1
|
Zhou R, Liu M, Li M, Peng Y, Zhang X. BUB1 as a novel marker for predicting the immunotherapy efficacy and prognosis of breast cancer. Transl Cancer Res 2024; 13:4534-4554. [PMID: 39430818 PMCID: PMC11483447 DOI: 10.21037/tcr-24-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/11/2024] [Indexed: 10/22/2024]
Abstract
Background Budding uninhibited by benzimidazole 1 (BUB1) is a highly conserved serine/threonine kinase, showing prominent importance for proper function during mitosis. However, little is known about BUB1 mRNA expression in breast cancer (BRCA) and its correlation with prognosis and immune infiltration. Hence, we aimed to unveil its potential as groundbreaking biomarkers for immunotherapy efficacy and the prognosis of BRCA. Methods Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a potent tool for identifying significant clusters of genes and pathways in the resulting dataset. In this study, gene set enrichment analysis of BUB1 was conducted using DAVID. The clinical characteristics of patients with or without altered BUB1 mRNA expression were compared using cBioPortal. Tumor Immune Estimation Resource (TIMER) is a known as database for comprehensive analysis of tumor-infiltrating immune cells in various cancers. In the present study, the relationship between BUB1 expression and the abundance of immune infiltrates was explored using TIMER in BRCA. Immunohistochemistry staining was performed to analyze the protein expression of BUB1 in tumor tissue specimens. We used PrognoScan and Kaplan-Meier Plotter to evaluate the prognosis of patients with different BUB1 expression levels. Results The expression of BUB1 in various tumor tissues was higher than that in adjacent normal tissues. BUB1 was mainly localized to the nucleoplasm and additionally localized to the cytosol. Functional enrichment analyses revealed that the cell cycle was the most significant pathway. Abnormal BUB1 mRNA expression was more frequently detected in invasive ductal carcinoma with higher histological grades and BRCAs with estrogen receptor (ER)-negative, human epidermal growth receptor 2 (HER2)-negative, and basal-like phenotypes. The BUB1 expression was correlated positively with tumor purity, B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells, while BUB1 had no significant correlation with macrophages. The results of immunohistochemical staining from clinical samples further confirmed that BUB1 was overexpressed in BRCA compared to benign tumor (fibroadenoma of breast) (P<0.01). BRCA patients with lower BUB1 expression had a better prognosis than those with higher BUB1 expression in overall survival (OS) curves, distant metastasis-free survival (DMFS) curves, and relapse-free survival (RFS) curves (P<0.05). Conclusions Our results suggest that BUB1 is a potential molecular biomarker for evaluating the prognosis and predicting the effectiveness of immunotherapy for BRCA.
Collapse
Affiliation(s)
- Renyu Zhou
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China
| | - Minting Liu
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ming Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yulong Peng
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotan Zhang
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Rida P, Baker S, Saidykhan A, Bown I, Jinna N. FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3191. [PMID: 39335162 PMCID: PMC11429756 DOI: 10.3390/cancers16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER-/PR-/HER2-/androgen receptor (AR)-], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC.
Collapse
Affiliation(s)
- Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Sophia Baker
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Adam Saidykhan
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Isabelle Bown
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Nikita Jinna
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
4
|
Wang W, Zhou X, Kong L, Pan Z, Chen G. BUB1 Promotes Gemcitabine Resistance in Pancreatic Cancer Cells by Inhibiting Ferroptosis. Cancers (Basel) 2024; 16:1540. [PMID: 38672622 PMCID: PMC11048608 DOI: 10.3390/cancers16081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The development of chemotherapy resistance severely limits the therapeutic efficacy of gemcitabine (GEM) in pancreatic cancer (PC), and the dysregulation of ferroptosis is a crucial factor in the development of chemotherapy resistance. BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) is highly overexpressed in PC patients and is closely associated with patient prognosis. However, none of the literature reports the connection between BUB1 and ferroptosis. The molecular mechanisms underlying GEM resistance are also not well understood. Therefore, this study first established the high expression levels of BUB1 in PC patients, then explored the role of BUB1 in the process of ferroptosis, and finally investigated the mechanisms by which BUB1 regulates ferroptosis and contributes to GEM resistance in PC cells. In this study, downregulation of BUB1 enhanced the sensitivity of PC cells to Erastin, and inhibited cell proliferation and migration. Mechanistically, BUB1 could inhibit the expression levels of Neurofibromin 2 (NF2) and MOB kinase activator 1 (MOB1), and promote Yes-associated protein (YAP) expression, thereby inhibiting ferroptosis and promoting GEM resistance in PC cells. Furthermore, the combination of BUB1 inhibition with GEM exhibited a synergistic therapeutic effect. These findings reveal the mechanisms underlying the development of GEM chemotherapy resistance based on ferroptosis and suggest that the combined use of BUB1 inhibitors may be an effective approach to enhance GEM efficacy.
Collapse
Affiliation(s)
- Weiming Wang
- Department of Hepato-Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (W.W.); (L.K.); (Z.P.)
| | - Xiang Zhou
- Department of Breast Cancer, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China;
| | - Lingming Kong
- Department of Hepato-Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (W.W.); (L.K.); (Z.P.)
| | - Zhenyan Pan
- Department of Hepato-Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (W.W.); (L.K.); (Z.P.)
| | - Gang Chen
- Department of Hepato-Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (W.W.); (L.K.); (Z.P.)
| |
Collapse
|
5
|
Jin T, Ding L, Chen J, Zou X, Xu T, Xuan Z, Wang S, Chen J, Wang W, Zhu C, Zhang Y, Huang P, Pan Z, Ge M. BUB1/KIF14 complex promotes anaplastic thyroid carcinoma progression by inducing chromosome instability. J Cell Mol Med 2024; 28:e18182. [PMID: 38498903 PMCID: PMC10948175 DOI: 10.1111/jcmm.18182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.
Collapse
Affiliation(s)
- Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Wei Wang
- Department of Pathology, Laboratory Medicine CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chaozhuang Zhu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
- Clinical Research Center for Cancer of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Ullah MA, Moin AT, Nipa JF, Islam NN, Johora FT, Chowdhury RH, Islam S. Exploring risk factors and molecular targets in leukemia patients with COVID-19: a bioinformatics analysis of differential gene expression. J Leukoc Biol 2024; 115:723-737. [PMID: 38323674 DOI: 10.1093/jleuko/qiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Fatema Tuz Johora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chittagong Cantonment, Chattogram-4220, Bangladesh
| |
Collapse
|
7
|
Zou X, Yang M, Ye Z, Li T, Jiang Z, Xia Y, Tan S, Long Y, Wang X. Uncovering lupus nephritis-specific genes and the potential of TNFRSF17-targeted immunotherapy: a high-throughput sequencing study. Front Immunol 2024; 15:1303611. [PMID: 38440734 PMCID: PMC10909935 DOI: 10.3389/fimmu.2024.1303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets. Methods We performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry. Results Our analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the 'regulation of biological quality' GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells. Discussion Our findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN.
Collapse
Affiliation(s)
- Xiaojuan Zou
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Ying Xia
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Shenghai Tan
- Department of Surgical Intensive Care Unit (SICU), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Long
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Shu Y, Pang X, Li H, Deng C. A multidimensional analysis of ZW10 interacting kinetochore protein in human tumors. Am J Cancer Res 2024; 14:390-402. [PMID: 38323280 PMCID: PMC10839319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
ZW10 interacting kinetochore protein (ZWINT), an essential part of the kinetochore complex, plays a crucial role in maintaining genome stability by correcting improper attachments between the kinetochore and microtubules. An initial analysis of The Cancer Genome Atlas and Gene Expression Omnibus databases revealed that ZWINT is significantly expressed across a diverse range of tumor types. We subsequently investigated the influence of ZWINT on clinical outcomes and potential signaling pathways. A multidimensional analysis of ZWINT revealed significant statistical associations between ZWINT expression and clinical outcomes, as well as the E2F1 oncogenic signature. Experimental validation confirmed the increased expression of ZWINT in both pancreatic cancer cell lines and pancreatic adenocarcinoma tissues. Furthermore, our findings indicate that ZWINT promotes the proliferation of PANC-1 cells through cell cycle regulation. This comprehensive analysis of ZWINT suggests a strong correlation between its expression and various types of tumors, especially pancreatic adenocarcinoma (PAAD), indicating its potential oncogenic role. These findings enhance our understanding of the function of ZWINT in carcinogenesis.
