1
|
Kinoshita T. Towards a thorough understanding of mammalian glycosylphosphatidylinositol-anchored protein biosynthesis. Glycobiology 2024; 34:cwae061. [PMID: 39129667 DOI: 10.1093/glycob/cwae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/13/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids found ubiquitously in eukaryotes. They consist of a glycan and an inositol phospholipid, and act as membrane anchors of many cell-surface proteins by covalently linking to their C-termini. GPIs also exist as unlinked, free glycolipids on the cell surface. In human cells, at least 160 proteins with various functions are GPI-anchored proteins. Because the attachment of GPI is required for the cell-surface expression of GPI-anchored proteins, a thorough knowledge of the molecular basis of mammalian GPI-anchored protein biosynthesis is important for understanding the basic biochemistry and biology of GPI-anchored proteins and their medical significance. In this paper, I review our previous knowledge of the biosynthesis of mammalian GPI-anchored proteins and then examine new findings made since 2020.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, Japan
| |
Collapse
|
2
|
Yang K, Feng Z, Pastor-Pareja JC. p24-Tango1 interactions ensure ER-Golgi interface stability and efficient transport. J Cell Biol 2024; 223:e202309045. [PMID: 38470362 PMCID: PMC10932740 DOI: 10.1083/jcb.202309045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The eukaryotic p24 family, consisting of α-, β-, γ- and δ-p24 subfamilies, has long been known to be involved in regulating secretion. Despite increasing interest in these proteins, fundamental questions remain about their role. Here, we systematically investigated Drosophila p24 proteins. We discovered that members of all four p24 subfamilies are required for general secretion and that their localizations between ER exit site (ERES) and Golgi are interdependent in an α→βδ→γ sequence. We also found that localization of p24 proteins and ERES determinant Tango1 requires interaction through their respective GOLD and SH3 lumenal domains, with Tango1 loss sending p24 proteins to the plasma membrane and vice versa. Finally, we show that p24 loss expands the COPII zone at ERES and increases the number of ER-Golgi vesicles, supporting a restrictive role of p24 proteins on vesicle budding for efficient transport. Our results reveal Tango1-p24 interplay as central to the generation of a stable ER-Golgi interface.
Collapse
Affiliation(s)
- Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
3
|
Kang S, Xu Y, Kang Y, Rao J, Xiang F, Ku S, Li W, Liu Z, Guo Y, Xu J, Zhu X, Zhou M. Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts. Food Chem 2024; 439:138143. [PMID: 38103490 DOI: 10.1016/j.foodchem.2023.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.
Collapse
Affiliation(s)
- Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yang Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanyang Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fuwen Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yaqing Guo
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Wuhan 441300, China
| | - Xiangwei Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
4
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
5
|
Roberts BS, Mitra D, Abishek S, Beher R, Satpute-Krishnan P. The p24-family and COPII subunit SEC24C facilitate the clearance of alpha1-antitrypsin Z from the endoplasmic reticulum to lysosomes. Mol Biol Cell 2024; 35:ar45. [PMID: 38294851 PMCID: PMC10916869 DOI: 10.1091/mbc.e23-06-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.
Collapse
Affiliation(s)
| | - Debashree Mitra
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sudhanshu Abishek
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Richa Beher
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|
6
|
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, Gu W, Qu Q, Li D. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun 2024; 15:8. [PMID: 38167496 PMCID: PMC10761859 DOI: 10.1038/s41467-023-44568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.
Collapse
Affiliation(s)
- Jingjing Hong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Yidan Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Weijie Gu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
7
|
Li D. Structure and Function of the Glycosylphosphatidylinositol Transamidase, a Transmembrane Complex Catalyzing GPI Anchoring of Proteins. Subcell Biochem 2024; 104:425-458. [PMID: 38963495 DOI: 10.1007/978-3-031-58843-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.
Collapse
Affiliation(s)
- Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
8
|
Li T, Yang F, Heng Y, Zhou S, Wang G, Wang J, Wang J, Chen X, Yao ZP, Wu Z, Guo Y. TMED10 mediates the trafficking of insulin-like growth factor 2 along the secretory pathway for myoblast differentiation. Proc Natl Acad Sci U S A 2023; 120:e2215285120. [PMID: 37931110 PMCID: PMC10655563 DOI: 10.1073/pnas.2215285120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.
