1
|
Jonkers I, Viudes-Sarrión N, Elahi SA, Castro-Viñuelas R. Understanding the role of mechanical stimuli in chondrocyte responsiveness and adaptations: Need for integrating insights on OA-associated changes in the multi-scale mechanical environment. Phys Life Rev 2024; 50:49-50. [PMID: 38924822 DOI: 10.1016/j.plrev.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium.
| | - Nuria Viudes-Sarrión
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium.
| | - Seyed Ali Elahi
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium.
| | - Rocio Castro-Viñuelas
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Imere A, Foster NC, Hajiali H, Okur KE, Wright AL, Barroso IA, Haj AJE. Enhanced chondrogenic potential in GelMA-based 3D cartilage model via Wnt3a surface immobilization. Sci Rep 2024; 14:15022. [PMID: 38951570 PMCID: PMC11217376 DOI: 10.1038/s41598-024-65970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/β-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-β3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-β3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Angela Imere
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicola C Foster
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Kerime Ebrar Okur
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Abigail L Wright
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ines A Barroso
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Kawaue H, Rojasawasthien T, Dusadeemeelap C, Matsubara T, Kokabu S, Addison WN. PI15, a novel secreted WNT-signaling antagonist, regulates chondrocyte differentiation. Connect Tissue Res 2024; 65:237-252. [PMID: 38739041 DOI: 10.1080/03008207.2024.2349818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE/AIM OF STUDY During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.
Collapse
Affiliation(s)
- Hiroka Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Oral Functional Development, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chirada Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2024:nuae025. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
5
|
Fang C, Zhu S, Zhong R, Yu G, Lu S, Liu Z, Gao J, Yan C, Wang Y, Feng X. CDKN1A regulation on chondrogenic differentiation of human chondrocytes in osteoarthritis through single-cell and bulk sequencing analysis. Heliyon 2024; 10:e27466. [PMID: 38463824 PMCID: PMC10923839 DOI: 10.1016/j.heliyon.2024.e27466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Objective Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Shanbang Zhu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, No 305 Zhongshandonglu Road, Nanjing, 210002, China
| | - Rui Zhong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Gang Yu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Shuai Lu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Zhilin Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jingyu Gao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Chengyuan Yan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Yingming Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
6
|
Castro-Viñuelas R, Viudes-Sarrión N, Rojo-García AV, Monteagudo S, Lories RJ, Jonkers I. Mechanical loading rescues mechanoresponsiveness in a human osteoarthritis explant model despite Wnt activation. Osteoarthritis Cartilage 2024:S1063-4584(24)01015-X. [PMID: 38494072 DOI: 10.1016/j.joca.2024.02.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Optimizing rehabilitation strategies for osteoarthritis necessitates a comprehensive understanding of chondrocytes' mechanoresponse in both health and disease, especially in the context of the interplay between loading and key pathways involved in osteoarthritis (OA) development, like canonical Wnt signaling. This study aims to elucidate the role of Wnt signaling in the mechanoresponsiveness of healthy and osteoarthritic human cartilage. METHODS We used an ex-vivo model involving short-term physiological mechanical loading of human cartilage explants. First, the loading protocol for subsequent experiments was determined. Next, loading was applied to non-OA-explants with or without Wnt activation with CHIR99021. Molecular read-outs of anabolic, pericellular matrix and matrix remodeling markers were used to assess the effect of Wnt on cartilage mechanoresponse. Finally, the same set-up was used to study the effect of loading in cartilage from patients with established OA. RESULTS Our results confirm that physiological loading maintains expression of anabolic genes in non-OA cartilage, and indicate a deleterious effect of Wnt activation in the chondrocyte mechanoresponsiveness. This suggests that loading-induced regulation of chondrocyte markers occurs downstream of canonical Wnt signaling. Interestingly, our study highlighted contrasting mechanoresponsiveness in the model of Wnt activation and the established OA samples, with established OA cartilage maintaining its mechanoresponsiveness, and mechanical loading rescuing the chondrogenic phenotype. CONCLUSION This study provides insights into the mechanoresponsiveness of human cartilage in both non-OA and OA conditions. These findings hold the potential to contribute to the development of strategies that optimize the effect of dynamic compression by correcting OA pathological cell signaling.
Collapse
Affiliation(s)
- R Castro-Viñuelas
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium.
| | - N Viudes-Sarrión
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - A V Rojo-García
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - S Monteagudo
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - R J Lories
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - I Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Iqbal Z, Xia J, Murtaza G, Shabbir M, Rehman K, Yujie L, Duan L. Targeting WNT signalling pathways as new therapeutic strategies for osteoarthritis. J Drug Target 2023; 31:1027-1049. [PMID: 37969105 DOI: 10.1080/1061186x.2023.2281861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Osteoarthritis (OA) is a highly prevalent chronic joint disease and the leading cause of disability. Currently, no drugs are available to control joint damage or ease the associated pain. The wingless-type (WNT) signalling pathway is vital in OA progression. Excessive activation of the WNT signalling pathway is pertinent to OA progression and severity. Therefore, agonists and antagonists of the WNT pathway are considered potential drug candidates for OA treatment. For example, SM04690, a novel small molecule inhibitor of WNT signalling, has demonstrated its potential in a recent phase III clinical trial as a disease-modifying osteoarthritis drug (DMOAD). Therefore, targeting the WNT signalling pathway may be a distinctive approach to developing particular agents helpful in treating OA. This review aims to update the most recent progress in OA drug development by targeting the WNT pathway. In this, we introduce WNT pathways and their crosstalk with other signalling pathways in OA development and highlight the role of the WNT signalling pathway as a key regulator in OA development. Several articles have reviewed the Wnt pathway from different aspects. This candid review provides an introduction to WNT pathways and their crosstalk with other signalling pathways in OA development, highlighting the role of the WNT signalling pathway as a key regulator in OA development with the latest research. Particularly, we emphasise the state-of-the-art in targeting the WNT pathway as a promising therapeutic approach for OA and challenges in their development and the nanocarrier-based delivery of WNT modulators for treating OA.