Collapse
Affiliation(s)
- Yufeng Shu
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Xiaoyang Pang
- Department of Spinal Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Huan Li
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
9
|
Cicirò Y, Ragusa D, Nevado PT, Lattanzio R, Sala G, DesRochers T, Millard M, Andersson MK, Stenman G, Sala A. The mitotic checkpoint kinase BUB1 is a direct and actionable target of MYB in adenoid cystic carcinoma. FEBS Lett 2024; 598:252-265. [PMID: 38112379 DOI: 10.1002/1873-3468.14786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Adenoid cystic carcinoma (ACC) is a head and neck cancer that frequently originates in salivary glands, but can also strike other exocrine glands such as the breast. A key molecular alteration found in the majority of ACC cases is MYB gene rearrangements, leading to activation of the oncogenic transcription factor MYB. In this study, we used immortalised breast epithelial cells and an inducible MYB transgene as a model of ACC. Molecular profiling confirmed that MYB-driven gene expression causes a transition into an ACC-like state. Using this new cell model, we identified BUB1 as a targetable kinase directly controlled by MYB, whose pharmacological inhibition caused MYB-dependent synthetic lethality, growth arrest and apoptosis of patient-derived cells and organoids.
Collapse
Affiliation(s)
- Ylenia Cicirò
- Department of Life Sciences, Centre for Inflammation Research and Molecular Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Denise Ragusa
- Department of Life Sciences, Centre for Genomic Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UK
| | - Paloma Tejera Nevado
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology (CAST); Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Italy
| | - Gianluca Sala
- Center for Advanced Studies and Technology (CAST); Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Italy
| | | | | | - Mattias K Andersson
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Arturo Sala
- Department of Life Sciences, Centre for Inflammation Research and Molecular Medicine (CIRTM), Brunel University London, Uxbridge, UK
| |
Collapse
|
10
|
Jiang W, Yu Y, Bhandari A, Hirachan S, Dong X, Huang X, Qu J, Chen C. Budding uninhibited by benzimidazoles 1 might be a poor prognosis biomarker promoting the progression of papillary thyroid cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:2047-2056. [PMID: 37163344 DOI: 10.1002/tox.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the most widespread malignant tumors of the endocrine system, with a high incidence. Budding uninhibited by benzimidazoles 1 (BUB1), one of the spindle assembly checkpoint (SAC) genes, is a multitask protein kinase required for eukaryotic chromosome segregation. Although BUB1 has been explored in several types of cancer, its biological role and molecular mechanisms in PTC remain unclear. METHODS In this study, we performed an examination of four public datasets along with local PTC cohorts and discovered that BUB1 was elevated in PTC compared to non-cancer tissues. High BUB1 expression was linked with the status of BRAFV600E , RAS, and TERT after statistical analysis. RESULTS Clinically, BUB1 is associated with a variety of clinicopathological features in PTC patients. Interestingly, analysis of the TCGA database showed that BUB1 was closely associated with poor prognosis of PTC and significantly correlated with PFS. As determined by regression analysis, BUB1, and T stage were independent predictors of PTC and were related to BRAFV600E and lymph node metastatic status. By RT-qPCR, BUB1 was considerably overexpressed in PTC cell lines in comparison with normal thyroid epithelial cells. CONCLUSION We confirmed that the knockdown of BUB1 in BCPAP and TPC1 cell lines significantly inhibited cell proliferation, cloning, and migration in vitro experiments. These results imply that BUB1 may be a significant oncogenic gene that is directly associated with the prognosis of PTC and may represent a future target for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Yan Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xiaoli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Jinmiao Qu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Chengze Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Zhang Q, Zheng H, Yang S, Feng T, Jie M, Chen H, Jiang H. Bub1 and Bub3 regulate metabolic adaptation via macrolipophagy in Drosophila. Cell Rep 2023; 42:112343. [PMID: 37027296 DOI: 10.1016/j.celrep.2023.112343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Lipophagy, the process of selective catabolism of lipid droplets (LDs) by autophagy, maintains lipid homeostasis and provides cellular energy under metabolic adaptation, yet its underlying mechanism remains largely ambiguous. Here, we show that the Bub1-Bub3 complex, the crucial regulator involved in the whole process of chromosome alignment and separation during mitosis, controls the fasting-induced lipid catabolism in the fat body (FB) of Drosophila. Bidirectional deviations of the Bub1 or Bub3 level affect the consumption of triacylglycerol (TAG) of fat bodies and the survival rate of adult flies under starving. Moreover, Bub1 and Bub3 work together to attenuate lipid degradation via macrolipophagy upon fasting. Thus, we uncover physiological roles of the Bub1-Bub3 complex on metabolic adaptation and lipid metabolism beyond their canonical mitotic functions, providing insights into the in vivo functions and molecular mechanisms of macrolipophagy during nutrient deprivation.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Minwen Jie
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
13
|
Liu C, Deng J, Wang S, Ren L. Hypoxia promotes epithelial-mesenchymal transition in lung cancer cells via regulating the NRF2/miR‑27a/BUB1 pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:510-522. [PMID: 36309619 DOI: 10.1007/s12094-022-02965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Lung cancer (LC) is the most common malignancy in the world. It is well that hypoxia is common in lung cancer, which contributes to lung cancer progression and metastasis [1]. miRNA-27a as a repressor factor is a lowly expression within non-small cell lung cancer (NSCLC). However, the molecular mechanism between miR-27a and hypoxia in lung cancer progression remains poorly understood. This study aims to explore hypoxia promotes epithelial-mesenchymal transition in lung cancer cells via regulating the NRF2/miR‑27a/BUB1 pathway. METHODS We detect the expression of miR-27a after exposure to hypoxia conditions in lung cancer cells via qPCR. Using MTT assay and colony assay to assess the ability of proliferation in lung cancer cells under hypoxia or transfect miR-27a mimics. The capability of migration and invasion was evaluated by wound healing assay and Boyden-chamber assay. The mRNA and protein expression of EMT markers was respectively detected by qPCR and western blot. We detected NRF2 occupancy at the miR-27a promoter by ChIP-Seq analysis. Meanwhile, the luciferase assay verified BUB1 as a direct target of miR-27a. RESULTS We found hypoxia promotes lung cancer cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process by inhibiting the miR-27a expression. miR-27a mimics significantly reduced the promotion effect of hypoxia on the invasion and proliferation of lung cancer cells. NRF2 as regulating the oxidation/anti-oxidation factor was activated under hypoxia conditions. The activation of NRF2 repressed miR-27a expression. On the contrary, the inhibitory effect of hypoxia on miR-27a was reversed when the NFE2L2 gene was silenced. Ectopic expression of NRF2 inhibited miR-27a expression under normoxia. We further validated BUB1 as a direct target of the miR-27a by luciferase assay. CONCLUSION Hypoxia promotes invasion and epithelial-mesenchymal transition of Lung cancer cells by regulating the NRF2/miR-27a/BUB1 axis.
Collapse
Affiliation(s)
- Chunfeng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Inflammation and Allergy Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Faculty of Medicine, University of Munich, 80336, Munich, Germany
| | - Jun Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Inflammation and Allergy Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Songping Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Inflammation and Allergy Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lei Ren
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Taiping Str. 25, Luzhou, 646000, Sichuan, People's Republic of China. .,Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
14
|
Tong H, Liu X, Peng C, Shen B, Zhu Z. Silencing of KNTC1 inhibits hepatocellular carcinoma cells progression via suppressing PI3K/Akt pathway. Cell Signal 2023; 101:110498. [PMID: 36273753 DOI: 10.1016/j.cellsig.2022.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod-Zwilch-ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Our immunohistochemistry experiment showed that KNTC1 was highly expressed in hepatocellular carcinoma (HCC) tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, lentivirus delivered short hairpin RNA (shRNA) KNTC1 (Lv-shKNTC1) was applied to infect BEL-7404 and SK-HEP-1 to identify roles of KNTC1 on HCC. Lv-shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p-Akt, CCND1, CDK6 are all down-regulated in Lv-KNTC1 cells and the Lv-shKNTC1 tumor tissues of nude mice. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway. Further studies revealed that ZW10 is a pivotal protein that participates in KNTC1-induced regulation of PI3K/Akt signaling pathway. In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohui Liu
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baiyong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhecheng Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
15
|
Winkler R, Piskor EM, Kosan C. Lessons from Using Genetically Engineered Mouse Models of MYC-Induced Lymphoma. Cells 2022; 12:37. [PMID: 36611833 PMCID: PMC9818924 DOI: 10.3390/cells12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Oncogenic overexpression of MYC leads to the fatal deregulation of signaling pathways, cellular metabolism, and cell growth. MYC rearrangements are found frequently among non-Hodgkin B-cell lymphomas enforcing MYC overexpression. Genetically engineered mouse models (GEMMs) were developed to understand MYC-induced B-cell lymphomagenesis. Here, we highlight the advantages of using Eµ-Myc transgenic mice. We thoroughly compiled the available literature to discuss common challenges when using such mouse models. Furthermore, we give an overview of pathways affected by MYC based on knowledge gained from the use of GEMMs. We identified top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet.