Collapse
Affiliation(s)
- Tiantian Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Youshan Heng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shaopu Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianying Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xianwei Chen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhenguo Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou 511453, China
| |
Collapse
|
9
|
Holm JEJ, Soares SG, Symmons MF, Huddin AS, Moncrieffe MC, Gay NJ. Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7. Traffic 2023; 24:508-521. [PMID: 37491993 PMCID: PMC10946956 DOI: 10.1111/tra.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas J. Gay
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Navarro KG, Chamberlin HM. Genetic characterization of C. elegans TMED genes. Dev Dyn 2023; 252:1149-1161. [PMID: 37204056 PMCID: PMC10524739 DOI: 10.1002/dvdy.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND p24/transmembrane Emp24 domain (TMED) proteins are a set of evolutionarily conserved, single pass transmembrane proteins that have been shown to facilitate protein secretion and selection of cargo proteins to transport vesicles in the cellular secretion pathway. However, their functions in animal development are incompletely understood. RESULTS The C. elegans genome encodes eight identified TMED genes, with at least one member from each defined subfamily (α, β, γ, δ). TMED gene mutants exhibit a shared set of defects in embryonic viability, animal movement, and vulval morphology. Two γ subfamily genes, tmed-1 and tmed-3, exhibit the ability to compensate for each other, as defects in movement and vulva morphology are only apparent in double mutants. TMED mutants also exhibit a delay in breakdown of basement membrane during vulva development. CONCLUSIONS The results establish a genetic and experimental framework for the study of TMED gene function in C. elegans, and argue that a functional protein from each subfamily is important for a shared set of developmental processes. A specific function for TMED genes is to facilitate breakdown of the basement membrane between the somatic gonad and vulval epithelial cells, suggesting a role for TMED proteins in tissue reorganization during animal development.
Collapse
|
11
|
Tutanov OS, Glass SE, Coffey RJ. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:195-217. [PMID: 37840781 PMCID: PMC10569057 DOI: 10.20517/evcna.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.
Collapse
Affiliation(s)
- Oleg S. Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sarah E. Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
12
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
13
|
Kundu S, Lin C, Jaiswal M, Mullapudi VB, Craig KC, Chen S, Guo Z. Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe. J Proteome Res 2023; 22:919-930. [PMID: 36700487 PMCID: PMC9992086 DOI: 10.1021/acs.jproteome.2c00728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | | | - Kendall C Craig
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| |
Collapse
|
14
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
15
|
The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER. Cell Rep 2022; 41:111868. [PMID: 36543137 DOI: 10.1016/j.celrep.2022.111868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING.
Collapse
|
16
|
Reid KM, Spaull R, Salian S, Barwick K, Meyer E, Zhen J, Hirata H, Sheipouri D, Benkerroum H, Gorman KM, Papandreou A, Simpson MA, Hirano Y, Farabella I, Topf M, Grozeva D, Carss K, Smith M, Pall H, Lunt P, De Gressi S, Kamsteeg E, Haack TB, Carr L, Guerreiro R, Bras J, Maher ER, Scott RH, Vandenberg RJ, Raymond FL, Chong WK, Sudhakar S, Mankad K, Reith ME, Campeau PM, Harvey RJ, Kurian MA. MED27, SLC6A7, and MPPE1 Variants in a Complex Neurodevelopmental Disorder with Severe Dystonia. Mov Disord 2022; 37:2139-2146. [PMID: 35876425 PMCID: PMC9796674 DOI: 10.1002/mds.29147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kimberley M. Reid
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Robert Spaull
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Smrithi Salian
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Katy Barwick
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Juan Zhen
- Cell Therapy and Cell Engineering FacilityMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hiromi Hirata
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Diba Sheipouri
- School of Medical Sciences, University of SydneySydneyNew South WalesAustralia
| | - Hind Benkerroum
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Kathleen M. Gorman
- Department of Neurology and Clinical NeurophysiologyChildren's Health Ireland at Temple StreetDublinIreland,School of Medicine and Medical SciencesUniversity College DublinDublinIreland