Collapse
Affiliation(s)
- Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore Campus, Pakistan
| | - Khurrum Rehman
- Department of Allied health sciences, The University of Agriculture, D.I.Khan, Pakistan
| | - Liang Yujie
- Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Gan L, Deng Z, Wei Y, Li H, Zhao L. Decreased expression of GEM in osteoarthritis cartilage regulates chondrogenic differentiation via Wnt/β-catenin signaling. J Orthop Surg Res 2023; 18:751. [PMID: 37794464 PMCID: PMC10548561 DOI: 10.1186/s13018-023-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND GEM (GTP-binding protein overexpressed in skeletal muscle) is one of the atypical small GTPase subfamily members recently identified as a regulator of cell differentiation. Abnormal chondrogenesis coupled with an imbalance in the turnover of cartilaginous matrix formation is highly relevant to the onset and progression of osteoarthritis (OA). However, how GEM regulates chondrogenic differentiation remains unexplored. METHODS Cartilage tissues were obtained from OA patients and graded according to the ORASI and ICRS grading systems. The expression alteration of GEM was detected in the Grade 4 cartilage compared to Grade 0 and verified in OA mimic culture systems. Next, to investigate the specific function of GEM during these processes, we generated a Gem knockdown (Gem-Kd) system by transfecting siRNA targeting Gem into ATDC5 cells. Acan, Col2a1, Sox9, and Wnt target genes of Gem-Kd ATDC5 cells were detected during induction. The transcriptomic sequencing analysis was performed to investigate the mechanism of GEM regulation. Wnt signaling pathways were verified by real-time PCR and immunoblot analysis. Finally, a rescue model generated by treating Gem-KD ATDC5 cells with a Wnt signaling agonist was established to validate the mechanism identified by RNA sequencing analysis. RESULTS A decreased expression of GEM in OA patients' cartilage tissues and OA mimic chondrocytes was observed. While during chondrogenesis differentiation and cartilage matrix formation, the expression of GEM was increased. Gem silencing suppressed chondrogenic differentiation and the expressions of Acan, Col2a1, and Sox9. RNA sequencing analysis revealed that Wnt signaling was downregulated in Gem-Kd cells. Decreased expression of Wnt signaling associated genes and the total β-CATENIN in the nucleus and cytoplasm were observed. The exogenous Wnt activation exhibited reversed effect on Gem loss-of-function cells. CONCLUSION These findings collectively validated that GEM functions as a novel regulator mediating chondrogenic differentiation and cartilage matrix formation through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | | | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Dell'Accio F, De Bari C. Towards disease modification in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1154-1155. [PMID: 37196976 DOI: 10.1016/j.joca.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
In December 2022, Gerwin et al published in Nature Medicine that the C-terminal portion of angiopoietin-like 3, called LNA043, has chondroprotective and cartilage-regenerative properties. Molecular data from an experimental medicine phase I study suggested potential efficacy in humans. Here, we respond to and complement a commentary from Vincent and Conaghan and discuss unresolved issues and the potential of this molecule as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, UK.
| |
Collapse
|
10
|
Zheng W, Cai MX, Peng H, Liu M, Liu X. Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:395-404. [PMID: 37474471 PMCID: PMC10372526 DOI: 10.7518/hxkq.2023.2023055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro. METHODS ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively. RESULTS Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression. CONCLUSIONS This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Collapse
Affiliation(s)
- Wen Zheng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Ming-Xiang Cai
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Huizhen Peng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Minyi Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| |
Collapse
|
11
|
Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol 2023; 11:1181619. [PMID: 37363728 PMCID: PMC10285172 DOI: 10.3389/fcell.2023.1181619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease that affects approximately 500 million people worldwide. Unfortunately, there is currently no effective treatment available to stop or delay the degenerative progression of joint disease. Wnt signaling pathways play fundamental roles in the regulation of growth, development, and homeostasis of articular cartilage. This review aims to summarize the role of Wnt pathways in joint development during embryonic stages and in cartilage maintenance throughout adult life. Specifically, we focus on aberrant mechanical loading and inflammation as major players in OA progression. Excessive mechanical load activates Wnt pathway in chondrocytes, resulting in chondrocyte apoptosis, matrix destruction and other osteoarthritis-related changes. Additionally, we discuss emerging Wnt-related modulators and present an overview of emerging treatments of OA targeting Wnt signaling. Ultimately, this review provides valuable insights towards discovering new drugs or gene therapies targeting Wnt signaling pathway for diagnosing and treating osteoarthritis and other degenerative joint diseases.
Collapse
Affiliation(s)
- Xinyan Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Han
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimiao Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Feng
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Gill AK, McCormick PJ, Sochart D, Nalesso G. Wnt signalling in the articular cartilage: A matter of balance. Int J Exp Pathol 2023; 104:56-63. [PMID: 36843204 PMCID: PMC10009303 DOI: 10.1111/iep.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/28/2023] Open
Abstract
Degradation of the articular cartilage is a hallmark of osteoarthritis, a progressive and chronic musculoskeletal condition, affecting millions of people worldwide. The activation of several signalling cascades is altered during disease development: among them, the Wnt signalling plays a pivotal role in the maintenance of tissue homeostasis. Increasing evidence is showing that its activation needs to be maintained within a certain range to avoid the triggering of degenerative mechanisms. In this review, we summarise our current knowledge about how a balanced activation of the Wnt signalling is maintained in the articular cartilage, with a particular focus on receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Amandeep Kaur Gill
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - David Sochart
- South West London Elective Orthopaedic Centre, Epsom, UK
| | - Giovanna Nalesso
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
13
|
Heluany CS, De Palma A, Day NJ, Farsky SHP, Nalesso G. Hydroquinone, an Environmental Pollutant, Affects Cartilage Homeostasis through the Activation of the Aryl Hydrocarbon Receptor Pathway. Cells 2023; 12:690. [PMID: 36899825 PMCID: PMC10001213 DOI: 10.3390/cells12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Exposure to environmental pollutants has a proven detrimental impact on different aspects of human health. Increasing evidence has linked pollution to the degeneration of tissues in the joints, although through vastly uncharacterised mechanisms. We have previously shown that exposure to hydroquinone (HQ), a benzene metabolite that can be found in motor fuels and cigarette smoke, exacerbates synovial hypertrophy and oxidative stress in the synovium. To further understand the impact of the pollutant on joint health, here we investigated the effect of HQ on the articular cartilage. HQ exposure aggravated cartilage damage in rats in which inflammatory arthritis was induced by injection of Collagen type II. Cell viability, cell phenotypic changes and oxidative stress were quantified in primary bovine articular chondrocytes exposed to HQ in the presence or absence of IL-1β. HQ stimulation downregulated phenotypic markers genes SOX-9 and Col2a1, whereas it upregulated the expression of the catabolic enzymes MMP-3 and ADAMTS5 at the mRNA level. HQ also reduced proteoglycan content and promoted oxidative stress alone and in synergy with IL-1β. Finally, we showed that HQ-degenerative effects were mediated by the activation of the Aryl Hydrocarbon Receptor. Together, our findings describe the harmful effects of HQ on articular cartilage health, providing novel evidence surrounding the toxic mechanisms of environmental pollutants underlying the onset of articular diseases.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 015508-000, Brazil
| | - Anna De Palma
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Nicholas James Day
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 015508-000, Brazil
| | - Giovanna Nalesso
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
14
|
Sun J, Chan YT, Ho KWK, Zhang L, Bian L, Tuan RS, Jiang Y. "Slow walk" mimetic tensile loading maintains human meniscus tissue resident progenitor cells homeostasis in photocrosslinked gelatin hydrogel. Bioact Mater 2023; 25:256-272. [PMID: 36825224 PMCID: PMC9941420 DOI: 10.1016/j.bioactmat.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Meniscus, the cushion in knee joint, is a load-bearing tissue that transfers mechanical forces to extracellular matrix (ECM) and tissue resident cells. The mechanoresponse of human tissue resident stem/progenitor cells in meniscus (hMeSPCs) is significant to tissue homeostasis and regeneration but is not well understood. This study reports that a mild cyclic tensile loading regimen of ∼1800 loads/day on hMeSPCs seeded in 3-dimensional (3D) photocrosslinked gelatin methacryloyl (GelMA) hydrogel is critical in maintaining cellular homeostasis. Experimentally, a "slow walk" biomimetic cyclic loading regimen (10% tensile strain, 0.5 Hz, 1 h/day, up to 15 days) is applied to hMeSPCs encapsulated in GelMA hydrogel with a magnetic force-controlled loading actuator. The loading significantly increases cell differentiation and fibrocartilage-like ECM deposition without affecting cell viability. Transcriptomic analysis reveals 332 mechanoresponsive genes, clustered into cell senescence, mechanical sensitivity, and ECM dynamics, associated with interleukins, integrins, and collagens/matrix metalloproteinase pathways. The cell-GelMA constructs show active ECM remodeling, traced using a green fluorescence tagged (GFT)-GelMA hydrogel. Loading enhances nascent pericellular matrix production by the encapsulated hMeSPCs, which gradually compensates for the hydrogel loss in the cultures. These findings demonstrate the strong tissue-forming ability of hMeSPCs, and the importance of mechanical factors in maintaining meniscus homeostasis.
