslated Ed by binding to the PPXY motif of Ed. During dorsal closure, Smurf colocalized with Ed at AJs, and Smurf overexpression prematurely degraded Ed in the amnioserosa. Conversely, Ed persisted in the amnioserosa of Smurf mutant embryos, which, in turn, affected actomyosin cable formation. Together, our results demonstrate that transcriptional repression of Ed followed by Smurf-mediated downregulation of pretranslated Ed in amnioserosa regulates the establishment of a taut leading edge during dorsal closure.
Collapse
|
24
|
Umetsu D, Kuranaga E. Planar polarized contractile actomyosin networks in dynamic tissue morphogenesis. Curr Opin Genet Dev 2017; 45:90-96. [PMID: 28419933 DOI: 10.1016/j.gde.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
The complex shapes of animal bodies are constructed through a sequence of simple physical interactions of constituent cells. Mechanical forces generated by cellular activities, such as division, death, shape change and rearrangement, drive tissue morphogenesis. By confining assembly or disassembly of actomyosin networks within the three-dimensional space of the cell, cells can localize forces to induce tissue deformation. Tissue-scale morphogenesis emerges from a collective behavior of cells that coordinates the force generation in space and time. Thus, the molecular mechanisms that govern the temporal and spatial regulation of forces in individual cells are elemental to organogenesis, and the tissue-scale coordination of forces generated by individual cells is key to determining the final shape of organs.
Collapse
Affiliation(s)
- Daiki Umetsu
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Erina Kuranaga
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
25
|
Lu H, Sokolow A, Kiehart DP, Edwards GS. Remodeling Tissue Interfaces and the Thermodynamics of Zipping during Dorsal Closure in Drosophila. Biophys J 2016; 109:2406-17. [PMID: 26636951 DOI: 10.1016/j.bpj.2015.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022] Open
Abstract
Dorsal closure during Drosophila embryogenesis is an important model system for investigating the biomechanics of morphogenesis. During closure, two flanks of lateral epidermis (with actomyosin-rich purse strings near each leading edge) close an eye-shaped opening that is filled with amnioserosa. At each canthus (corner of the eye) a zipping process remodels the tissue interfaces between the leading edges of the lateral epidermis and the amnioserosa. We investigated zipping dynamics and found that apposing leading edge cells come together at their apical ends and then square off basally to form a lateral junction. Meanwhile, the purse strings act as contractile elastic rods bent toward the embryo interior near each canthus. We propose that a canthus-localized force contributes to both bending the ends of the purse strings and the formation of lateral junctions. We developed a thermodynamic model for zipping based on three-dimensional remodeling of the tissue interfaces and the reaction dynamics of adhesion molecules in junctions and elsewhere, which we applied to zipping during unperturbed wild-type closure and to laser or genetically perturbed closure. We identified two processes that can contribute to the zipping mechanism, consistent with experiments, distinguished by whether amnioserosa dynamics do or do not augment canthus adhesion dynamics.
Collapse
Affiliation(s)
- Heng Lu
- Physics Department, Duke University, Durham, North Carolina
| | - Adam Sokolow
- Physics Department, Duke University, Durham, North Carolina
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina.
| |
Collapse
|
26
|
Schwayer C, Sikora M, Slováková J, Kardos R, Heisenberg CP. Actin Rings of Power. Dev Cell 2016; 37:493-506. [DOI: 10.1016/j.devcel.2016.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
|
27
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
28
|
Pocha SM, Montell DJ. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu Rev Genet 2015; 48:295-318. [PMID: 25421599 DOI: 10.1146/annurev-genet-120213-092218] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of cell migration is essential throughout life, driving embryonic morphogenesis and ensuring homeostasis in adults. Defects in cell migration are a major cause of human disease, with excessive migration causing autoimmune diseases and cancer metastasis, whereas reduced capacity for migration leads to birth defects and immunodeficiencies. Myriad studies in vitro have established a consensus view that cell migrations require cell polarization, Rho GTPase-mediated cytoskeletal rearrangements, and myosin-mediated contractility. However, in vivo studies later revealed a more complex picture, including the discovery that cells migrate not only as single units but also as clusters, strands, and sheets. In particular, the role of E-Cadherin in cell motility appears to be more complex than previously appreciated. Here, we discuss recent advances achieved by combining the plethora of genetic tools available to the Drosophila geneticist with live imaging and biophysical techniques. Finally, we discuss the emerging themes such studies have revealed and ponder the puzzles that remain to be solved.