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Michael A. Simpson
- Division of Genetics and Molecular MedicineKing's College London School of MedicineLondonUnited Kingdom
| | - Yoshinobu Hirano
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Irene Farabella
- Institute of Structural and Molecular Biology, Crystallography/Department of Biological SciencesBirkbeck College, University of LondonLondonUnited Kingdom,CNAG‐CRG, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Maya Topf
- Leibniz Institute for Virology (HPI) and Universitätsklinikum Hamburg Eppendorf (UKE)Centre for Structural Systems Biology (CSSB)HamburgGermany,Institute of Structural and Molecular Biology, Crystallography/Department of Biological SciencesBirkbeck College, University of LondonLondonUnited Kingdom
| | - Detelina Grozeva
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom,Centre for Trials Research, Neuadd MeirionnyddCardiff UniversityCardiffUnited Kingdom
| | - Keren Carss
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Martin Smith
- Department of NeurologyJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Hardev Pall
- Department of NeurologyQueen Elizabeth HospitalBirminghamUnited Kingdom
| | - Peter Lunt
- Clinical Genetic ServiceGloucester Royal HospitalGloucesterUnited Kingdom
| | - Susanna De Gressi
- Department of PaediatricsCheltenham General HospitalGloucestershireUnited Kingdom
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TuebingenTuebingenGermany
| | - Lucinda Carr
- Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Rita Guerreiro
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
| | - Jose Bras
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
| | - Eamonn R. Maher
- Department of Medical GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Richard H. Scott
- Department of Clinical GeneticsGreat Ormond Street HospitalLondonUnited Kingdom
| | | | - F. Lucy Raymond
- Centre for Trials Research, Neuadd MeirionnyddCardiff UniversityCardiffUnited Kingdom
| | - Wui K. Chong
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Maarten E. Reith
- Department of PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | - Philippe M. Campeau
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Robert J. Harvey
- School of Health and Behavioural SciencesUniversity of the Sunshine CoastSippy DownsQueenslandAustralia,Sunshine Coast Health InstituteBirtinyaQueenslandAustralia
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| |
Collapse
|
17
|
Ishida M, Maki Y, Ninomiya A, Takada Y, Campeau P, Kinoshita T, Murakami Y. Ethanolamine-phosphate on the second mannose is a preferential bridge for some GPI-anchored proteins. EMBO Rep 2022; 23:e54352. [PMID: 35603428 PMCID: PMC9253782 DOI: 10.15252/embr.202154352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 09/10/2023] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.
Collapse
Affiliation(s)
- Mizuki Ishida
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Yuta Maki
- Department of ChemistryOsaka UniversityToyonakaJapan
- Project Research Center for Fundamental SciencesGraduate School of ScienceOsaka UniversityToyonakaJapan
| | - Akinori Ninomiya
- Central Instrumentation LaboratoryResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Yoko Takada
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Philippe Campeau
- Department of PediatricsCHU Sainte‐Justine and University of MontrealMontrealQCCanada
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
- Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| |
Collapse
|
18
|
Rodriguez-Gallardo S, Sabido-Bozo S, Ikeda A, Araki M, Okazaki K, Nakano M, Aguilera-Romero A, Cortes-Gomez A, Lopez S, Waga M, Nakano A, Kurokawa K, Muñiz M, Funato K. Quality-controlled ceramide-based GPI-anchored protein sorting into selective ER exit sites. Cell Rep 2022; 39:110768. [PMID: 35508142 DOI: 10.1016/j.celrep.2022.110768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) exit the endoplasmic reticulum (ER) through a specialized export pathway in the yeast Saccharomyces cerevisiae. We have recently shown that a very-long acyl chain (C26) ceramide present in the ER membrane drives clustering and sorting of GPI-APs into selective ER exit sites (ERES). Now, we show that this lipid-based ER sorting also involves the C26 ceramide as a lipid moiety of GPI-APs, which is incorporated into the GPI anchor through a lipid-remodeling process after protein attachment in the ER. Moreover, we also show that a GPI-AP with a C26 ceramide moiety is monitored by the GPI-glycan remodelase Ted1, which, in turn, is required for receptor-mediated export of GPI-APs. Therefore, our study reveals a quality-control system that ensures lipid-based sorting of GPI-APs into selective ERESs for differential ER export, highlighting the physiological need for this specific export pathway.