Collapse
Affiliation(s)
| | | | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
16
|
Poojari A, Dev K, Rabiee A. Lipedema: Insights into Morphology, Pathophysiology, and Challenges. Biomedicines 2022; 10:biomedicines10123081. [PMID: 36551837 PMCID: PMC9775665 DOI: 10.3390/biomedicines10123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipedema is an adipofascial disorder that almost exclusively affects women. Lipedema leads to chronic pain, swelling, and other discomforts due to the bilateral and asymmetrical expansion of subcutaneous adipose tissue. Although various distinctive morphological characteristics, such as the hyperproliferation of fat cells, fibrosis, and inflammation, have been characterized in the progression of lipedema, the mechanisms underlying these changes have not yet been fully investigated. In addition, it is challenging to reduce the excessive fat in lipedema patients using conventional weight-loss techniques, such as lifestyle (diet and exercise) changes, bariatric surgery, and pharmacological interventions. Therefore, lipedema patients also go through additional psychosocial distress in the absence of permanent treatment. Research to understand the pathology of lipedema is still in its infancy, but promising markers derived from exosome, cytokine, lipidomic, and metabolomic profiling studies suggest a condition distinct from obesity and lymphedema. Although genetics seems to be a substantial cause of lipedema, due to the small number of patients involved in such studies, the extrapolation of data at a broader scale is challenging. With the current lack of etiology-guided treatments for lipedema, the discovery of new promising biomarkers could provide potential solutions to combat this complex disease. This review aims to address the morphological phenotype of lipedema fat, as well as its unclear pathophysiology, with a primary emphasis on excessive interstitial fluid, extracellular matrix remodeling, and lymphatic and vasculature dysfunction. The potential mechanisms, genetic implications, and proposed biomarkers for lipedema are further discussed in detail. Finally, we mention the challenges related to lipedema and emphasize the prospects of technological interventions to benefit the lipedema community in the future.
Collapse
|
17
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
18
|
Dale KL, Armond JW, Hynds RE, Vladimirou E. Modest increase of KIF11 expression exposes fragilities in the mitotic spindle, causing chromosomal instability. J Cell Sci 2022; 135:jcs260031. [PMID: 35929456 PMCID: PMC10500341 DOI: 10.1242/jcs.260031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Chromosomal instability (CIN), the process of increased chromosomal alterations, compromises genomic integrity and has profound consequences on human health. Yet, our understanding of the molecular and mechanistic basis of CIN initiation remains limited. We developed a high-throughput, single-cell, image-based pipeline employing deep-learning and spot-counting models to detect CIN by automatically counting chromosomes and micronuclei. To identify CIN-initiating conditions, we used CRISPR activation in human diploid cells to upregulate, at physiologically relevant levels, 14 genes that are functionally important in cancer. We found that upregulation of CCND1, FOXA1 and NEK2 resulted in pronounced changes in chromosome counts, and KIF11 upregulation resulted in micronuclei formation. We identified KIF11-dependent fragilities within the mitotic spindle; increased levels of KIF11 caused centrosome fragmentation, higher microtubule stability, lagging chromosomes or mitotic catastrophe. Our findings demonstrate that even modest changes in the average expression of single genes in a karyotypically stable background are sufficient for initiating CIN by exposing fragilities of the mitotic spindle, which can lead to a genomically diverse cell population.
Collapse
Affiliation(s)
- Katie L. Dale
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Jonathan W. Armond
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Robert E. Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Epithelial Cell Biology in ENT Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Elina Vladimirou
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| |
Collapse
|
19
|
Kuttikrishnan S, Masoodi T, Sher G, Bhat AA, Patil K, El-Elimat T, Oberlies NH, Pearce CJ, Haris M, Ahmad A, Alali FQ, Uddin S. Bioinformatics Analysis Reveals FOXM1/BUB1B Signaling Pathway as a Key Target of Neosetophomone B in Human Leukemic Cells: A Gene Network-Based Microarray Analysis. Front Oncol 2022; 12:929996. [PMID: 35847923 PMCID: PMC9283897 DOI: 10.3389/fonc.2022.929996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal expression of Forkhead box protein M1 (FOXM1) and serine/threonine kinase Budding uninhibited by benzimidazoles 1 (BUB1B) contributes to the development and progression of several cancers, including chronic myelogenous leukemia (CML). However, the molecular mechanism of the FOXM1/BUB1B regulatory network and the role of Neosetophomone-B (NSP-B) in leukemia remains unclear. NSP-B, a meroterpenoid fungal secondary metabolite, possesses anticancer potential in human leukemic cells lines; however, the underlying mechanism has not been elucidated. The present study aimed to explore the role of NSP-B on FOXM1/BUB1B signaling and the underlying molecular mechanism of apoptosis induction in leukemic cells. We performed gene expression profiling of NSP-B-treated and untreated leukemic cells to search for differentially expressed genes (DEGs). Interestingly BUB1B was found to be significantly downregulated (logFC -2.60, adjusted p = 0.001) in the treated cell line with the highest connectivity score among cancer genes. Analysis of TCGA data revealed overexpression of BUB1B compared to normal in most cancers and overexpression was associated with poor prognosis. BUB1B also showed a highly significant positive correlation with FOXM1 in all the TCGA cancer types. We used human leukemic cell lines (K562 and U937) as an in vitro study model to validate our findings. We found that NSP-B treatment of leukemic cells suppressed the expression of FOXM1 and BUB1B in a dose-dependent manner. In addition, NSP-B also resulted in the downregulation of FOXM1-regulated genes such as Aurora kinase A, Aurora kinase B, CDK4, and CDK6. Suppression of FOXM1 either by siRNA or NSP-B reduced BUB1B expression and enhanced cell survival inhibition and induction of apoptosis. Interestingly combination treatment of thiostrepton and NSP-B suppressed of cell viability and inducted apoptosis in leukemic cells via enhancing the activation of caspase-3 and caspase-8 compared with single-agent treatment. These results demonstrate the important role of the FOXM1/BUB1B pathway in leukemia and thus a potential therapeutic target.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, Qatar University, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ajaz A. Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | | - Mohmmad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Shahab Uddin,
| |
Collapse
|
20
|
Li M, Duan X, Xiao Y, Yuan M, Zhao Z, Cui X, Wu D, Shi J. BUB1 Is Identified as a Potential Therapeutic Target for Pancreatic Cancer Treatment. Front Public Health 2022; 10:900853. [PMID: 35769782 PMCID: PMC9235519 DOI: 10.3389/fpubh.2022.900853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is one of the most challenging cancer types in clinical treatment worldwide. This study aimed to understand the tumorigenesis mechanism and explore potential therapeutic targets for patients with pancreatic cancer. Single-cell data and expression profiles of pancreatic cancer samples and normal tissues from multiple databases were included. Comprehensive bioinformatics analyses were applied to clarify tumor microenvironment and identify key genes involved in cancer development. Immense difference of cell types was shown between tumor and normal samples. Four cell types (B cell_1, B cell_2, cancer cell_3, and CD1C+_B dendritic cell_3) were screened to be significantly associated with prognosis. Three ligand-receptor pairs, including CD74-MIF, CD74-COPA, and CD74-APP, greatly contributed to tumorigenesis. High expression of BUB1 (BUB1 Mitotic Checkpoint Serine/Threonine Kinase) was closely correlated with worse prognosis. CD1C+_B dendritic cell_3 played a key role in tumorigenesis and cancer progression possibly through CD74-MIF. BUB1 can serve as a prognostic biomarker and a therapeutic target for patients with pancreatic cancer. The study provided a novel insight into studying the molecular mechanism of pancreatic cancer development and proposed a potential strategy for exploiting new drugs.