Collapse
Key Words
- 3D cell-based constructs
- 3D, Three-dimensional
- BMSCs, Bone marrow derived mesenchymal stem cells
- Biomimetic cyclic loading
- CFUs, Colony forming units
- Col I, Collagen type I
- Col II, Collagen type II
- DS, Degree of substitution
- ECM, Extracellular matrix
- Extracellular matrix
- GAGs, Glycosaminoglycans
- GFT-GelMA, Green fluorescence-tagged GelMA
- GelMA hydrogel
- GelMA, Gelatin methacryloyl
- Human meniscus progenitor cells
- MeHA, Methacrylated hyaluronic acid
- PCM, Pericellular matrix
- PI, Propidium iodide
- PPI, Protein-protein interaction
- hMeSPCs, Human meniscus stem/progenitor cells
Collapse
Affiliation(s)
- Jing Sun
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Ki Wai Kevin Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, And Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Liming Bian
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| |
Collapse
|
15
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Caxaria S, Kouvatsos N, Eldridge SE, Alvarez‐Fallas M, Thorup A, Cici D, Barawi A, Arshed A, Strachan D, Carletti G, Huang X, Bharde S, Deniz M, Wilson J, Thomas BL, Pitzalis C, Cantatore FP, Sayilekshmy M, Sikandar S, Luyten FP, Pap T, Sherwood JC, Day AJ, Dell'Accio F. Disease modification and symptom relief in osteoarthritis using a mutated GCP-2/CXCL6 chemokine. EMBO Mol Med 2022; 15:e16218. [PMID: 36507558 PMCID: PMC9832835 DOI: 10.15252/emmm.202216218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
We showed that the chemokine receptor C-X-C Motif Chemokine Receptor 2 (CXCR2) is essential for cartilage homeostasis. Here, we reveal that the CXCR2 ligand granulocyte chemotactic protein 2 (GCP-2) was expressed, during embryonic development, within the prospective permanent articular cartilage, but not in the epiphyseal cartilage destined to be replaced by bone. GCP-2 expression was retained in adult articular cartilage. GCP-2 loss-of-function inhibited extracellular matrix production. GCP-2 treatment promoted chondrogenesis in vitro and in human cartilage organoids implanted in nude mice in vivo. To exploit the chondrogenic activity of GCP-2, we disrupted its chemotactic activity, by mutagenizing a glycosaminoglycan binding sequence, which we hypothesized to be required for the formation of a GCP-2 haptotactic gradient on endothelia. This mutated version (GCP-2-T) had reduced capacity to induce transendothelial migration in vitro and in vivo, without affecting downstream receptor signaling through AKT, and chondrogenic activity. Intra-articular adenoviral overexpression of GCP-2-T, but not wild-type GCP-2, reduced pain and cartilage loss in instability-induced osteoarthritis in mice. We suggest that GCP-2-T may be used for disease modification in osteoarthritis.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nikolaos Kouvatsos
- Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Mario Alvarez‐Fallas
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Anne‐Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Daniela Cici
- Rheumatology Clinic, Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Aida Barawi
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ammaarah Arshed
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Giulia Carletti
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Xinying Huang
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Melody Deniz
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Jacob Wilson
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Manasi Sayilekshmy
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Frank P Luyten
- Department of Development and Regeneration, Skeletal Biology and Engineering Research CenterKU LeuvenLeuvenBelgium
| | - Thomas Pap
- Institute of Musculoskeletal MedicineUniversity Hospital MünsterMünsterGermany
| | - Joanna C Sherwood
- Institute of Musculoskeletal MedicineUniversity Hospital MünsterMünsterGermany
| | - Anthony J Day
- Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
18
|
Lesage R, Ferrao Blanco MN, Narcisi R, Welting T, van Osch GJVM, Geris L. An integrated in silico-in vitro approach for identifying therapeutic targets against osteoarthritis. BMC Biol 2022; 20:253. [PMID: 36352408 PMCID: PMC9648005 DOI: 10.1186/s12915-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations. RESULTS We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1. CONCLUSIONS Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery.
Collapse
Affiliation(s)
- Raphaëlle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Mauricio N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Tim Welting
- Orthopedic Surgery Department, UMC+, Maastricht, the Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
- Biomechanics Section, KU Leuven, Leuven, Belgium.
- GIGA In silico Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
19
|
Wang F, Rummukainen P, Pehkonen M, Säämänen AM, Heino TJ, Kiviranta R. Mesenchymal cell-derived Wnt1 signaling regulates subchondral bone remodeling but has no effects on the development of growth plate or articular cartilage in mice. Bone 2022; 163:116497. [PMID: 35863746 DOI: 10.1016/j.bone.2022.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
Chondrocyte differentiation is a principal progress in endochondral ossification and in the formation of secondary ossification center (SOC) during the long bone development. We have previously reported that targeted deletion of Wnt1 in mesenchymal progenitors (Wnt1Prrx-/-) leads to spontaneous fractures and severe osteopenia in mouse long bones, suggesting that Wnt1 is a key regulator of bone metabolism. However, the effect of Wnt1 on the regulation of cartilage development and chondrocyte differentiation remained unknown. In this study, WNT1 protein expression was observed in lateral superficial cartilage and growth plate pre-hypertrophic chondrocytes in mice. Wnt1 mRNA expression was detected in epiphyseal cartilage from E16.5 to 3 month-old mice. Detailed histological analyses revealed that the average thickness and chondrocyte density of proximal tibial articular cartilage and growth plate were unchanged between Wnt1Prrx-/- and control mice. However, μCT analysis of tibial epiphyses showed that the subchondral bone mass was reduced in Wnt1Prrx-/- mice compared to control mice, as demonstrated by decreased bone volume, trabecular number, trabecular thickness, and increased trabecular separation in Wnt1Prrx-/- mice. Mechanistically, histomorphometric analyses showed that the reduced subchondral bone mass in Wnt1Prrx-/- mice was due to impaired bone formation and enhanced bone resorption. In vitro, exogenous Wnt1 inhibited chondrogenesis and chondrocyte hypertrophy in both cell autonomous and juxtacrine manners, while matrix mineralization and the expression of Mmp13, Mmp9 and Opn were induced in a juxtacrine manner. Taken together, mesenchymal cell-derived Wnt1 is an important regulator of subchondral bone remodeling, although it has no effect on the regulation of growth plate or articular cartilage.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | - Matias Pehkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Wnt3a knockdown promotes collagen type II expression in rat chondrocytes. Exp Ther Med 2022; 24:526. [PMID: 35837029 PMCID: PMC9257960 DOI: 10.3892/etm.2022.11453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Osteoarthritis (OA) is a chronic condition caused by cartilage degradation, and there are currently no effective methods for preventing the progression of this disease; gene therapy is a relatively novel method for treating arthritis. Decreased collagen type II (Col2) expression within the cartilage matrix is an important factor for the development of OA, and Wnt3a serves a significant role in cartilage homeostasis. The present study assessed whether Wnt3a knockdown promoted Col2 expression in chondrocytes. Lentivirus-introduced small interfering RNA was used to knock down the expression of Wnt3a in primary rat chondrocytes, and then IL-1β treatment was used to establish an OA chondrocyte model. The expression of target genes (Wnt3a, Col2, MMP-13 and β-catenin) was analyzed using reverse transcription-quantitative PCR, western blotting and immunocytochemistry. There was significantly less MMP-13 and β-catenin expression in the Wnt3a knockdown cells compared with the other controls. Col2 expression was significantly higher in the Wnt3a-knockdown cells compared with the control cells, indicating that knockdown of Wnt3a may promote Col2 expression. Consequently, Wnt3a was indicated to be an important factor in cartilage homeostasis, and Wnt3a knockdown may serve as a novel method for OA therapy.