Collapse
Affiliation(s)
- Sofia Rodriguez-Gallardo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Kouta Okazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
19
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
20
|
Xie C, Shang Q, Mo C, Xiao Y, Wang G, Xie J, Jiang D, Xiao X. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. mBio 2021; 12:e0317321. [PMID: 34933451 PMCID: PMC8689567 DOI: 10.1128/mbio.03173-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Proper protein secretion is critical for fungal development and pathogenesis. However, the potential roles of proteins involved in the early secretory pathway are largely undescribed in filamentous fungi. p24 proteins are cargo receptors that cycle between the endoplasmic reticulum (ER) and Golgi apparatus in the early secretory pathway and recruit cargo proteins to nascent vesicles. This study characterized the function of two p24 family proteins (SsEmp24 and SsErv25) in a phytopathogenic fungus, Sclerotinia sclerotiorum. Both SsEmp24 and SsErv25 were upregulated during the early stages of S. sclerotiorum infection. ΔSsEmp24 mutant and ΔSsErv25 mutant displayed abnormal vegetative growth and sclerotium formation, were defective in infection cushion formation, and showed lower virulence on host plants. ΔSsEmp24 mutant had a more severe abnormal phenotype than ΔSsErv25 mutant, implying that SsEmp24 could play a central role in the early secretory pathway. Similar to their Saccharomyces cerevisiae counterparts, SsEmp24 interacted with SsErv25 and predominantly colocalized in the ER or nuclear envelope. The absence of SsEmp24 or SsErv25 led to defective in protein secretion in S. sclerotiorum, including the pathogenicity-related extracellular hydrolytic enzymes and effectors. It is proposed that SsEmp24 and SsErv25, components in the early secretory pathway, are involved in modulating morphogenesis and pathogenicity in S. sclerotiorum by mediating protein secretion. IMPORTANCE Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed. Although the role of the early secretory pathway-associated p24 proteins in S. cerevisiae has been well characterized, the function of these proteins in filamentous fungi was scarcely known prior to this study. The present research provides evidence that p24 proteins participate in the reproduction and pathogenesis of phytopathogenic fungi through the mediation of protein secretion. This research advances our understanding of p24 proteins in filamentous phytopathogenic fungi. In addition, the candidate cargos of the two p24 proteins, SsEmp24 and SsErv25, were screened out by comparative proteomics, which could aid the identification of novel development and virulence-associated factors in phytopathogenic fungi.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Qingna Shang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Chenmi Mo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yannong Xiao
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gaofeng Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Tashima Y, Hirata T, Maeda Y, Murakami Y, Kinoshita T. Differential use of p24 family members as cargo receptors for the transport of glycosylphosphatidylinositol-anchored proteins and Wnt1. J Biochem 2021; 171:75-83. [PMID: 34647572 DOI: 10.1093/jb/mvab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 02/01/2023] Open
Abstract
Complexes of p24 proteins act as cargo receptors for the transport of COPII vesicles from the endoplasmic reticulum. The major cargos of p24 complexes are hydrophilic proteins tethered to the endoplasmic reticulum membrane via a covalently attached glycosylphosphatidylinositol (GPI) or fatty acid. Each p24 complex is known to contain members from all four p24 subfamilies (p24α, p24β, p24γ, and p24δ). However, it remains unclear how the cargo specificities of p24 complexes are influenced by member stoichiometry. Here, we report the subunit compositions of mammalian p24 complexes involved in the transport of GPI-anchored proteins and Wnt1. We show that at least one p24α is required for the formation of p24 complexes, and that a p24 complex consisting of p24α2, p24β1, p24γ2, and p24δ1 is required for the efficient transport of GPI-anchored proteins. On the other hand, a p24 complex containing p24α2, p24α3, p24β1, p24γ, and p24δ1 is involved in the transport of Wnt1. Further, interactions between p24α2 and p24α3 are critical for Wnt1 transport. Thus, p24α and p24γ subfamily members are important for cargo selectivity. Lastly, our data fit with an octamer, rather than a tetramer, model of p24 complexes, where each complex consists of two proteins from each p24 subfamily.