Collapse
Affiliation(s)
- Ming Li
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Hebei Tumor Hospital, Shijiazhuang, China
| | - Yajie Xiao
- Translational Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Meng Yuan
- Internal Medical, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Zhikun Zhao
- Translational Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Xiaoli Cui
- Translational Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Dongfang Wu
- Translational Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Hebei Tumor Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
22
|
Kakar MU, Mehboob MZ, Akram M, Shah M, Shakir Y, Ijaz HW, Aziz U, Ullah Z, Ahmad S, Ali S, Yin Y. Identification of Differentially Expressed Genes Associated with the Prognosis and Diagnosis of Hepatocellular Carcinoma by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4237633. [PMID: 36317111 PMCID: PMC9617698 DOI: 10.1155/2022/4237633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. METHODS GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. RESULTS We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of life Sciences, Beijing Institute of Technology (BIT), Beijing 100081, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Akram
- School of Science, Department of Life sciences, University of Management and Technology, Johar Town, Lahore 54770, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Hafza Wajeeha Ijaz
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ubair Aziz
- Research Centre of Molecular Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, LUAWMS, Uthal, 90150 Balochistan, Pakistan
| | - Sikandar Ali
- Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
23
|
Ma R, Liu Y, Che X, Li C, Wen T, Hou K, Qu X. Nuclear PD-L1 promotes cell cycle progression of BRAF-mutated colorectal cancer by inhibiting THRAP3. Cancer Lett 2021; 527:127-139. [PMID: 34923044 DOI: 10.1016/j.canlet.2021.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancers (CRCs) with the BRAF V600E mutation exhibit upregulation of programmed death ligand 1 (PD-L1) but fail to respond to immunotherapy targeting programmed cell death protein 1 (PD-1)/PD-L1. Recent studies have explored the intracellular functions of PD-L1. Here, we demonstrate that PD-L1 was highly expressed in both the cytoplasm and nucleus of BRAF-mutated CRC tumor cells and tissues. Nuclear PD-L1 (nPD-L1) promoted the growth of tumor cells both in vitro and in vivo. Mechanistic investigations revealed that PD-L1 translocation into the nucleus was facilitated by the binding of p-ERK. Further, nPD-L1 upregulated the expression of cell cycle regulator BUB1 via interactions with thyroid hormone receptor-associated protein 3 (THRAP3), thereby accelerating cell cycle progression and promoting cell proliferation. Moreover, BRAF V600E-mutated CRC cells exhibited upregulation of PD-L1 expression via the transcription factor LEF-1. These findings reveal a novel role of nPD-L1, which promotes cell cycle progression in an immune-independent manner in BRAF V600E-mutated CRC. Our study provides novel insight into the mechanisms underlying BRAF V600E-mutated CRC progression.
Collapse
Affiliation(s)
- Rui Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China.
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, 110001, China.
| |
Collapse
|
24
|
Jiang N, Liao Y, Wang M, Wang Y, Wang K, Guo J, Wu P, Zhong B, Guo T, Wu C. BUB1 drives the occurrence and development of bladder cancer by mediating the STAT3 signaling pathway. J Exp Clin Cancer Res 2021; 40:378. [PMID: 34852826 PMCID: PMC8638147 DOI: 10.1186/s13046-021-02179-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear. Methods Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo. Results In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts. Conclusion This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02179-z.
Collapse
Affiliation(s)
- Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Miaomiao Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peikang Wu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tao Guo
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Changli Wu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, 300450, China
| |
Collapse
|
25
|
Piao XM, You C, Byun YJ, Kang HW, Noh J, Lee J, Lee HY, Kim K, Kim WT, Yun SJ, Lee SC, Kang K, Kim YJ. Prognostic Value of BUB1 for Predicting Non-Muscle-Invasive Bladder Cancer Progression. Int J Mol Sci 2021; 22:ijms222312756. [PMID: 34884561 PMCID: PMC8657483 DOI: 10.3390/ijms222312756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is a common disease with a high recurrence rate requiring lifetime surveillance. Although NMIBC is not life-threatening, it can progress to muscle-invasive bladder cancer (MIBC), a lethal form of the disease. The management of the two diseases differs, and patients with MIBC require aggressive treatments such as chemotherapy and radical cystectomy. NMIBC patients at a high risk of progression benefit from early immediate cystectomy. Thus, identifying concordant markers for accurate risk stratification is critical to predict the prognosis of NMIBC. Candidate genetic biomarkers associated with NMIBC prognosis were screened by RNA-sequencing of 24 tissue samples, including 16 NMIBC and eight normal controls, and by microarray analysis (GSE13507). Lastly, we selected and investigated a mitotic checkpoint serine/threonine kinase, BUB1, that regulates chromosome segregation during the cell cycle. BUB1 gene expression was tested in 86 NMIBC samples and 15 controls by real-time qPCR. The performance of BUB1 as a prognostic biomarker for NMIBC was validated in the internal Chungbuk cohort (GSE13507) and the external UROMOL cohort (E-MTAB-4321). BUB1 expression was higher in NMIBC patients than in normal controls (p < 0.05), and the overexpression of BUB1 was correlated with NMIBC progression (log-rank test, p = 0.007). In in vitro analyses, BUB1 promoted the proliferation of bladder cancer cells by accelerating the G2/M transition of the cell cycle. Conclusively, BUB1 modulates the G2/M transition to promote the proliferation of bladder cancer cells, suggesting that it could serve as a prognostic marker in NMIBC.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (J.N.); (J.L.)
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Junho Noh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (J.N.); (J.L.)
| | - Jaehyun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (J.N.); (J.L.)
| | - Hee Youn Lee
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Kyeong Kim
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (J.N.); (J.L.)
- Correspondence: (K.K.); (Y.-J.K.); Tel.: +82-43-261-2295 (K.K.); +82-43-269-6143 (Y.-J.K.)
| | - Yong-June Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (X.-M.P.); (Y.J.B.); (H.W.K.); (W.T.K.); (S.J.Y.); (S.-C.L.)
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea; (H.Y.L.); (K.K.)
- Correspondence: (K.K.); (Y.-J.K.); Tel.: +82-43-261-2295 (K.K.); +82-43-269-6143 (Y.-J.K.)
| |
Collapse
|
26
|
Ishaq M, Bandara N, Morgan S, Nowell C, Mehdi AM, Lyu R, McCarthy D, Anderson D, Creek DJ, Achen MG, Shayan R, Karnezis T. Key signaling networks are dysregulated in patients with the adipose tissue disorder, lipedema. Int J Obes (Lond) 2021; 46:502-514. [PMID: 34764426 PMCID: PMC8873020 DOI: 10.1038/s41366-021-01002-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023]
Abstract
Objectives Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. Methods We compared whole-tissues, ADSCs, and adipocytes from body mass index–matched lipedema (n = 14) and unaffected (n = 10) patients using comprehensive global lipidomic and metabolomic analyses, transcriptional profiling, and functional assays. Results Transcriptional profiling revealed >4400 significant differences in lipedema tissue, with altered levels of mRNAs involved in critical signaling and cell function-regulating pathways (e.g., lipid metabolism and cell-cycle/proliferation). Functional assays showed accelerated ADSC proliferation and differentiation in lipedema. Profiling lipedema adipocytes revealed >900 changes in lipid composition and >600 differentially altered metabolites. Transcriptional profiling of lipedema ADSCs and non-lipedema ADSCs revealed significant differential expression of >3400 genes including some involved in extracellular matrix and cell-cycle/proliferation signaling pathways. One upregulated gene in lipedema ADSCs, Bub1, encodes a cell-cycle regulator, central to the kinetochore complex, which regulates several histone proteins involved in cell proliferation. Downstream signaling analysis of lipedema ADSCs demonstrated enhanced activation of histone H2A, a key cell proliferation driver and Bub1 target. Critically, hyperproliferation exhibited by lipedema ADSCs was inhibited by the small molecule Bub1 inhibitor 2OH-BNPP1 and by CRISPR/Cas9-mediated Bub1 gene depletion. Conclusion We found significant differences in gene expression, and lipid and metabolite profiles, in tissue, ADSCs, and adipocytes from lipedema patients compared to non-affected controls. Functional assays demonstrated that dysregulated Bub1 signaling drives increased proliferation of lipedema ADSCs, suggesting a potential mechanism for enhanced adipogenesis in lipedema. Importantly, our characterization of signaling networks driving lipedema identifies potential molecular targets, including Bub1, for novel lipedema therapeutics.