Collapse
|
22
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
23
|
Thorup AS, Caxaria S, Thomas BL, Suleman Y, Nalesso G, Luyten FP, Dell'Accio F, Eldridge SE. In vivo potency assay for the screening of bioactive molecules on cartilage formation. Lab Anim (NY) 2022; 51:103-120. [PMID: 35361989 DOI: 10.1038/s41684-022-00943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022]
Abstract
Cartilage regeneration is a priority in medicine for the treatment of osteoarthritis and isolated cartilage defects. Several molecules with potential for cartilage regeneration are under investigation. Unfortunately, in vitro chondrogenesis assays do not always predict the stability of the newly formed cartilage in vivo. Therefore, there is a need for a stringent, quantifiable assay to assess in vivo the capacity of molecules to promote the stable formation of cartilage that is resistant to calcification and endochondral bone formation. We developed an ectopic cartilage formation assay (ECFA) that enables one to assess the capacity of bioactive molecules to support cartilage formation in vivo using cartilage organoids. The ECFA predicted good clinical outcomes when used as a quality control for efficacy of chondrocyte preparations before implantation in patients with cartilage defects. In this assay, articular chondrocytes from human donors or animals are injected either intramuscularly or subcutaneously in nude mice. As early as 2 weeks later, cartilage organoids can be retrieved. The size of the implants and their degree of differentiation can be assessed by histomorphometry, immunostainings of molecular markers and real-time PCR. Mineralization can be assessed by micro-computed tomography or by staining. The effects of molecules on cartilage formation can be tested following the systemic administration of the molecule in mice previously injected with chondrocytes, or after co-injection of chondrocytes with cell lines overexpressing and secreting the protein of interest. Here we describe the ECFA procedure, including steps for harvesting human and bovine articular cartilage, isolating primary chondrocytes, preparing overexpression cell lines, injecting the cells intramuscularly and retrieving the implants. This assay can be performed by technicians and researchers with appropriate animal training within 3 weeks.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara Caxaria
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bethan L Thomas
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yasir Suleman
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
24
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
25
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
26
|
Ashry M, Folger JK, Rajput SK, Baroni J, Smith GW. FSH stimulated bovine granulosa cell steroidogenesis involves both canonical and noncanonical WNT signaling. Domest Anim Endocrinol 2022; 78:106678. [PMID: 34607220 DOI: 10.1016/j.domaniend.2021.106678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Gonadotrophins play key roles in follicular development; however, the underlying molecular mechanisms are not fully understood. Follicle stimulating hormone (FSH) regulation of aromatase and subsequent estradiol (E2) production relies on β-catenin, a key effector of WNT signaling. We previously demonstrated that treatment with the canonical WNT inhibitor, IWR-1, reduced FSH induced bovine granulosa cell E2 production in vitro. Here we demonstrated that intrafollicular injection in vivo with IWR-1 alters steroidogenesis and triggers a significant decrease in estrogen to progesterone ratio in the IWR-1 treated follicles compared to diluent injected control follicles. We next examined markers of canonical and noncanonical WNT signaling in dominant and subordinate follicles collected at different stages of follicular development and showed that protein for both CTNNB1 (canonical pathway) and phosphorylated (p)-LEF1 (noncanonical pathway) was significantly elevated in dominant compared to subordinate follicles at the early dominance stage of development. Therefore, we hypothesized that canonical and/or noncanonical WNT ligands modulate FSH stimulated E2 production. Hence, we examined the effects of specific WNT ligands on FSH stimulated E2 production in the absence of endogenous WNT production in vitro. Universal WNT signaling inhibitor, LGK-974 was able to inhibit FSH stimulation of E2 and reduce the abundance of proteins linked to canonical and noncanonical WNT pathway activation. Supplementation with the canonical ligand WNT2b did not affect the inhibitory effects of LGK-974 on FSH stimulated E2 production but rescued the LGK-974 mediated inhibition of CTNNB1 (canonical pathway) but not p-LEF1, p-JNK or p-P38 abundance (noncanonical pathway) abundance. In contrast, WNT5a treatment rescued FSH stimulated estradiol production and indices of activation of both the canonical (CTNNB1) and noncanonical (p-LEF1, p-JNK and p-P38) WNT signaling pathways in LGK-974 treated granulosa cells. Taken together, these results suggest that both canonical and noncanonical WNT pathways activation is linked to FSH stimulation of E2 production by bovine granulosa cells.
Collapse
Affiliation(s)
- M Ashry
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA; Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - J K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - S K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Baroni
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - G W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
28
|
Stücker S, Bollmann M, Garbers C, Bertrand J. The role of calcium crystals and their effect on osteoarthritis pathogenesis. Best Pract Res Clin Rheumatol 2021; 35:101722. [PMID: 34732285 DOI: 10.1016/j.berh.2021.101722] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive degeneration of articular cartilage. Due to its high prevalence and limited treatment options, OA has become one of the most disabling diseases in developed countries. In recent years, OA has been recognized as a heterogenic disease with various phenotypes. Calcium crystal-related endotypes, which are defined by either a distinct functional or pathobiological mechanism, are present in approximately 60% of all OA patients. Two different calcium crystals can accumulate in the joint and thereby calcify the cartilage matrix, which are basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) crystals. The formation of these crystals depends mainly on the balance of phosphate and pyrophosphate, which is regulated by specific proteins controlling the pyrophosphate metabolism. Dysregulation of these molecules subsequently leads to preferential formation of either BCP or CPP crystals. BCP crystals, on the one hand, are directly associated with OA severity and cartilage degradation. They are mostly located in the deeper cartilage layers and are associated with chondrocyte hypertrophy. CPP crystal deposition, on the other hand, is a hallmark of chondrocalcinosis and is associated with aging and chondrocyte senescence. Therefore, BCP and CPP crystals are associated with different chondrocyte phenotypes. However, BCP and CPP crystals are not mutually exclusive and can coexist in OA, creating a mixed endotype of OA. Both crystals clearly play a role in the pathogenesis of OA. However, the exact impact of each crystal type on either driving the disease progression or being a result of chondrocyte differentiation is still to be elucidated.