Collapse
Affiliation(s)
- Yuko Tashima
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan.,Current Address: Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan.,Current Address: Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Shin YJ, Vavra U, Strasser R. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants. PLANT PHYSIOLOGY 2021; 186:1878-1892. [PMID: 33930152 PMCID: PMC8331152 DOI: 10.1093/plphys/kiab181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/04/2021] [Indexed: 05/31/2023]
Abstract
Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
23
|
Lemus L, Matić Z, Gal L, Fadel A, Schuldiner M, Goder V. Post-ER degradation of misfolded GPI-anchored proteins is linked with microautophagy. Curr Biol 2021; 31:4025-4037.e5. [PMID: 34314677 DOI: 10.1016/j.cub.2021.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are membrane-conjugated cell-surface proteins with diverse structural, developmental, and signaling functions and clinical relevance. Typically, after biosynthesis and attachment to the preassembled GPI anchor, GPI-APs rapidly leave the endoplasmic reticulum (ER) and rely on post-ER quality control. Terminally misfolded GPI-APs end up inside the vacuole/lysosome for degradation, but their trafficking itinerary to this organelle and the processes linked to their uptake by the vacuole/lysosome remain uncharacterized. In a yeast mutant that is lacking Pep4, a key vacuolar protease, several misfolded model GPI-APs accumulated in the vacuolar membrane. In the same mutant, macroautophagy and the multi-vesicular body (MVB) pathway were intact, hinting at a hitherto-unknown trafficking pathway for the degradation of misfolded GPI-APs. To unravel it, we used a genome-wide screen coupled to high-throughput fluorescence microscopy and followed the fate of the misfolded GPI-AP: Gas1∗. We found that components of the early secretory and endocytic pathways are involved in its targeting to the vacuole and that vacuolar transporter chaperones (VTCs), with roles in microautophagy, negatively affect the vacuolar uptake of Gas1∗. In support, we demonstrate that Gas1∗ internalizes from vacuolar membranes into membrane-bound intravacuolar vesicles prior to degradation. Our data link post-ER degradation with microautophagy.
Collapse
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| | - Zrinka Matić
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain
| | - Lihi Gal
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Veit Goder
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| |
Collapse
|
24
|
Mammalian GPI-anchor modifications and the enzymes involved. Biochem Soc Trans 2021; 48:1129-1138. [PMID: 32573677 DOI: 10.1042/bst20191142] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.
Collapse
|
25
|
Yang G, Banfield DK. Cdc1p is a Golgi-localized glycosylphosphatidylinositol-anchored protein remodelase. Mol Biol Cell 2020; 31:2883-2891. [PMID: 33112703 PMCID: PMC7927193 DOI: 10.1091/mbc.e20-08-0539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.
Collapse
Affiliation(s)
- Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| | - David K. Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| |
Collapse
|
26
|
Desnoyer N, Palanivelu R. Bridging the GAPs in plant reproduction: a comparison of plant and animal GPI-anchored proteins. PLANT REPRODUCTION 2020; 33:129-142. [PMID: 32945906 DOI: 10.1007/s00497-020-00395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/07/2020] [Indexed: 05/29/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) are a unique type of membrane-associated proteins in eukaryotes. GPI and GAP biogenesis and function have been well studied in non-plant models and play an important role in the fertility of mouse sperm and egg. Although GPI and GAP biogenesis and function in plants are less known, they are critical for flowering plant reproduction because of their essential roles in the fertility of the male and female gametophytes. In Eukaryotes, GPI, a glycolipid molecule, can be post-translationally attached to proteins to serve as an anchor in the plasma membrane. GPI-anchoring, compared to other modes of membrane attachment and lipidation processes, localizes proteins to the extracellular portion of the plasma membrane and confers several unique attributes including specialized sorting during secretion, molecular painting onto membranes, and enzyme-mediated release of protein through anchor cleavage. While the biosynthesis, structure, and role of GPI are mostly studied in mammals, yeast and protists, the function of GPI and GAPs in plants is being discovered, particularly in gametophyte development and function. Here, we review GPI biosynthesis, protein attachment, and remodeling in plants with insights about this process in mammals. Additionally, we summarize the reproductive phenotypes of all loss of function mutations in Arabidopsis GPI biosynthesis and GAP genes and compare these to the reproductive phenotypes seen in mice to serve as a framework to identify gaps in our understanding of plant GPI and GAPs. In addition, we present an analysis on the gametophyte expression of all Arabidopsis GAPs to assist in further research on the role of GPI and GAPs in all aspects of the gametophyte generation in the life cycle of a plant.