Collapse
Affiliation(s)
- Musarat Ishaq
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia. .,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Nadeeka Bandara
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Steven Morgan
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Cameron Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Ahmad M Mehdi
- Diamantia Institute, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Davis McCarthy
- Bioinformatics and Cellular Genomics, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Marc G Achen
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Ramin Shayan
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Tara Karnezis
- Lymphatic, Adipose and Regenerative Medicine Laboratory, O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia. .,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
27
|
Wang YC, Tian ZB, Tang XQ. Bioinformatics screening of biomarkers related to liver cancer. BMC Bioinformatics 2021; 22:521. [PMID: 34696748 PMCID: PMC8543826 DOI: 10.1186/s12859-021-04411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Liver cancer is a common malignant tumor in China, with high mortality. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, mRNA quantification and the clinical data of liver cancer. However, the hub genes, which can be served as biomarkers for diagnosis and treatment of early liver cancer, are not well screened. Results Here we present a new method for getting 6 key genes, aiming to diagnose and treat the early liver cancer. We firstly analyzed the different expression microarrays based on TCGA database, and a total of 1564 differentially expressed genes were obtained, of which 1400 were up-regulated and 164 were down-regulated. Furthermore, these differentially expressed genes were studied by using GO and KEGG enrichment analysis, a PPI network was constructed based on the STRING database, and 15 hub genes were obtained. Finally, 15 hub genes were verified by applying the survival analysis method on Oncomine database, and 6 key genes were ultimately identified, including PLK1, CDC20, CCNB2, BUB1, MAD2L1 and CCNA2. The robustness analysis of four independent data sets verifies the accuracy of the key gene’s classification of the data set. Conclusions Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new method to identify the 6 key genes for diagnosis and treatment of early liver cancer, and these key genes can help us understand the pathogenesis of liver cancer more deeply.
Collapse
Affiliation(s)
- Ye-Cheng Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhen-Bo Tian
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.
| |
Collapse
|
28
|
Tang X, Guo M, Ding P, Deng Z, Ke M, Yuan Y, Zhou Y, Lin Z, Li M, Gu C, Gu X, Yang Y. BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther 2021; 6:361. [PMID: 34620840 PMCID: PMC8497505 DOI: 10.1038/s41392-021-00746-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy in the bone marrow characterized by chromosome instability (CIN), which contributes to the acquisition of heterogeneity, along with MM progression, drug resistance, and relapse. In this study, we elucidated that the expression of BUB1B increased strikingly in MM patients and was closely correlated with poor outcomes. Overexpression of BUB1B facilitated cellular proliferation and induced drug resistance in vitro and in vivo, while genetic targeting BUB1B abrogated this effect. Mechanistic studies unveiled that enforced expression of BUB1B evoked CIN resulting in MM poor outcomes mainly through phosphorylating CEP170. Interestingly, we discovered the existence of circBUB1B_544aa containing the kinase catalytic center of BUB1B, which was translated by a circular RNA of BUB1B. The circBUB1B_544aa elevated in MM peripheral blood samples was closely associated with MM poor outcomes and played a synergistic effect with BUB1B on evoking CIN. In addition, MM cells could secrete circBUB1B_544aa and interfere the MM microenvironmental cells in the same manner as BUB1B full-length protein. Intriguingly, BUB1B siRNA, targeting the kinase catalytic center of both BUB1B and circBUB1B_544aa, significantly inhibited MM malignancy in vitro and in vivo. Collectively, BUB1B and circBUB1B_544aa are promising prognostic and therapeutic targets of MM.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Ke
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxia Yuan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zigen Lin
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Muxi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiaosong Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
29
|
Hub Genes and Key Pathways of Intervertebral Disc Degeneration: Bioinformatics Analysis and Validation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5340449. [PMID: 34545328 PMCID: PMC8449732 DOI: 10.1155/2021/5340449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Objective To identify significant pathways and genes in intervertebral disc degeneration (IDD) based on bioinformatics analysis. Design The GEO database was used to download the GSE124272 dataset. Differentially expressed genes (DEGs) were analyzed using Limma package in R language. Then, gene ontologies (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks were used to further identify hub genes. The mRNA expression levels of top six hub genes were verified. Results We found 563 DEGs, of which 214 were upregulated and 349 were downregulated. The top 5 GO terms and pathways were shown including immune response, cell cycle, and p53 pathway. Based on the PPI analysis, we verified the mRNA expression levels of 6 hub genes. The mRNA levels of CHEK1, CDCA2, SKA3, and KIF20A were upregulated in degenerative NP tissue than in healthy NP tissue. However, the mRNA level of BUB1 and SPC25 was downregulated. Conclusions This study may provide new biomarkers for the IDD and treatments to repair IDD related to CHEK1, CDCA2, SKA3, BUB1, KIF20A, and SPC25.
Collapse
|
30
|
Li Y, Lin H, Chen L, Chen Z, Li W. Novel Therapies for Tongue Squamous Cell Carcinoma Patients with High-Grade Tumors. Life (Basel) 2021; 11:813. [PMID: 34440557 PMCID: PMC8398384 DOI: 10.3390/life11080813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors usually suffer from high occurrence and poor prognosis. The current study aimed at finding the biomarkers related to tumor grades and proposing potential therapies by these biomarkers. METHODS The mRNA expression matrix of TSCC samples from The Cancer Genome Atlas (TCGA) database was analyzed to identify hub proteins related to tumor grades. The mRNA expression patterns of these hub proteins between TSCC and adjacent control samples were validated in three independent TSCC data sets (i.e., GSE9844, GSE30784, and GSE13601). The correlation between cell cycle index and immunotherapy efficacy was tested on the IMvigor210 data set. Based on the structure of hub proteins, virtual screening was applied to compounds to find the potential inhibitors. RESULTS A total of six cell cycle biomarkers (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were selected as hub proteins by protein-protein interaction (PPI) analysis. In the validation data sets, the mRNA expression levels of these hub proteins were higher in tumor samples versus normal controls. The cell cycle index was constructed by the mRNA expression levels of these hub proteins, and patients with a high cell cycle index demonstrated favorable drug response to the immunotherapy. Three small molecules (i.e., ZINC100052685, ZINC8214703, and ZINC85537014) were found to bind with hub proteins and selected as drug candidates. CONCLUSION The cell cycle index might provide a novel reference for selecting appropriate cancer patient candidates for immunotherapy. The current research might contribute to the development of precision medicine and improve the prognosis of TSCC.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Lu Chen
- School of Clinical Medicine, Baotou Medical College, Baotou 014040, China;
| | - Zihao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
31
|
Gao C, Han Y, Bai L, Wang Y, Xue F. IK: A novel cell mitosis regulator that contributes to carcinogenesis. Cell Biochem Funct 2021; 39:854-859. [PMID: 34250629 DOI: 10.1002/cbf.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Carcinogenesis is characterized by abnormal regulation of cell growth and cell death. IK is a novel cell mitosis regulator that may contribute to carcinogenesis. Previous studies showed that the loss of IK expression resulted in cell mitotic arrest and even cell death. Besides, IK can also inhibit the interferon gamma (IFN-γ)-induced expression of human leukocyte antigen (HLA) class II antigen, which is associated with tumour immune microenvironment. To gain insight into the current research progress regarding IK, we conducted a review and searched the limited literature on IK using PubMed or Web of Science. In this review, we discussed the possible biological functions and mechanisms of IK in cancer and its immune microenvironment. Future perspectives of IK were also mentioned to explore its clinical significance.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin Fourth Hospital), Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
32
|
Chen S, Wang X, Zheng S, Li H, Qin S, Liu J, Jia W, Shao M, Tan Y, Liang H, Song W, Lu S, Liu C, Yang X. Increased SPC24 in prostatic diseases and diagnostic value of SPC24 and its interacting partners in prostate cancer. Exp Ther Med 2021; 22:923. [PMID: 34306192 PMCID: PMC8281004 DOI: 10.3892/etm.2021.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
SPC24 is a crucial component of the mitotic checkpoint machinery in tumorigenesis. High levels of SPC24 have been found in various cancers, including breast cancer, lung cancer, liver cancer, osteosarcoma and thyroid cancer. However, to the best of our knowledge, the impact of SPC24 on prostate cancer (PCa) and other prostate diseases remains unclear. In the present study expression of global SPC24 messenger RNA (mRNA) was assessed in a subset of patients with PCa included in The Cancer Genome Atlas (TCGA) database. Increased levels of SPC24 expression were found in PCa patients >60 years old compared to patients <60 and increased SPC24 expression was also associated with higher levels of prostate specific antigen (P<0.05) and lymph node metastasis (P<0.05). Higher levels of SPC24 expression were associated with negative outcomes in PCa patients (P<0.05). Furthermore, in Chinese patients with prostatitis, benign prostatic hypertrophy (BPH) and PCa, SPC24 was expressed at significantly higher levels than that in adjacent/normal tissues, as assessed by reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. High expression of SPC24 was associated with high Gleason stages (IV and V; P<0.05). Further analysis, based on Gene Ontology and pathway functional enrichment analysis, suggested that nuclear division cycle 80 (NDC80), an SPC24 protein interaction partner, and mitotic spindle checkpoint serine/threonine-protein kinase BUB1 (BUB1), a core subunit of the spindle assembly checkpoint, may be associated with SPC24 in PCa development. Finally, using binary logistic regression, algorithms combining the receiver operating characteristic between SPC24 and BUB1 or NDC80 indicated that a combination of these markers may provide better PCa diagnosis ability than other PCa diagnosis markers. Taken together, these findings suggest that SPC24 may be a promising prostate disease biomarker.