Collapse
Affiliation(s)
- Shirin M Pocha
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California; 93106-9625; ,
| | | |
Collapse
|
29
|
Santos CG, Hartfelder K. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis. Genet Mol Biol 2015; 38:263-77. [PMID: 26500430 PMCID: PMC4612609 DOI: 10.1590/s1415-475738320140393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees' hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways.
Collapse
Affiliation(s)
- Carolina Gonçalves Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
31
|
Li YC, Yang WT, Cheng LC, Lin CM, Ho YH, Lin PY, Chen BC, Rickoll WL, Hsu JC. Novel transport function of adherens junction revealed by live imaging in Drosophila. Biochem Biophys Res Commun 2015; 463:686-92. [PMID: 26047695 DOI: 10.1016/j.bbrc.2015.05.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 11/26/2022]
Abstract
Adherens junctions are known for their role in mediating cell-cell adhesion. DE-cadherin and Echinoid are the principle adhesion molecules of adherens junctions in Drosophila epithelia. Here, using live imaging to trace the movement of endocytosed Echinoid vesicles in the epithelial cells of Drosophila embryos, we demonstrate that Echinoid vesicles co-localize and move with Rab5-or Rab11-positive endosomes. Surprisingly, these Echinoid-containing endosomes undergo directional cell-to-cell movement, through adherens junctions. Consistent with this, cell-to-cell movement of Echinoid vesicles requires the presence of DE-cadherin at adherens junctions. Live imaging further revealed that Echinoid vesicles move along adherens junction-associated microtubules into adjacent cells, a process requiring a kinesin motor. Importantly, DE-cadherin- and EGFR-containing vesicles also exhibit intercellular movement. Together, our results unveil a transport function of adherens junctions. Furthermore, this adherens junctions-based intercellular transport provides a platform for the exchange of junctional proteins and signaling receptors between neighboring cells.
Collapse
Affiliation(s)
- Yu-Chiao Li
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Wen-Ting Yang
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Lien-Chieh Cheng
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chiao-Ming Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Huei Ho
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Pei-Yi Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Wayne L Rickoll
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA
| | - Jui-Chou Hsu
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC.
| |
Collapse
|
32
|
Hashimoto H, Robin FB, Sherrard KM, Munro EM. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 2015; 32:241-55. [PMID: 25625209 DOI: 10.1016/j.devcel.2014.12.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 11/07/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Unidirectional zippering is a key step in neural tube closure that remains poorly understood. Here, we combine experimental and computational approaches to identify the mechanism for zippering in a basal chordate, Ciona intestinalis. We show that myosin II is activated sequentially from posterior to anterior along the neural/epidermal (Ne/Epi) boundary just ahead of the advancing zipper. This promotes rapid shortening of Ne/Epi junctions, driving the zipper forward and drawing the neural folds together. Cell contact rearrangements (Ne/Epi + Ne/Epi → Ne/Ne + Epi/Epi) just behind the zipper lower tissue resistance to zipper progression by allowing transiently stretched cells to detach and relax toward isodiametric shapes. Computer simulations show that measured differences in junction tension, timing of primary contractions, and delay before cell detachment are sufficient to explain the speed and direction of zipper progression and highlight key advantages of a sequential contraction mechanism for robust efficient zippering.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francois B Robin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Röper K. Integration of cell-cell adhesion and contractile actomyosin activity during morphogenesis. Curr Top Dev Biol 2015; 112:103-27. [PMID: 25733139 DOI: 10.1016/bs.ctdb.2014.11.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During embryonic development, cells become organized into complex tissues. Cells need to adhere and communicate with their immediate and remote neighbors to allow morphogenesis to take place in a coordinated way. Cell-cell adhesion, mediated by transmembrane adhesion receptors such as Cadherins and their intracellular interaction partners, is intimately linked to cell contractility that drives cell shape changes. Research in recent years has revealed that the contractile machinery responsible for cell shape changes, actomyosin, can in fact be organized into a number of different functional assemblies such as cortical-junctional actomyosin, apical-medial actomyosin, supracellular actomyosin cables as well as basal actomyosin networks. During coordinated shape changes of a tissue, these assemblies have to be functionally and mechanically linked between cells through cell-cell junctions. Although many actin-binding proteins associated with adherens junctions have been identified, which specific factors are required for the linkage of particular actomyosin assemblies to junctions is not well understood. This review will summarize our current knowledge, based mainly on the in vivo study of morphogenesis in the fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Katja Röper
- MRC-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom.