Collapse
Affiliation(s)
- Nicholas Desnoyer
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | | |
Collapse
|
27
|
Bernat-Silvestre C, De Sousa Vieira V, Sanchez-Simarro J, Pastor-Cantizano N, Hawes C, Marcote MJ, Aniento F. p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants. PLANT PHYSIOLOGY 2020; 184:1333-1347. [PMID: 32900981 PMCID: PMC7608175 DOI: 10.1104/pp.20.00880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the transport to the plasma membrane of glycosylphosphatidylinositol (GPI)-anchored proteins. We found that GPI-anchored proteins mostly localized to the ER in p24δ3δ4δ5δ6 mutant cells, in contrast to plasma membrane proteins with other types of membrane attachment. The plasma membrane localization of GPI-anchored proteins was restored in the p24δ3δ4δ5δ6 mutant upon transient expression of a single member of the p24 δ-1 subclass, RFP-p24δ5, which was dependent on the coiled-coil domain in p24δ5. The coiled-coil domain was also important for a direct interaction between p24δ5 and the GPI-anchored protein arabinogalactan protein4 (AGP4). These results suggest that Arabidopsis p24 proteins are involved in ER export and transport to the plasma membrane of GPI-anchored proteins.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Vanessa De Sousa Vieira
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - Judit Sanchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| |
Collapse
|
28
|
Brügger B. Membrane Biology: Disentangling Cellular Lipid Connections. Curr Biol 2020; 30:R1090-R1092. [PMID: 33022243 DOI: 10.1016/j.cub.2020.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological membranes consist of a surprisingly high number of different lipid species. Little is known about how individual lipids cooperate in modulating cellular functions. A new study suggests an intricate interplay of sphingolipids with ether lipids in vesicular transport.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Jiménez-Rojo N, Leonetti MD, Zoni V, Colom A, Feng S, Iyengar NR, Matile S, Roux A, Vanni S, Weissman JS, Riezman H. Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Curr Biol 2020; 30:3775-3787.e7. [DOI: 10.1016/j.cub.2020.07.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
30
|
Guo XY, Liu YS, Gao XD, Kinoshita T, Fujita M. Calnexin mediates the maturation of GPI-anchors through ER retention. J Biol Chem 2020; 295:16393-16410. [PMID: 32967966 DOI: 10.1074/jbc.ra120.015577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
31
|
Yilmaz A, Braverman-Gross C, Bialer-Tsypin A, Peretz M, Benvenisty N. Mapping Gene Circuits Essential for Germ Layer Differentiation via Loss-of-Function Screens in Haploid Human Embryonic Stem Cells. Cell Stem Cell 2020; 27:679-691.e6. [PMID: 32735778 DOI: 10.1016/j.stem.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells can differentiate into all embryonic germ layers, yet the genes essential for these cell fate transitions in human remain elusive. Here, we mapped the essential genes for the differentiation of human pluripotent stem cells (hPSCs) into the three germ layers by using a genome-wide loss-of-function library established in haploid hPSCs. Strikingly, we observed a high fraction of essential genes associated with plasma membrane, highlighting signaling pathways needed for each lineage differentiation. Interestingly, analysis of all hereditary neurological disorders uncovered high essentiality among microcephaly-causing genes. Furthermore, we demonstrated lineage-specific hierarchies among essential transcription factors and a set of Golgi- and endoplasmic reticulum-related genes needed for the differentiation into all germ layers. Our work sheds light on the gene networks regulating early gastrulation events in human by defining essential drivers of specific embryonic germ layer fates and essential genes for the exit from pluripotency.
Collapse
Affiliation(s)
- Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Carmel Braverman-Gross
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Anna Bialer-Tsypin
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Mordecai Peretz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
32
|
Lopez S, Perez-Linero AM, Manzano-Lopez J, Sabido-Bozo S, Cortes-Gomez A, Rodriguez-Gallardo S, Aguilera-Romero A, Goder V, Muñiz M. Dual Independent Roles of the p24 Complex in Selectivity of Secretory Cargo Export from the Endoplasmic Reticulum. Cells 2020; 9:cells9051295. [PMID: 32456004 PMCID: PMC7291304 DOI: 10.3390/cells9051295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors. Here, we show biochemically that the p24 complex associates at the ER with other cargo receptors in a COPII-dependent manner, forming high-molecular weight multireceptor complexes. Furthermore, live cell imaging analysis reveals that the p24 complex is required to retain in the ER secretory cargos when their specific receptors are absent. This requirement does not involve neither the unfolded protein response nor the retrograde transport from the Golgi. Our results suggest that, in addition to its role as a cargo receptor in the specialized GPI-anchored protein pathway, the p24 complex also plays an independent role in secretory cargo selectivity during its exit through the general ER export pathway, preventing the non-selective bulk flow of native secretory cargos. This mechanism would ensure receptor-regulated cargo transport, providing an additional layer of regulation of secretory cargo selectivity during ER export.