Collapse
Affiliation(s)
- Sina Stücker
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
29
|
Wnt6 plays a complex role in maintaining human limbal stem/progenitor cells. Sci Rep 2021; 11:20948. [PMID: 34686698 PMCID: PMC8536737 DOI: 10.1038/s41598-021-00273-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023] Open
Abstract
The corneal epithelium is consistently regenerated by limbal stem/progenitor cells (LSCs), a very small population of adult stem cells residing in the limbus. Several Wnt ligands, including Wnt6, are preferentially expressed in the limbus. To investigate the role of Wnt6 in regulating proliferation and maintenance of human LSCs in an in vitro LSC expansion setting, we generated NIH-3T3 feeder cells to overexpress different levels of Wnt6. Characterization of LSCs cultured on Wnt6 expressing 3T3 cells showed that high level of Wnt6 increased proliferation of LSCs. Medium and high levels of Wnt6 also increased the percentage of small cells (diameter ≤ 12 µm), a feature of the stem cell population. Additionally, the percentage of cells expressing the differentiation marker K12 was significantly reduced in the presence of medium and high Wnt6 levels. Although Wnt6 is mostly known as a canonical Wnt ligand, our data showed that canonical and non-canonical Wnt signaling pathways were activated in the Wnt6-supplemented LSC cultures, a finding suggesting that interrelationships between both pathways are required for LSC regulation.
Collapse
|
30
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Godoy JA, Espinoza-Caicedo J, Inestrosa NC. Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands. Cell Commun Signal 2021; 19:87. [PMID: 34399774 PMCID: PMC8369806 DOI: 10.1186/s12964-021-00709-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/β-catenin-dependent or β-catenin-independent or “non-canonical”, both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluated Methods Cultured primary embryonic hippocampal neurons obtained from Sprague–Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24 h, Wnt ligands were added to the cultures on DIV 3 for 24 h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, β-catenin and GSK-3β (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin. Results We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases β-catenin and Wnt3a and an apparent increase in GSK-3β (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. Conclusions Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00709-y.
Collapse
Affiliation(s)
- Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile
| | - Jasson Espinoza-Caicedo
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
32
|
Foster NC, Allen P, El Haj AJ, Grover LM, Moakes RJA. Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel. Adv Healthc Mater 2021; 10:e2100622. [PMID: 34160135 PMCID: PMC11468753 DOI: 10.1002/adhm.202100622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Indexed: 12/28/2022]
Abstract
This study reports the first fully synthetic fluid gel (SyMGels) using a simple poly(ethylene glycol) polymer. Fluid gels are an interesting class of materials: structured during gelation via shear-confinement to form microparticulate suspensions, through a bottom-up approach. Structuring in this way, when compared to first forming a gel and subsequently breaking it down, results in the formation of a particulate dispersion with particles "grown" in the shear flow. Resultantly, systems form a complex microstructure, where gelled particles concentrate remaining non-gelled polymer within the continuous phase, creating an amorphous-like interstitial phase. As such, these materials demonstrate mechanical characteristics typical of colloidal glasses, presenting solid-like behaviors at rest with defined yielding; likely through intrinsic particle-particle and particle-polymer interactions. To date, fluid gels have been fabricated using polysaccharides with relatively complex chemistries, making further modifications challenging. SyMGels are easily functionalised, using simple click-chemistry. This chemical flexibility, allows the creation of microenvironments with discrete biological decoration. Cellular control is demonstrated using MSC (mesenchymal stem cells)/chondrocytes and enables the regulation of key biomarkers such as aggrecan and SOX9. These potential therapeutic platforms demonstrate an important advancement in the biomaterial field, underpinning the mechanisms which drive their mechanical properties, and providing a versatile delivery system for advanced therapeutics.
Collapse
Affiliation(s)
- Nicola C. Foster
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Piers Allen
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Alicia J. El Haj
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Liam M. Grover
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
33
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
34
|
Chen H, Tan XN, Hu S, Liu RQ, Peng LH, Li YM, Wu P. Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front Cell Dev Biol 2021; 9:664168. [PMID: 34124045 PMCID: PMC8194090 DOI: 10.3389/fcell.2021.664168] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
Collapse
Affiliation(s)
- Hui Chen
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Xiao-Ning Tan
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Shi Hu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China.,Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ren-Qin Liu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Li-Hong Peng
- School of Computer, Hunan University of Technology, Zhuzhou, China
| | - Yong-Min Li
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Ping Wu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
35
|
Thomas BL, Eldridge SE, Nosrati B, Alvarez M, Thorup A, Nalesso G, Caxaria S, Barawi A, Nicholson JG, Perretti M, Gaston‐Massuet C, Pitzalis C, Maloney A, Moore A, Jupp R, Dell'Accio F. WNT3A-loaded exosomes enable cartilage repair. J Extracell Vesicles 2021; 10:e12088. [PMID: 34025953 PMCID: PMC8134720 DOI: 10.1002/jev2.12088] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cartilage defects repair poorly. Recent genetic studies suggest that WNT3a may contribute to cartilage regeneration, however the dense, avascular cartilage extracellular matrix limits its penetration and signalling to chondrocytes. Extracellular vesicles actively penetrate intact cartilage. This study investigates the effect of delivering WNT3a into large cartilage defects in vivo using exosomes as a delivery vehicle. Exosomes were purified by ultracentrifugation from conditioned medium of either L-cells overexpressing WNT3a or control un-transduced L-cells, and characterized by electron microscopy, nanoparticle tracking analysis and marker profiling. WNT3a loaded on exosomes was quantified by western blotting and functionally characterized in vitro using the SUPER8TOPFlash reporter assay and other established readouts including proliferation and proteoglycan content. In vivo pathway activation was assessed using TCF/Lef:H2B-GFP reporter mice. Wnt3a loaded exosomes were injected into the knees of mice, in which large osteochondral defects were surgically generated. The degree of repair was histologically scored after 8 weeks. WNT3a was successfully loaded on exosomes and resulted in activation of WNT signalling in vitro. In vivo, recombinant WNT3a failed to activate WNT signalling in cartilage, whereas a single administration of WNT3a loaded exosomes activated canonical WNT signalling for at least one week, and eight weeks later, improved the repair of osteochondral defects. WNT3a assembled on exosomes, is efficiently delivered into cartilage and contributes to the healing of osteochondral defects.
Collapse
Affiliation(s)
- Bethan L. Thomas
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suzanne E. Eldridge
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Babak Nosrati
- Dipartimento di scienza e tecnologia del farmacoUniversità degli Studi di TorinoTorinoItaly
| | - Mario Alvarez
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Anne‐Sophie Thorup
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Giovanna Nalesso
- School of Veterinary MedicineUniversity of SurreyDaphne Jackson RoadGuildfordUK
| | - Sara Caxaria
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Aida Barawi
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - James G. Nicholson
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Carles Gaston‐Massuet
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Costantino Pitzalis
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | | | | | | | - Francesco Dell'Accio
- Barts and the London School of Medicine and DentistryWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
36
|
Zhou YJ, Lu XF, Meng JL, Wang QW, Chen JN, Zhang QW, Zheng KI, Rocha CS, Martins CB, Yan FR, Li XB. Specific epigenetic age acceleration patterns among four molecular subtypes of gastric cancer and their prognostic value. Epigenomics 2021; 13:767-778. [PMID: 33876652 DOI: 10.2217/epi-2020-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To determine the association of the methylation age (Horvath epigenetic clock) of gastric cancer (GC) tissues with molecular subtypes and patient survival. Materials & methods: Multivariate regression models were used to determine the association of methylation age acceleration (AA) with the clinical and molecular characteristics of 333 GC patients. Results: Relative to the chromosomal instability subtype, the epigenetic AA was 49.8 (95% CI: 42.7-56.9) years for Epstein-Barr virus, 16.1 (10.6-21.6) years for microsatellite instability, and 6.05 (0.1-11.1) years for genomic stability subtype. GC patients with accelerated aging of tumor tissues had better outcomes (adjusted hazard ratio: 3.13; p = 0.03). Differentially methylated probes in patients with accelerated and decelerated methylation aging enriched in pathways including BMP signaling, HMGB1 signaling, STAT3 signaling and human embryonic stem cell pluripotency. Conclusions: Our results highlight the prognostic value of epigenetic AA in GC and suggest that epigenetic AA is also an indicator of molecular subtype in GC.