| |
Collapse
|
34
|
Fagotto F. Regulation of Cell Adhesion and Cell Sorting at Embryonic Boundaries. Curr Top Dev Biol 2015; 112:19-64. [DOI: 10.1016/bs.ctdb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Abstract
The subdivision of the embryo into physically distinct regions is one of the most fundamental processes in development. General hypotheses for tissue separation based on differential adhesion or tension have been proposed in the past, but with little experimental support. During the last decade, the field has experienced a strong revival, largely driven by renewed interest in biophysical modeling of development. Here, I will discuss the various models of boundary formation and summarize recent studies that have shifted our understanding of the process from the simple juxtaposition of global tissue properties to the characterization of local cellular reactions. Current evidence favors a model whereby separation is controlled by cell surface cues, which, upon cell-cell contact, generate acute changes in cytoskeletal and adhesive properties to inhibit cell mixing, and whereby the integration of multiple local cues may dictate both the global morphogenetic properties of a tissue and its separation from adjacent cell populations.
Collapse
Affiliation(s)
- François Fagotto
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
36
|
Fagotto F, Winklbauer R, Rohani N. Ephrin-Eph signaling in embryonic tissue separation. Cell Adh Migr 2014; 8:308-26. [PMID: 25482630 PMCID: PMC4594459 DOI: 10.4161/19336918.2014.970028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on "tissue affinities," which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations.
Collapse
Affiliation(s)
| | - Rudolf Winklbauer
- Dpt. of Cell and Systems Biology; University of Toronto; Toronto, Canada
| | - Nazanin Rohani
- Dpt. of Biology; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
37
|
David DJV, Wang Q, Feng JJ, Harris TJC. Bazooka inhibits aPKC to limit antagonism of actomyosin networks during amnioserosa apical constriction. Development 2013; 140:4719-29. [PMID: 24173807 DOI: 10.1242/dev.098491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell shape changes drive tissue morphogenesis during animal development. An important example is the apical cell constriction that initiates tissue internalisation. Apical constriction can occur through a phase of cyclic assembly and disassembly of apicomedial actomyosin networks, followed by stabilisation of these networks. Delayed negative-feedback mechanisms typically underlie cyclic behaviour, but the mechanisms regulating cyclic actomyosin networks remain obscure, as do mechanisms that transform overall network behaviour. Here, we show that a known inhibitor of apicomedial actomyosin networks in Drosophila amnioserosa cells, the Par-6-aPKC complex, is recruited to the apicomedial domain by actomyosin networks during dorsal closure of the embryo. This finding establishes an actomyosin-aPKC negative-feedback loop in the system. Additionally, we find that aPKC recruits Bazooka to the apicomedial domain, and phosphorylates Bazooka for a dynamic interaction. Remarkably, stabilising aPKC-Bazooka interactions can inhibit the antagonism of actomyosin by aPKC, suggesting that Bazooka acts as an aPKC inhibitor, and providing a possible mechanism for delaying the actomyosin-aPKC negative-feedback loop. Our data also implicate an increasing degree of Par-6-aPKC-Bazooka interactions as dorsal closure progresses, potentially explaining a developmental transition in actomyosin behaviour from cyclic to persistent networks. This later impact of aPKC inhibition is supported by mathematical modelling of the system. Overall, this work illustrates how shifting chemical signals can tune actomyosin network behaviour during development.