Collapse
Affiliation(s)
- Sergio Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Javier Manzano-Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sofia Rodriguez-Gallardo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain;
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Correspondence: ; Tel.: +34-954556529
| |
Collapse
|
33
|
Kobayashi A, Hirata T, Nishikaze T, Ninomiya A, Maki Y, Takada Y, Kitamoto T, Kinoshita T. α2,3 linkage of sialic acid to a GPI anchor and an unpredicted GPI attachment site in human prion protein. J Biol Chem 2020; 295:7789-7798. [PMID: 32321762 DOI: 10.1074/jbc.ra120.013444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are transmissible, lethal neurodegenerative disorders caused by accumulation of the aggregated scrapie form of the prion protein (PrPSc) after conversion of the cellular prion protein (PrPC). The glycosylphosphatidylinositol (GPI) anchor of PrPC is involved in prion disease pathogenesis, and especially sialic acid in a GPI side chain reportedly affects PrPC conversion. Thus, it is important to define the location and structure of the GPI anchor in human PrPC Moreover, the sialic acid linkage type in the GPI side chain has not been determined for any GPI-anchored protein. Here we report GPI glycan structures of human PrPC isolated from human brains and from brains of a knock-in mouse model in which the mouse prion protein (Prnp) gene was replaced with the human PRNP gene. LC-electrospray ionization-MS analysis of human PrPC from both biological sources indicated that Gly229 is the ω site in PrPC to which GPI is attached. Gly229 in human PrPC does not correspond to Ser231, the previously reported ω site of Syrian hamster PrPC We found that ∼41% and 28% of GPI anchors in human PrPCs from human and knock-in mouse brains, respectively, have N-acetylneuraminic acid in the side chain. Using a sialic acid linkage-specific alkylamidation method to discriminate α2,3 linkage from α2,6 linkage, we found that N-acetylneuraminic acid in PrPC's GPI side chain is linked to galactose through an α2,3 linkage. In summary, we report the GPI glycan structure of human PrPC, including the ω-site amino acid for GPI attachment and the sialic acid linkage type.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Akinori Ninomiya
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoko Takada
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
34
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, Lv X, Zheng L, Ge L. A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell 2020; 181:637-652.e15. [PMID: 32272059 DOI: 10.1016/j.cell.2020.03.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Guo
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiachen Lv
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zheng
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
37
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
38
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
39
|
Endoplasmic Reticulum Export of GPI-Anchored Proteins. Int J Mol Sci 2019; 20:ijms20143506. [PMID: 31319476 PMCID: PMC6678536 DOI: 10.3390/ijms20143506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) is an essential process in all eukaryotes driven by the cytosolic coat complex COPII, which forms vesicles at ER exit sites for transport of correctly assembled secretory cargo to the Golgi apparatus. The COPII machinery must adapt to the existing wide variety of different types of cargo proteins and to different cellular needs for cargo secretion. The study of the ER export of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), a special glycolipid-linked class of cell surface proteins, is contributing to address these key issues. Due to their special biophysical properties, GPI-APs use a specialized COPII machinery to be exported from the ER and their processing and maturation has been recently shown to actively regulate COPII function. In this review, we discuss the regulatory mechanisms by which GPI-APs are assembled and selectively exported from the ER.