Collapse
Affiliation(s)
- Yu-Jie Zhou
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Fan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Lin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.,Department of Urology, University of Rochester Medical Center, Rochester 14620, NY, USA
| | - Qi-Wen Wang
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin-Nan Chen
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing-Wei Zhang
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth I Zheng
- Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Claudia S Rocha
- School of International Studies, Wenzhou Medical University, Wenzhou 325000, China
| | - Carla B Martins
- School of International Studies, Wenzhou Medical University, Wenzhou 325000, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Bo Li
- Division of Gastroenterology & Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
37
|
Cherifi C, Monteagudo S, Lories RJ. Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-β signalling pathways. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006959. [PMID: 33948125 PMCID: PMC8053758 DOI: 10.1177/1759720x211006959] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disorder worldwide, with a high personal burden for the patients and an important socio-economic impact. Current therapies are largely limited to pain management and rehabilitation and exercise strategies. For advanced cases, joint replacement surgery may be the only option. Hence, there is an enormous need for the development of effective and safe disease-modifying anti-OA drugs. A strong focus in OA research has been on the identification and role of molecular signalling pathways that contribute to the balance between anabolism and catabolism in the articular cartilage. In this context, most insights have been gained in understanding the roles of the transforming growth factor-beta (TGF-β) and the Wingless-type (Wnt) signalling cascades. The emerging picture demonstrates a high degree of complexity with context-dependent events. TGF-β appears to protect cartilage under healthy conditions, but shifts in its receptor use and subsequent downstream signalling may be deleterious in aged individuals or in damaged cartilage. Likewise, low levels of Wnt activity appear important to sustain chondrocyte viability but excessive activation is associated with progressive joint damage. Emerging clinical data suggest some potential for the use of sprifermin, a recombinant forms of fibroblast growth factor 18, a distant TGF-β superfamily member, and for lorecivivint, a Wnt pathway modulator.
Collapse
Affiliation(s)
- Chahrazad Cherifi
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Box 813 O&N, Herestraat 49, Leuven 3000, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Nalesso G, Thorup AS, Eldridge SE, De Palma A, Kaur A, Peddireddi K, Blighe K, Rana S, Stott B, Vincent TL, Thomas BL, Bertrand J, Sherwood J, Fioravanti A, Pitzalis C, Dell'Accio F. Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Sci Rep 2021; 11:5682. [PMID: 33707504 PMCID: PMC7952598 DOI: 10.1038/s41598-021-82067-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
WNT ligands can activate several signalling cascades of pivotal importance during development and regenerative processes. Their de-regulation has been associated with the onset of different diseases. Here we investigated the role of the WNT/Calcium Calmodulin Kinase II (CaMKII) pathway in osteoarthritis. We identified Heme Oxygenase I (HMOX1) and Sox-9 as specific markers of the WNT/CaMKII signalling in articular chondrocytes through a microarray analysis. We showed that the expression of the activated form of CaMKII, phospho-CaMKII, was increased in human and murine osteoarthritis and the expression of HMOX1 was accordingly reduced, demonstrating the activation of the pathway during disease progression. To elucidate its function, we administered the CaMKII inhibitor KN93 to mice in which osteoarthritis was induced by resection of the anterior horn of the medial meniscus and of the medial collateral ligament in the knee joint. Pharmacological blockade of CaMKII exacerbated cartilage damage and bone remodelling. Finally, we showed that CaMKII inhibition in articular chondrocytes upregulated the expression of matrix remodelling enzymes alone and in combination with Interleukin 1. These results suggest an important homeostatic role of the WNT/CaMKII signalling in osteoarthritis which could be exploited in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK.
| | - Anne-Sophie Thorup
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Suzanne Elizabeth Eldridge
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Anna De Palma
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Amanpreet Kaur
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kiran Peddireddi
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, UCL, London, UK
| | | | | | - Bryony Stott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Bethan Lynne Thomas
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Antonella Fioravanti
- Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Costantino Pitzalis
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Francesco Dell'Accio
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
39
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
40
|
Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. Identifying the Potential Differentially Expressed miRNAs and mRNAs in Osteonecrosis of the Femoral Head Based on Integrated Analysis. Clin Interv Aging 2021; 16:187-202. [PMID: 33542623 PMCID: PMC7851582 DOI: 10.2147/cia.s289479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Osteonecrosis of the femoral head is a common disease of the hip that leads to severe pain or joint disability. We aimed to identify potential differentially expressed miRNAs and mRNAs in osteonecrosis of the femoral head. Methods The data of miRNA and mRNA were firstly downloaded from the database. Secondly, the regulatory network of miRNAs-mRNAs was constructed, followed by function annotation of mRNAs. Thirdly, an in vitro experiment was applied to validate the expression of miRNAs and targeted mRNAs. Finally, GSE123568 dataset was used for electronic validation and diagnostic analysis of targeted mRNAs. Results Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-378c-WNT3A/DACT1/CSF1, hsa-let-7a-5p-RCAN2/IL9R, hsa-miR-28-5p-RELA, hsa-miR-3200-5p-RELN, and hsa-miR-532-5p-CLDN18/CLDN10. Interestingly, CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A had the diagnostic value for osteonecrosis of the femoral head. Wnt signaling pathway (involved WNT3A), chemokine signaling pathway (involved RELA), focal adhesion and ECM-receptor interaction (involved RELN), cell adhesion molecules (CAMs) (involved CLDN18 and CLDN10), cytokine-cytokine receptor interaction, and hematopoietic cell lineage (involved CSF1 and IL9R) were identified. Conclusion The identified differentially expressed miRNAs and mRNAs may be involved in the pathology of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Yangquan Hao
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Chao Lu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Baogang Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Zhaochen Xu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Hao Guo
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Gaokui Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| |
Collapse
|
41
|
De Palma A, Nalesso G. WNT Signalling in Osteoarthritis and Its Pharmacological Targeting. Handb Exp Pharmacol 2021; 269:337-356. [PMID: 34510305 DOI: 10.1007/164_2021_525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a highly disabling musculoskeletal condition affecting millions of people worldwide. OA is characterised by progressive destruction and irreversible morphological changes of joint tissues and architecture. At molecular level, de-regulation of several pathways contributes to the disruption of tissue homeostasis in the joint. Overactivation of the WNT/β-catenin signalling pathway has been associated with degenerative processes in OA. However, the multiple layers of complexity in the modulation of the signalling and the still insufficient knowledge of the specific molecular drivers of pathogenetic mechanisms have made difficult the pharmacological targeting of this pathway for therapeutic purposes. This review aims to provide an overview of the WNT/β-catenin signalling in OA with a particular focus on its role in the articular cartilage. Pathway components whose targeting showed therapeutic potential will be highlighted and described. A specific section will be dedicated to Lorecivivint, the first inhibitor of the β-catenin-dependent pathway currently in phase III clinical trial as OA-modifying agent.