Collapse
Affiliation(s)
- Daryl J V David
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | | | | | | |
Collapse
|
38
|
Panfilio KA, Oberhofer G, Roth S. High plasticity in epithelial morphogenesis during insect dorsal closure. Biol Open 2013; 2:1108-18. [PMID: 24244847 PMCID: PMC3828757 DOI: 10.1242/bio.20136072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
Insect embryos complete the outer form of the body via dorsal closure (DC) of the epidermal flanks, replacing the transient extraembryonic (EE) tissue. Cell shape changes and morphogenetic behavior are well characterized for DC in Drosophila, but these data represent a single species with a secondarily reduced EE component (the amnioserosa) that is not representative across the insects. Here, we examine DC in the red flour beetle, Tribolium castaneum, providing the first detailed, functional analysis of DC in an insect with complete EE tissues (distinct amnion and serosa). Surprisingly, we find that differences between Drosophila and Tribolium DC are not restricted to the EE tissue, but also encompass the dorsal epidermis, which differs in cellular architecture and method of final closure (zippering). We then experimentally manipulated EE tissue complement via RNAi for Tc-zen1, allowing us to eliminate the serosa and still examine viable DC in a system with a single EE tissue (the amnion). We find that the EE domain is particularly plastic in morphogenetic behavior and tissue structure. In contrast, embryonic features and overall kinetics are robust to Tc-zen1(RNAi) manipulation in Tribolium and conserved with a more distantly related insect, but remain substantially different from Drosophila. Although correct DC is essential, plasticity and regulative, compensatory capacity have permitted DC to evolve within the insects. Thus, DC does not represent a strong developmental constraint on the nature of EE development, a property that may have contributed to the reduction of the EE component in the fly lineage.
Collapse
Affiliation(s)
- Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Georg Oberhofer
- J. F. Blumenbach Institute of Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
39
|
Response to the dorsal anterior gradient of EGFR signaling in Drosophila oogenesis is prepatterned by earlier posterior EGFR activation. Cell Rep 2013; 4:791-802. [PMID: 23972992 DOI: 10.1016/j.celrep.2013.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022] Open
Abstract
Spatially restricted epidermal growth factor receptor (EGFR) activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.
Collapse
|
40
|
Pickering K, Alves-Silva J, Goberdhan D, Millard TH. Par3/Bazooka and phosphoinositides regulate actin protrusion formation during Drosophila dorsal closure and wound healing. Development 2013; 140:800-9. [PMID: 23318638 DOI: 10.1242/dev.089557] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effective wound closure mechanisms are essential for maintenance of epithelial structure and function. The repair of wounded epithelia is primarily driven by the cells bordering the wound, which become motile after wounding, forming dynamic actin protrusions along the wound edge. The molecular mechanisms that trigger wound edge cells to become motile following tissue damage are not well understood. Using wound healing and dorsal closure in Drosophila, we identify a direct molecular link between changes in cell-cell adhesion at epithelial edges and induction of actin protrusion formation. We find that the scaffolding protein Par3/Bazooka and the lipid phosphatase Pten are specifically lost from cell-cell junctions at epithelial edges. This results in a localized accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes the formation of actin protrusions along the epithelial edge. Depleting PIP3 results in defective epithelial closure during both dorsal closure and wound healing. These data reveal a novel mechanism that directly couples loss of epithelial integrity to activation of epithelial closure.
Collapse
Affiliation(s)
- Karen Pickering
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
41
|
Abreu-Blanco MT, Verboon JM, Liu R, Watts JJ, Parkhurst SM. Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. J Cell Sci 2012; 125:5984-97. [PMID: 23038780 DOI: 10.1242/jcs.109066] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The repair of injured tissue must occur rapidly to prevent microbial invasion and maintain tissue integrity. Epithelial tissues in particular, which serve as a barrier against the external environment, must repair efficiently in order to restore their primary function. Here we analyze the effect of different parameters on the epithelial wound repair process in the late stage Drosophila embryo using in vivo wound assays, expression of cytoskeleton and membrane markers, and mutant analysis. We define four distinct phases in the repair process, expansion, coalescence, contraction and closure, and describe the molecular dynamics of each phase. Specifically, we find that myosin, E-cadherin, Echinoid, the plasma membrane, microtubules and the Cdc42 small GTPase respond dynamically during wound repair. We demonstrate that perturbations of each of these components result in specific impairments to the wound healing process. Our results show that embryonic epithelial wound repair is mediated by two simultaneously acting mechanisms: crawling driven by cellular protrusions and actomyosin ring contraction along the leading edge of the wound.