Collapse
Affiliation(s)
- Suixia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hongwen Li
- Department of Anatomy, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Shouxu Qin
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Mengnan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Hui Liang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Weiru Song
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaoming Lu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250200, P.R. China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
33
|
Bielski CM, Taylor BS. Homing in on genomic instability as a therapeutic target in cancer. Nat Commun 2021; 12:3663. [PMID: 34135330 PMCID: PMC8209011 DOI: 10.1038/s41467-021-23965-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
While genomic instability is a hallmark of cancer, its genetic vulnerabilities remain poorly understood. Identifying strategies that exploit genomic instability to selectively target cancer cells is a central challenge in cancer biology with major implications for anti-cancer drug development.
Collapse
Affiliation(s)
- Craig M Bielski
- Weill Cornell Medical College, New York, NY, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Loxo Oncology, a wholly-owned subsidiary of Eli Lilly, Inc., Stamford, CT, USA.
| |
Collapse
|
34
|
Jeusset LM, Guppy BJ, Lichtensztejn Z, McDonald D, McManus KJ. Reduced USP22 Expression Impairs Mitotic Removal of H2B Monoubiquitination, Alters Chromatin Compaction and Induces Chromosome Instability That May Promote Oncogenesis. Cancers (Basel) 2021; 13:cancers13051043. [PMID: 33801331 PMCID: PMC7958346 DOI: 10.3390/cancers13051043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.
Collapse
Affiliation(s)
- Lucile M. Jeusset
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Brent J. Guppy
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
| | - Darin McDonald
- Department of Oncology, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
- Correspondence: ; Tel.: +1-(204)-787-2833
| |
Collapse
|
35
|
Gheghiani L, Wang L, Zhang Y, Moore XTR, Zhang J, Smith SC, Tian Y, Wang L, Turner K, Jackson-Cook CK, Mukhopadhyay ND, Fu Z. PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis. Cancer Res 2021; 81:1293-1307. [PMID: 33376114 PMCID: PMC8026515 DOI: 10.1158/0008-5472.can-20-1377] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (PLK1) is an essential cell-cycle regulator that is frequently overexpressed in various human cancers. To determine whether Plk1 overexpression drives tumorigenesis, we established transgenic mouse lines that ubiquitously express increased levels of Plk1. High Plk1 levels were a driving force for different types of spontaneous tumors. Increased Plk1 levels resulted in multiple defects in mitosis and cytokinesis, supernumerary centrosomes, and compromised cell-cycle checkpoints, allowing accumulation of chromosomal instability (CIN), which resulted in aneuploidy and tumor formation. Clinically, higher expression of PLK1 positively associated with an increase in genome-wide copy-number alterations in multiple human cancers. This study provides in vivo evidence that aberrant expression of PLK1 triggers CIN and tumorigenesis and highlights potential therapeutic opportunities for CIN-positive cancers. SIGNIFICANCE: These findings establish roles for PLK1 as a potent proto-oncogene and a CIN gene and provide insights for the development of effective treatment regimens across PLK1-overexpressing and CIN-positive cancers.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Lei Wang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Youwei Zhang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jinglei Zhang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Steven C Smith
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Yijun Tian
- Department of Tumor Biology, Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Kristi Turner
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Colleen K Jackson-Cook
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
36
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, García-Cuellar CM. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM 10) exposure leads to aneuploidy in A549 lung cells. CHEMOSPHERE 2021; 266:128994. [PMID: 33250223 DOI: 10.1016/j.chemosphere.2020.128994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a worldwide problem that affects human health predominantly in the largest cities. Particulate matter of 10 μm or less in diameter (PM10) is considered a risk factor for multiple diseases, including lung cancer. The long non-coding RNA NORAD and the components of the spindle assembly checkpoint (SAC) ensure proper chromosomal segregation. Alterations in the SAC cause aneuploidy, a feature associated with carcinogenesis. In this study, we demonstrated that PM10 treatment increased the expression levels of NORAD as well as those of SAC components mitotic arrest deficient 1 (MAD1L1), mitotic arrest deficient 2 (MAD2L1), BubR1 (BUB1B), aurora B (AURKB), and survivin (BIRC5) in the lung A549 cell line. We also demonstrated that MAD1L1, MAD2L1, and BUB1B expression levels were reduced when cells were transfected with small interfering RNAs (siRNAs) against NORAD. Interestingly, the expression levels of AURKB and BIRC5 (survivin) were not affected by transfection with NORAD siRNAs. Cells treated with PM10 exhibited a decrease in mitotic arrest and an increase in micronuclei frequency in synchronized A549 cells. PM10 exposure induced aneuploidy events as a result of SAC deregulation. We also observed a reduction in the protein levels of Pumilio 1 after PM10 treatment. Our results provide novel clues regarding the effect of PM10 in the generation of chromosomal instability, a phenotype observed in lung cancer cells.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, CP 54090, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico.
| |
Collapse
|
37
|
Abstract
Accurate chromosome segregation is required for cell survival and organismal development. During mitosis, the spindle assembly checkpoint acts as a safeguard to maintain the high fidelity of mitotic chromosome segregation by monitoring the attachment of kinetochores to the mitotic spindle. Bub1 is a conserved kinase critical for the spindle assembly checkpoint. Bub1 also facilitates chromosome alignment and contributes to the regulation of mitotic duration. Here, focusing on the spindle assembly checkpoint and on chromosome alignment, we summarize the primary literature on Bub1, discussing its structure and functional domains, as well its regulation and roles in mitosis. In addition, we discuss recent evidence for roles of Bub1 beyond mitosis regulation in TGFβ signaling and telomere replication. Finally, we discuss the involvement of Bub1 in human diseases, especially in cancer, and the potential of using Bub1 as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, Korea
| | - Anton Gartner
- IBS Center for Genomic Integrity, Ulsan, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
38
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
39
|
Cohen-Sharir Y, McFarland JM, Abdusamad M, Marquis C, Bernhard SV, Kazachkova M, Tang H, Ippolito MR, Laue K, Zerbib J, Malaby HLH, Jones A, Stautmeister LM, Bockaj I, Wardenaar R, Lyons N, Nagaraja A, Bass AJ, Spierings DCJ, Foijer F, Beroukhim R, Santaguida S, Golub TR, Stumpff J, Storchová Z, Ben-David U. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 2021; 590:486-491. [PMID: 33505028 PMCID: PMC8262644 DOI: 10.1038/s41586-020-03114-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023]
Abstract
Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.