Collapse
Affiliation(s)
- Anna De Palma
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
42
|
Eldridge SE, Barawi A, Wang H, Roelofs AJ, Kaneva M, Guan Z, Lydon H, Thomas BL, Thorup AS, Fernandez BF, Caxaria S, Strachan D, Ali A, Shanmuganathan K, Pitzalis C, Whiteford JR, Henson F, McCaskie AW, De Bari C, Dell'Accio F. Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Sci Transl Med 2020; 12:12/559/eaax9086. [PMID: 32878982 DOI: 10.1126/scitranslmed.aax9086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/03/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Cartilage loss leads to osteoarthritis, the most common cause of disability for which there is no cure. Cartilage regeneration, therefore, is a priority in medicine. We report that agrin is a potent chondrogenic factor and that a single intraarticular administration of agrin induced long-lasting regeneration of critical-size osteochondral defects in mice, with restoration of tissue architecture and bone-cartilage interface. Agrin attracted joint resident progenitor cells to the site of injury and, through simultaneous activation of CREB and suppression of canonical WNT signaling downstream of β-catenin, induced expression of the chondrogenic stem cell marker GDF5 and differentiation into stable articular chondrocytes, forming stable articular cartilage. In sheep, an agrin-containing collagen gel resulted in long-lasting regeneration of bone and cartilage, which promoted increased ambulatory activity. Our findings support the therapeutic use of agrin for joint surface regeneration.
Collapse
Affiliation(s)
- Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Aida Barawi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Magdalena Kaneva
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Zeyu Guan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen Lydon
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Bethan L Thomas
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Beatriz F Fernandez
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Danielle Strachan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ahmed Ali
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kanatheepan Shanmuganathan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - James R Whiteford
- Comparative Musculoskeletal Biology Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Frances Henson
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrew W McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
43
|
Thorup AS, Dell'Accio F, Eldridge SE. Lessons from joint development for cartilage repair in the clinic. Dev Dyn 2020; 250:360-376. [PMID: 32738003 DOI: 10.1002/dvdy.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
More than 250 years ago, William Hunter stated that when cartilage is destroyed it never recovers. In the last 20 years, the understanding of the mechanisms that lead to joint formation and the knowledge that some of these mechanisms are reactivated in the homeostatic responses of cartilage to injury has offered an unprecedented therapeutic opportunity to achieve cartilage regeneration. Very large investments in ambitious clinical trials are finally revealing that, although we do not have perfect medicines yet, disease modification is a feasible possibility for human osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
44
|
Hou W, Zhang D, Feng X, Zhou Y. Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement of β-catenin signaling pathway. Arch Oral Biol 2020; 118:104860. [PMID: 32791354 DOI: 10.1016/j.archoralbio.2020.104860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) are well known to have the capability to form bone and cartilage, and chondrogenesis derived from MSCs is reported to be affected by mechanical stimuli. This research aimed to study the effects of low magnitude high frequency (LMHF) vibration on the chondrogenic differentiation of bone marrow-derived MSCs (BMSCs) which were cultured with chondrogenic medium, and to investigate the role of β-catenin cascade in this process. METHODS Rat bone marrow-derived MSCs (BMSCs) were isolated and randomized into vibration and static cultures. The effect of vibration on BMSCs proliferation, differentiation and chondrogenic potential was assessed at the protein level. RESULTS LMHFV did not affect the proliferation of BMSCs. However, this was accompanied by increased markers of chondrogenesis. The protein expression of chondrocyte-specific markers of Aggrecan, Sox9, and BMP7 were upregulated and Collagen X was decreased by LMHF vibration introduced at the chondrogenic differentiation in vitro. Specifically, thicker blue-stained particles were observed in Alcian Blue staining and the level of glycosaminoglycan were significantly increased respectively in the vibration culture group by 56.5 % and 93.6 % on the 7th and 14th day. The expression and nuclear translocation of β-catenin were activated in a significant manner. And inhibition of GSK-3β activity with Licl rearranged and intensified the cytoskeleton affected by vibration stimulation. CONCLUSIONS Our data demonstrated that LMHF mechanical vibration promotes BMSCs chondrogenic differentiation and implies β-catenin signal acts as an essential mediator in the mechano-biochemical transduction and subsequent transcriptional regulation in the process of chondrogenesis.
Collapse
Affiliation(s)
- Weiwei Hou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Denghui Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Xiaoxia Feng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Yi Zhou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| |
Collapse
|
45
|
Cheleschi S, Barbarino M, Gallo I, Tenti S, Bottaro M, Frati E, Giannotti S, Fioravanti A. Hydrostatic Pressure Regulates Oxidative Stress through microRNA in Human Osteoarthritic Chondrocytes. Int J Mol Sci 2020; 21:ijms21103653. [PMID: 32455798 PMCID: PMC7279254 DOI: 10.3390/ijms21103653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrostatic pressure (HP) modulates chondrocytes metabolism, however, its ability to regulate oxidative stress and microRNAs (miRNA) has not been clarified. The aim of this study was to investigate the role of miR-34a, miR-146a, and miR-181a as possible mediators of HP effects on oxidative stress in human osteoarthritis (OA) chondrocytes. Chondrocytes were exposed to cyclic low HP (1–5 MPa) and continuous static HP (10 MPa) for 3~h. Metalloproteinases (MMPs), disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma 2 (BCL2) were evaluated by quantitative real-time polymerase chain reaction qRT-PCR, apoptosis and reactive oxygen species ROS production by cytometry, and β-catenin by immunofluorescence. The relationship among HP, the studied miRNA, and oxidative stress was assessed by transfection with miRNA specific inhibitors. Low cyclical HP significantly reduced apoptosis, the gene expression of MMP-13, ADAMTS5, miRNA, the production of superoxide anion, and mRNA levels of antioxidant enzymes. Conversely, an increased Col2a1 and BCL2 genes was observed. β-catenin protein expression was reduced in cells exposed to HP 1–5 MPa. Opposite results were obtained following continuous static HP application. Finally, miRNA silencing enhanced low HP and suppressed continuous HP-induced effects. Our data suggest miRNA as one of the mechanisms by which HP regulates chondrocyte metabolism and oxidative stress, via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (I.G.); (S.T.); (E.F.); (A.F.)
- Correspondence: ; Tel.: +39 0577 233471
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Ines Gallo
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (I.G.); (S.T.); (E.F.); (A.F.)
| | - Sara Tenti
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (I.G.); (S.T.); (E.F.); (A.F.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Frati
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (I.G.); (S.T.); (E.F.); (A.F.)
| | - Stefano Giannotti
- Department of Medicine, Surgery and Neurosciences, Section of Orthopedics and Traumatology, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Antonella Fioravanti
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (I.G.); (S.T.); (E.F.); (A.F.)