Collapse
|
42
|
|
43
|
McKinley RFA, Yu CG, Harris TJC. Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism. J Cell Sci 2012; 125:1177-90. [PMID: 22303000 DOI: 10.1242/jcs.091884] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cell polarity is essential for animal development. The scaffold protein Bazooka (Baz/PAR-3) forms apical polarity landmarks to organize epithelial cells. However, it is unclear how Baz is recruited to the plasma membrane and how this is coupled with downstream effects. Baz contains an oligomerization domain, three PDZ domains, and binding regions for the protein kinase aPKC and phosphoinositide lipids. With a structure-function approach, we dissected the roles of these domains in the localization and function of Baz in the Drosophila embryonic ectoderm. We found that a multifaceted membrane association mechanism localizes Baz to the apical circumference. Although none of the Baz protein domains are essential for cortical localization, we determined that each contributes to cortical anchorage in a specific manner. We propose that the redundancies involved might provide plasticity and robustness to Baz polarity landmarks. We also identified specific downstream effects, including the promotion of epithelial structure, a positive-feedback loop that recruits aPKC, PAR-6 and Crumbs, and a negative-feedback loop that regulates Baz.
Collapse
Affiliation(s)
- R F Andrew McKinley
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
44
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y. Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 2012; 60:137-170. [PMID: 22674071 DOI: 10.1007/978-94-007-4186-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The immunogroblin (Ig) superfamily proteins characterized by the presence of Ig-like domains are involved in various cellular functions. The properties of the Ig-like domains to form rod-like structures and to bind specifically to other proteins make them ideal for cell surface receptors and cell adhesion molecules (CAMs). Ig-CAMs, nectins in mammals and Echinoid in Drosophila, are crucial components of cadherin-based adherens junctions in the epithelium. Nectins form cell-cell adhesion by their trans-interactions and recruit cadherins to the nectin-initiated cell-cell adhesion site to establish adherens junctions. Thereafter junction adhesion molecules, occludin, and claudins, are recruited to the apical side of adherens junctions to establish tight junctions. The recruitment of these molecules by nectins is mediated both by the direct and indirect interactions of afadin with many proteins, such as catenins, and zonula occludens proteins, and by the nectin-induced reorganization of the actin cytoskeleton. Nectins contribute to the formation of both homotypic and heterotypic types of cell-cell junctions, such as synapses in the brain, contacts between pigment and non-pigment cell layers of the ciliary epithelium in the eye, Sertoli cell-spermatid junctions in the testis, and sensory cells and supporting cells in the sensory organs. In addition, cis- and trans-interactions of nectins with various cell surface proteins, such as integrins, growth factor receptors, and nectin-like molecules (Necls) play important roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, survival, and cell sorting. Furthermore, the Ig-CAMs are implicated in many human diseases including viral infections, ectodermal dysplasia, cancers, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 650-0017, Kobe, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Drosophila represents a paradigm for the analysis of the cellular, molecular and genetic mechanisms of development and is an ideal model system to study the contribution of Adherens Junctions (AJs) and their major components, cadherins, to morphogenesis. The combination of different techniques and approaches has allowed researchers to identify the requirements of these epithelial junctions in vivo in the context of a whole organism. The functional analysis of mutants for AJ core components, particularly for Drosophila DE-cadherin, has shown that AJs play critical roles in virtually all stages of development. For instance, AJs maintain tissue integrity while allowing the remodelling and homeostasis of many tissues. They control cell shape, contribute to cell polarity, facilitate cell-cell recognition during cell sorting, orient cell divisions, or regulate cell rearrangements, among other activities. Remarkably, these activities require a very fine control of the organisation and turnover of AJs during development. In addition, AJs engage in diverse and complex interactions with the cytoskeleton, signalling networks, intracellular trafficking machinery or polarity cues to perform these functions. Here, by summarising the requirements of AJs and cadherins during Drosophila morphogenesis, we illustrate the capital contribution of this model system to our knowledge of the mechanisms and biology of AJs.