Collapse
Affiliation(s)
- Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James M McFarland
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mai Abdusamad
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolyn Marquis
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Sara V Bernhard
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserlautern, Germany
| | - Mariya Kazachkova
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helen Tang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marica R Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Heidi L H Malaby
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Andrew Jones
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Irena Bockaj
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Nicholas Lyons
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ankur Nagaraja
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Adam J Bass
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Todd R Golub
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserlautern, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
40
|
Sinha D, Nag P, Nanayakkara D, Duijf PHG, Burgess A, Raninga P, Smits VAJ, Bain AL, Subramanian G, Wall M, Finnie JW, Kalimutho M, Khanna KK. Cep55 overexpression promotes genomic instability and tumorigenesis in mice. Commun Biol 2020; 3:593. [PMID: 33087841 PMCID: PMC7578791 DOI: 10.1038/s42003-020-01304-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
High expression of centrosomal protein CEP55 has been correlated with clinico-pathological parameters across multiple human cancers. Despite significant in vitro studies and association of aberrantly overexpressed CEP55 with worse prognosis, its causal role in vivo tumorigenesis remains elusive. Here, using a ubiquitously overexpressing transgenic mouse model, we show that Cep55 overexpression causes spontaneous tumorigenesis and accelerates Trp53+/− induced tumours in vivo. At the cellular level, using mouse embryonic fibroblasts (MEFs), we demonstrate that Cep55 overexpression induces proliferation advantage by modulating multiple cellular signalling networks including the hyperactivation of the Pi3k/Akt pathway. Notably, Cep55 overexpressing MEFs have a compromised Chk1-dependent S-phase checkpoint, causing increased replication speed and DNA damage, resulting in a prolonged aberrant mitotic division. Importantly, this phenotype was rescued by pharmacological inhibition of Pi3k/Akt or expression of mutant Chk1 (S280A) protein, which is insensitive to regulation by active Akt, in Cep55 overexpressing MEFs. Moreover, we report that Cep55 overexpression causes stabilized microtubules. Collectively, our data demonstrates causative effects of deregulated Cep55 on genome stability and tumorigenesis which have potential implications for tumour initiation and therapy development. Sinha et al. demonstrate that overexpression of centrosomal protein Cep55 in mice is sufficient to cause a wide-spectrum of cancer via multiple mechanisms including hyperactivation of the Pi3k/Akt pathway, stabilized microtubules and a defective replication checkpoint response. These findings are relevant to human cancers as high CEP55 expression is associated with worse prognosis across multiple cancer types.
Collapse
Affiliation(s)
- Debottam Sinha
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia.,School of Environment and Sciences, Griffith University, Nathan, 4111, QLD, Australia
| | - Purba Nag
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia.,School of Environment and Sciences, Griffith University, Nathan, 4111, QLD, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland and Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, 4029, QLD, Australia
| | - Devathri Nanayakkara
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, 4102, QLD, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Andrew Burgess
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Prahlad Raninga
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia
| | - Goutham Subramanian
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Melbourne, Australia
| | - John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide and SA Pathology, Adelaide, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, QLD, Australia.
| |
Collapse
|
41
|
Broad AJ, DeLuca KF, DeLuca JG. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 2020; 219:133701. [PMID: 32028528 PMCID: PMC7055008 DOI: 10.1083/jcb.201905144] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Collapse
Affiliation(s)
- Amanda J Broad
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
42
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
43
|
Asai Y, Matsumura R, Hasumi Y, Susumu H, Nagata K, Watanabe Y, Terada Y. SET/TAF1 forms a distance-dependent feedback loop with Aurora B and Bub1 as a tension sensor at centromeres. Sci Rep 2020; 10:15653. [PMID: 32973131 PMCID: PMC7518443 DOI: 10.1038/s41598-020-71955-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, spatiotemporal regulation of phosphorylation at the kinetochore is essential for accurate chromosome alignment and proper chromosome segregation. Aurora B kinase phosphorylates kinetochore substrates to correct improper kinetochore-microtubule (KT-MT) attachments, whereas tension across the centromeres inactivates Aurora B kinase, and PP2A phosphatase dephosphorylates the kinetochore proteins to stabilize the attachments. However, the molecular entity of the tension sensing mechanism remains elusive. In a previous report, we showed that centromeric SET/TAF1 on Sgo2 up-regulates Aurora B kinase activity via PP2A inhibition in prometaphase. Here we show that Aurora B and Bub1 at the centromere/kinetochore regulate both kinase activities one another in an inter-kinetochore distance-dependent manner, indicating a positive feedback loop. We further show that the centromeric pool of SET on Sgo2 depends on Bub1 kinase activity, and the centromeric localization of SET decreases in a distance-dependent manner, thereby inactivating Aurora B in metaphase. Consistently, ectopic targeting of SET to the kinetochores during metaphase hyperactivates Aurora B via PP2A inhibition, and thereby rescues the feedback loop. Thus, we propose that SET, Aurora B and Bub1 form a distance-dependent positive feedback loop, which spatiotemporally may act as a tension sensor at centromeres.
Collapse
Affiliation(s)
- Yuichiro Asai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rieko Matsumura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yurina Hasumi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroaki Susumu
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Yayoi, Tokyo, 113-0032, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yoshinori Watanabe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, BN1 9RQ, Sussex, UK
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
44
|
Fujibayashi Y, Isa R, Nishiyama D, Sakamoto-Inada N, Kawasumi N, Yamaguchi J, Kuwahara-Ota S, Matsumura-Kimoto Y, Tsukamoto T, Chinen Y, Shimura Y, Kobayashi T, Horiike S, Taniwaki M, Handa H, Kuroda J. Aberrant BUB1 Overexpression Promotes Mitotic Segregation Errors and Chromosomal Instability in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082206. [PMID: 32781708 PMCID: PMC7464435 DOI: 10.3390/cancers12082206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Chromosome instability (CIN), the hallmarks of cancer, reflects ongoing chromosomal changes caused by chromosome segregation errors and results in whole chromosomal or segmental aneuploidy. In multiple myeloma (MM), CIN contributes to the acquisition of tumor heterogeneity, and thereby, to disease progression, drug resistance, and eventual treatment failure; however, the underlying mechanism of CIN in MM remains unclear. Faithful chromosomal segregation is tightly regulated by a series of mitotic checkpoint proteins, such as budding uninhibited by benzimidazoles 1 (BUB1). In this study, we found that BUB1 was overexpressed in patient-derived myeloma cells, and BUB1 expression was significantly higher in patients in an advanced stage compared to those in an early stage. This suggested the involvement of aberrant BUB1 overexpression in disease progression. In human myeloma-derived cell lines (HMCLs), BUB1 knockdown reduced the frequency of chromosome segregation errors in mitotic cells. In line with this, partial knockdown of BUB1 showed reduced variations in chromosome number compared to parent cells in HMCLs. Finally, BUB1 overexpression was found to promote the clonogenic potency of HMCLs. Collectively, these results suggested that enhanced BUB1 expression caused an increase in mitotic segregation errors and the resultant emergence of subclones with altered chromosome numbers and, thus, was involved in CIN in MM.