| |
Collapse
|
46
|
Oh YJ, Kim H, Kim AJ, Ro H, Chang JH, Lee HH, Chung W, Jun HS, Jung JY. Reduction of Secreted Frizzled-Related Protein 5 Drives Vascular Calcification through Wnt3a-Mediated Rho/ROCK/JNK Signaling in Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21103539. [PMID: 32429518 PMCID: PMC7278993 DOI: 10.3390/ijms21103539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification (VC) is commonly associated with bone loss in patients with chronic kidney disease (CKD). The Wingless-related integration site (Wnt) regulates osteoblast activation through canonical signaling pathways, but the common pathophysiology of these pathways during VC and bone loss has not been identified. A rat model of adenine-induced CKD with VC was used in this study. The rats were fed 0.75% adenine (2.5% protein, 0.92% phosphate) with or without intraperitoneal injection of calcitriol (0.08 µg/kg/day) for 4 weeks. Angiotensin II (3 µM)-induced VC was achieved in high phosphate medium (3 mM) through its effect on vascular smooth muscle cells (VSMCs). In an mRNA profiler polymerase chain reaction assay of the Wnt signaling pathway, secreted frizzled-related protein 5 (sFRP5) levels were significantly decreased in the CKD rat model compared with the control group. The repression of sFRP5 on VSMC trans-differentiation was mediated through Rho/Rho-associated coiled coil containing protein kinase (ROCK) and c-Jun N-terminal kinase (JNK) pathways activated by Wnt3a. In a proof of concept study conducted with patients with CKD, serum sFRP5 concentrations were significantly lower in subjects with VC than in those without VC. Our findings suggest that repression of sFRP5 is associated with VC in the CKD environment via activation of the noncanonical Wnt pathway, and thus that sFRP5 might be a novel therapeutic target for VC in CKD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/blood
- Adaptor Proteins, Signal Transducing/genetics
- Adenine/toxicity
- Adipokines/genetics
- Adipokines/metabolism
- Animals
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Disease Models, Animal
- Gene Expression Profiling
- Humans
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Vascular Calcification/chemically induced
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Wnt Signaling Pathway/drug effects
- Wnt Signaling Pathway/genetics
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Yun Jung Oh
- Department of Internal Medicine, Graduate School of Medicine, Gachon University, Incheon 21936, Korea;
- Division of Nephrology, Department of Internal Medicine, Cheju Halla General Hospital, Jeju 63127, Korea
| | - Hyunsook Kim
- Division of Nephrology, Gachon Advanced Institute for Health Sciences and Technology, Incheon 21999, Korea;
| | - Ae Jin Kim
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Han Ro
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Jae Hyun Chang
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Hyun Hee Lee
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Wookyung Chung
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Ji Yong Jung
- Division of Nephrology, Gachon Advanced Institute for Health Sciences and Technology, Incheon 21999, Korea;
- Division of Nephrology, Department of Internal Medicine, Gil Medical Center, Incheon 21565, Korea; (A.J.K.); (H.R.); (J.H.C.); (H.H.L.); (W.C.)
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2621; Fax: +82-32-460-3431
| |
Collapse
|
47
|
Bertrand J, Kräft T, Gronau T, Sherwood J, Rutsch F, Lioté F, Dell'Accio F, Lohmann CH, Bollmann M, Held A, Pap T. BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. Ann Rheum Dis 2020; 79:975-984. [PMID: 32371389 DOI: 10.1136/annrheumdis-2019-216648] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Calcification of cartilage with basic calcium phosphate (BCP) crystals is a common phenomenon during osteoarthritis (OA). It is directly linked to the severity of the disease and known to be associated to hypertrophic differentiation of chondrocytes. One morphogen regulating hypertrophic chondrocyte differentiation is Wnt3a. METHODS Calcification and sulfation of extracellular matrix of the cartilage was analysed over a time course from 6 to 22 weeks in mice and different OA grades of human cartilage. Wnt3a and ß-catenin was stained in human and murine cartilage. Expression of sulfation modulating enzymes (HS2St1, HS6St1) was analysed using quantitative reverse transcription PCR (RT-PCR). The influence of BCP crystals on the chondrocyte phenotype was investigated using quantitative RT-PCR for the marker genes Axin2, Sox9, Col2, MMP13, ColX and Aggrecan. Using western blot for β-catenin and pLRP6 we investigated the activation of Wnt signalling. The binding capacity of BCP for Wnt3a was analysed using immunohistochemical staining and western blot. RESULTS Here, we report that pericellular matrix sulfation is increased in human and murine OA. Wnt3a co-localised with heparan sulfate proteoglycans in the pericellular matrix of chondrocytes in OA cartilage, in which canonical Wnt signalling was activated. In vitro, BCP crystals physically bound to Wnt3a. Interestingly, BCP crystals were sufficient to induce canonical Wnt signalling as assessed by phosphorylation of LRP6 and stabilisation of β-catenin, and to induce a hypertrophic shift of the chondrocyte phenotype. CONCLUSION Consequently, our data identify BCP crystals as a concentrating factor for Wnt3a in the pericellular matrix and an inducer of chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Tabea Kräft
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| | - Tobias Gronau
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| | - Joanna Sherwood
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, University Munster, Munster, Germany
| | - Frédéric Lioté
- INSERM UMR-1132, Université Paris Diderot, Paris, France
| | - Francesco Dell'Accio
- William Harvey Research Institute, Centre for Experimental Medicine and Rheumatology, London, UK
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Annelena Held
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Pap
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| |
Collapse
|
48
|
Lories RJ, Monteagudo S. Review Article: Is Wnt Signaling an Attractive Target for the Treatment of Osteoarthritis? Rheumatol Ther 2020; 7:259-270. [PMID: 32277404 PMCID: PMC7211213 DOI: 10.1007/s40744-020-00205-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common chronic joint disease affecting millions of people worldwide and a leading cause of pain and disability. Increasing incidence of obesity and aging of the population are two factors that suggest that the impact of osteoarthritis will further increase at the society level. Currently, there are no drugs available that can manage both structural damage to the joint or the associated pain. Increasing evidence supports the view that the Wnt signaling pathway plays an important role in this disease. The current concept, based on genetic and functional studies, indicates that tight regulation of Wnt signaling in cartilage is essential to keep the joint healthy. In this review, we discuss how this concept has evolved, provide insights into the regulation of Wnt signaling, in particular by Wnt modulators such as frizzled-related protein and DOT1-like histone lysine methyltransferase, and summarize preclinical evidence and molecular mechanisms of lorecivivint, the first Wnt antagonist in clinical development for osteoarthritis.
Collapse
Affiliation(s)
- Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium. .,Division of Rheumatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| | - Silvia Monteagudo
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
50
|
Yan H, Hu Y, Akk A, Rai MF, Pan H, Wickline SA, Pham CT. Induction of WNT16 via Peptide-mRNA Nanoparticle-Based Delivery Maintains Cartilage Homeostasis. Pharmaceutics 2020; 12:pharmaceutics12010073. [PMID: 31963412 PMCID: PMC7022671 DOI: 10.3390/pharmaceutics12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease that causes significant disability and pain and for which there are limited treatment options. We posit that delivery of anabolic factors that protect and maintain cartilage homeostasis will halt or retard OA progression. We employ a peptide-based nanoplatform to deliver Wingless and the name Int-1 (WNT) 16 messenger RNA (mRNA) to human cartilage explants. The peptide forms a self-assembled nanocomplex of approximately 65 nm in size when incubated with WNT16 mRNA. The complex is further stabilized with hyaluronic acid (HA) for enhanced cellular uptake. Delivery of peptide-WNT16 mRNA nanocomplex to human cartilage explants antagonizes canonical β-catenin/WNT3a signaling, leading to increased lubricin production and decreased chondrocyte apoptosis. This is a proof-of-concept study showing that mRNA can be efficiently delivered to articular cartilage, an avascular tissue that is poorly accessible even when drugs are intra-articularly (IA) administered. The ability to accommodate a wide range of oligonucleotides suggests that this platform may find use in a broad range of clinical applications.
Collapse
Affiliation(s)
- Huimin Yan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Ying Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Antonina Akk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Samuel A. Wickline
- Department of Cardiovascular Sciences, University of South Florida, Tampa, FL 33620, USA;
- Correspondence: (S.A.W.); (C.T.N.P.)
| | - Christine T.N. Pham
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
- Correspondence: (S.A.W.); (C.T.N.P.)
| |
Collapse
|