Collapse
Affiliation(s)
- Annalisa Letizia
- Developmental Biology, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona Baldiri Reixac 10-12, 08028, Barcelona, Spain,
| | | |
Collapse
|
47
|
St Johnston D, Sanson B. Epithelial polarity and morphogenesis. Curr Opin Cell Biol 2011; 23:540-6. [PMID: 21807488 DOI: 10.1016/j.ceb.2011.07.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
48
|
Chang LH, Chen P, Lien MT, Ho YH, Lin CM, Pan YT, Wei SY, Hsu JC. Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development 2011; 138:3803-12. [DOI: 10.1242/dev.062257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell sorting involves the segregation of two cell populations into `immiscible' adjacent tissues with smooth borders. Echinoid (Ed), a nectin ortholog, is an adherens junction protein in Drosophila, and cells mutant for ed sort out from the surrounding wild-type cells. However, it remains unknown which factors trigger cell sorting. Here, we dissect the sequence of this process and find that cell sorting occurs when differential expression of Ed triggers the assembly of actomyosin cable. Conversely, Ed-mediated cell sorting can be rescued by recruitment of Ed, via homophilic or heterophilic interactions, to the wild-type cell side of the clonal interface, even when differential Ed expression persists. We found, unexpectedly, that when actomyosin cable was largely absent, differential adhesion was sufficient to cause limited cell segregation but with a jagged tissue border (imperfect sorting). We propose that Ed-mediated cell sorting is driven both by differential Ed adhesion that induces cell segregation with a jagged border and by actomyosin cable assembly at the interface that smoothens this border.
Collapse
Affiliation(s)
- Li-Hsun Chang
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Peilong Chen
- Department of Physics, National Central University, Jhongli, Taiwan 32001, Republic of China
| | - Mong-Ting Lien
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Yu-Huei Ho
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Chiao-Ming Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Yi-Ting Pan
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Shu-Yi Wei
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Jui-Chou Hsu
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 30034, Republic of China
| |
Collapse
|
49
|
Taguchi K, Ishiuchi T, Takeichi M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. ACTA ACUST UNITED AC 2011; 194:643-56. [PMID: 21844208 PMCID: PMC3160587 DOI: 10.1083/jcb.201104124] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The F-actin–stabilizing protein EPLIN is a mechanosensitive regulator of adherens junction remodeling in epithelial cells. The zonula adherens (ZA), a type of adherens junction (AJ), plays a major role in epithelial cell–cell adhesions. It remains unknown how the ZA is remodeled during epithelial reorganization. Here we found that the ZA was converted to another type of AJ with punctate morphology (pAJ) at the margins of epithelial colonies. The F-actin–stabilizing protein EPLIN (epithelial protein lost in neoplasm), which functions to maintain the ZA via its association with αE-catenin, was lost in the pAJs. Consistently, a fusion of αE-catenin and EPLIN contributed to the formation of ZA but not pAJs. We show that junctional tension was important for retaining EPLIN at AJs, and another force derived from actin fibers laterally attached to the pAJs inhibited EPLIN–AJ association. Vinculin was required for general AJ formation, and it cooperated with EPLIN to maintain the ZA. These findings suggest that epithelial cells remodel their junctional architecture by responding to mechanical forces, and the αE-catenin–bound EPLIN acts as a mechanosensitive regulator for this process.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
50
|
Choi W, Jung KC, Nelson KS, Bhat MA, Beitel GJ, Peifer M, Fanning AS. The single Drosophila ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/afadin and Enabled. Mol Biol Cell 2011; 22:2010-30. [PMID: 21508316 PMCID: PMC3113767 DOI: 10.1091/mbc.e10-12-1014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Analysis of the function of the fly ZO-1 homologue Polychaetoid shows that it is not essential for junctional assembly or maintenance but does play an important role in embryonic morphogenesis. The data suggest that it works with Canoe/afadin and the actin regulator Enabled to regulate actin anchoring at junctions. Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)–family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | |
Collapse
|