Collapse
Affiliation(s)
- Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Natsumi Sakamoto-Inada
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Norichika Kawasumi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Department of Hematology, Fukuchiyama City Hospital, Kyoto 620-8505, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan;
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Correspondence: ; Tel.: +81-75-251-5740
| |
Collapse
|
45
|
Zhang L, Makamure J, Zhao D, Liu Y, Guo X, Zheng C, Liang B. Bioinformatics analysis reveals meaningful markers and outcome predictors in HBV-associated hepatocellular carcinoma. Exp Ther Med 2020; 20:427-435. [PMID: 32537007 PMCID: PMC7281962 DOI: 10.3892/etm.2020.8722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of malignant neoplasm of the liver with high morbidity and mortality. Extensive research into the pathology of HCC has been performed; however, the molecular mechanisms underlying the development of hepatitis B virus-associated HCC have remained elusive. Thus, the present study aimed to identify critical genes and pathways associated with the development and progression of HCC. The expression profiles of the GSE121248 dataset were downloaded from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses were performed by using the Database for Annotation, Visualization and Integrated Discovery. Subsequently, protein-protein interaction (PPI) networks were constructed for detecting hub genes. In the present study, 1,153 DEGs (777 upregulated and 376 downregulated genes) were identified and the PPI network yielded 15 hub genes. GO analysis revealed that the DEGs were primarily enriched in ‘protein binding’, ‘cytoplasm’ and ‘extracellular exosome’. KEGG analysis indicated that DEGs were accumulated in ‘metabolic pathways’, ‘chemical carcinogenesis’ and ‘fatty acid degradation’. After constructing the PPI network, cyclin-dependent kinase 1, cyclin B1, cyclin A2, mitotic arrest deficient 2 like 1, cyclin B2, DNA topoisomerase IIα, budding uninhibited by benzimidazoles (BUB)1, TTK protein kinase, non-SMC condensin I complex subunit G, NDC80 kinetochore complex component, aurora kinase A, kinesin family member 11, cell division cycle 20, BUB1B and abnormal spindle microtubule assembly were identified as hub genes based on the high degree of connectivity by using Cytoscape software. In addition, overall survival (OS) and disease-free survival (DFS) analyses were performed using the Gene Expression Profiling Interactive Analysis online database, which revealed that the increased expression of all hub genes were associated with poorer OS and DFS outcomes. Receiver operating characteristic curves were constructed using GraphPad prism 7.0 software. The results confirmed that 15 hub genes were able to distinguish HCC form normal tissues. Furthermore, the expression levels of three key genes were analyzed in tumor and normal samples of the Human Protein Atlas database. The present results may provide further insight into the underlying mechanisms of HCC and potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Joyman Makamure
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Zhao
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiming Liu
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaopeng Guo
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chuansheng Zheng
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Liang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
46
|
Benzi G, Camasses A, Atsunori Y, Katou Y, Shirahige K, Piatti S. A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Rep 2020; 21:e50257. [PMID: 32307893 DOI: 10.15252/embr.202050257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023] Open
Abstract
The Mps1 kinase corrects improper kinetochore-microtubule attachments, thereby ensuring chromosome biorientation. Yet, its critical phosphorylation targets in this process remain largely elusive. Mps1 also controls the spindle assembly checkpoint (SAC), which halts chromosome segregation until biorientation is attained. Its role in SAC activation is antagonised by the PP1 phosphatase and involves phosphorylation of the kinetochore scaffold Knl1/Spc105, which in turn recruits the Bub1 kinase to promote assembly of SAC effector complexes. A crucial question is whether error correction and SAC activation are part of a single or separable pathways. Here, we isolate and characterise a new yeast mutant, mps1-3, that is severely defective in chromosome biorientation and SAC signalling. Through an unbiased screen for extragenic suppressors, we found that mutations lowering PP1 levels at Spc105 or forced association of Bub1 with Spc105 reinstate both chromosome biorientation and SAC signalling in mps1-3 cells. Our data argue that a common mechanism based on Knl1/Spc105 phosphorylation is critical for Mps1 function in error correction and SAC signalling, thus supporting the idea that a single sensory apparatus simultaneously elicits both pathways.
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Alain Camasses
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Yoshimura Atsunori
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Katou
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
47
|
Hoevenaar WHM, Janssen A, Quirindongo AI, Ma H, Klaasen SJ, Teixeira A, van Gerwen B, Lansu N, Morsink FHM, Offerhaus GJA, Medema RH, Kops GJPL, Jelluma N. Degree and site of chromosomal instability define its oncogenic potential. Nat Commun 2020; 11:1501. [PMID: 32198375 PMCID: PMC7083897 DOI: 10.1038/s41467-020-15279-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues.
Collapse
Affiliation(s)
- Wilma H M Hoevenaar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit I Quirindongo
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Huiying Ma
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antoinette Teixeira
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van Gerwen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nannette Jelluma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Curtis NL, Ruda GF, Brennan P, Bolanos-Garcia VM. Deregulation of Chromosome Segregation and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mitotic spindle assembly checkpoint (SAC) is an intricate cell signaling system that ensures the high fidelity and timely segregation of chromosomes during cell division. Mistakes in this process can lead to the loss, gain, or rearrangement of the genetic material. Gross chromosomal aberrations are usually lethal but can cause birth and development defects as well as cancer. Despite advances in the identification of SAC protein components, important details of the interactions underpinning chromosome segregation regulation remain to be established. This review discusses the current understanding of the function, structure, mode of regulation, and dynamics of the assembly and disassembly of SAC subcomplexes, which ultimately safeguard the accurate transmission of a stable genome to descendants. We also discuss how diverse oncoviruses take control of human cell division by exploiting the SAC and the potential of this signaling circuitry as a pool of drug targets to develop effective cancer therapies.
Collapse
Affiliation(s)
- Natalie L. Curtis
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gian Filippo Ruda
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Brennan
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
49
|
Nie C, Ma H, Gao Y, Li J, Tang Z, Chen Y, Lu R. RNA Sequencing and Bioinformatic Analysis on Retinoblastoma Revealing that Cell Cycle Deregulation Is a Key Process in Retinoblastoma Tumorigenesis. Ophthalmologica 2020; 244:51-59. [PMID: 32146475 DOI: 10.1159/000506993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Retinoblastoma (RB) is a primary pediatric ocular malignancy that can be fatal with inadequate treatment. While multimodal treatments are applied for eye salvage, vision loss and metastasis can occur in some patients. The present study aimed to explore key pathways and factors in RB pathogenesis, which could be potential targets for novel RB treatments. METHODS RNA sequencing was performed on three RB tissues and referenced with three normal retinas. Differentially expressed genes (DEGs) were identified from sequencing data and further analyzed with clustering analysis, function and pathway enrichment, protein-protein interaction (PPI), and data-mining analysis in order to screen for tumorigenic relevancy. RESULTS A total of 331 DEGs were identified by clustering analysis of RB tissues, and the expression patterns were significantly distinguishable from normal retinas. Function and pathway enrichment and PPI analysis together showed that cell cycle was the most prominently upregulated pathway found in RB tissues. Following comprehensive bioinformatic analyses, six key genes relevant to cell cycle regulation were identified, namely BUB1, RRM2, TPX2, UBE2C, NUSAP1, and DTL. CONCLUSIONS Cell cycle pathway and six relevant genes may be potential key factors in RB tumorigenesis and laying the foundation for prospective investigation on development of novel targeted therapies.
Collapse
Affiliation(s)
- Cong Nie
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Huan Ma
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yang Gao
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jinmiao Li
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhixin Tang
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ying Chen
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Rong Lu
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China,
| |
Collapse
|
50
|
Zhu LJ, Pan Y, Chen XY, Hou PF. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol Lett 2020; 19:3506-3512. [PMID: 32269624 PMCID: PMC7114935 DOI: 10.3892/ol.2020.11445] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Budding uninhibited by benzimidazoles 1 (BUB1) is a mitotic checkpoint serine/threonine kinase that has been reported as an oncogene or tumor suppressor gene in various types of cancer, including breast cancer, pancreatic ductal adenocarcinoma, prostate and gastric cancers. However, its role in liver cancer remains unclear. The present study aimed to explore the biological function of BUB1 in liver cancer. The present study demonstrated that BUB1 mRNA expression levels and the intensity of immunohistochemical staining were significantly increased in liver cancer tissues compared with normal tissues. The role of BUB1 in cell proliferation was also determined. Overexpression of BUB1 significantly promoted cell proliferation, whereas knockdown of BUB1 expression inhibited the proliferation of liver cancer cell lines. In experiments investigating the underlying mechanism, overexpression of BUB1 increased the levels of SMAD2 phosphorylation, whereas knockdown of BUB1 reduced the levels of SMAD2 phosphorylation. Therefore, BUB1 may promote proliferation of liver cancer cells by activating phosphorylation of SMAD2, and BUB1 may serve as a potential target in the diagnosis and/or treatment of liver cancer.
Collapse
Affiliation(s)
- Li-Jing Zhu
- Department of Radiation Oncology, Lianshui County People's Hospital, Huaian, Jiangsu 223400, P.R. China
| | - Yan Pan
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huaian, Jiangsu 223400, P.R. China
| | - Xiao-Ying Chen
- Clinical Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Pan-Fei Hou
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huaian, Jiangsu 223400, P.R. China
| |
Collapse
|