Collapse
|
40
|
Zavodszky E, Hegde RS. Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors. eLife 2019; 8:46740. [PMID: 31094677 PMCID: PMC6541436 DOI: 10.7554/elife.46740] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
We have used misfolded prion protein (PrP*) as a model to investigate how mammalian cells recognize and degrade misfolded GPI-anchored proteins. While most misfolded membrane proteins are degraded by proteasomes, misfolded GPI-anchored proteins are primarily degraded in lysosomes. Quantitative flow cytometry analysis showed that at least 85% of PrP* molecules transiently access the plasma membrane en route to lysosomes. Unexpectedly, time-resolved quantitative proteomics revealed a remarkably invariant PrP* interactome during its trafficking from the endoplasmic reticulum (ER) to lysosomes. Hence, PrP* arrives at the plasma membrane in complex with ER-derived chaperones and cargo receptors. These interaction partners were critical for rapid endocytosis because a GPI-anchored protein induced to misfold at the cell surface was not recognized effectively for degradation. Thus, resident ER factors have post-ER itineraries that not only shield misfolded GPI-anchored proteins during their trafficking, but also provide a quality control cue at the cell surface for endocytic routing to lysosomes.
Collapse
|
41
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
42
|
Ouyang H, Du T, Zhou H, Wilson IBH, Yang J, Latgé JP, Jin C. Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth. Sci Rep 2019; 9:5857. [PMID: 30971734 PMCID: PMC6458175 DOI: 10.1038/s41598-019-42344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
Abstract
In fungi many proteins, which play important roles in maintaining the function of the cell wall and participating in pathogenic processes, are anchored to the cell surface by a glycosylphosphatidylinositol (GPI) anchor. It has been known that modification and removal of phosphoethanolamine (EtN-P) on the second mannose residue in GPI anchors is important for maturation and sorting of GPI anchored proteins in yeast and mammalian cells, but is a step absent from some protist parasites. In Aspergillus fumigatus, an opportunistic fungal pathogen causing invasive aspergillosis in humans, GPI-anchored proteins are known to be involved in cell wall synthesis and virulence. In this report the gene encoding A. fumigatus EtN-P transferase GPI7 was investigated. By deletion of the gpi7 gene, we evaluated the effects of EtN-P modification on the morphogenesis of A. fumigatus and localization of GPI proteins. Our results showed that deletion of the gpi7 gene led to reduced cell membrane GPI anchored proteins, the mis-localization of the cell wall GPI anchored protein Mp1, abnormal polarity, and autophagy in A. fumigatus. Our results suggest that addition of EtN-P of the second mannose on the GPI anchor is essential for transportation and localization of the cell wall GPI-anchored proteins.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jean-Paul Latgé
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
43
|
Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, Kubota T, Yamashita S, Nakatsukasa K, Kamura T, Iwayama K, Tokuyama K, Kiyonari H, Furuta Y, Shibahara J, Fukayama M, Enooku K, Okushin K, Tsutsumi T, Tateishi R, Tobe K, Asahara H, Koike K, Kadowaki T, Ueki K. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun 2019; 10:947. [PMID: 30814508 PMCID: PMC6393527 DOI: 10.1038/s41467-019-08591-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Dynamic metabolic changes occur in the liver during the transition between fasting and feeding. Here we show that transient ER stress responses in the liver following feeding terminated by Sdf2l1 are essential for normal glucose and lipid homeostasis. Sdf2l1 regulates ERAD through interaction with a trafficking protein, TMED10. Suppression of Sdf2l1 expression in the liver results in insulin resistance and increases triglyceride content with sustained ER stress. In obese and diabetic mice, Sdf2l1 is downregulated due to decreased levels of nuclear XBP-1s, whereas restoration of Sdf2l1 expression ameliorates glucose intolerance and fatty liver with decreased ER stress. In diabetic patients, insufficient induction of Sdf2l1 correlates with progression of insulin resistance and steatohepatitis. Therefore, failure to build an ER stress response in the liver may be a causal factor in obesity-related diabetes and nonalcoholic steatohepatitis, for which Sdf2l1 could serve as a therapeutic target and sensitive biomarker.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Sciences on Diabetes, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-865, Japan
| | - Shinsuke Itoh
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Kowa Company Limited, Nagoya, 460-0003, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ai Terai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, 143-8541, Japan
| | - Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan.,Graduate School of Natural Sciences, Nagoya City University, Nagoya, 464-8601, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kumpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Junji Shibahara
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Department of Infectious Disease, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences of Research, The University of Toyama, Toyama, 930-8555, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, 213-8507, Japan.
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| |
Collapse
|
44
|
Wang Y, Hirata T, Maeda Y, Murakami Y, Fujita M, Kinoshita T. Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. J Biol Chem 2019; 294:5038-5049. [PMID: 30728244 DOI: 10.1074/jbc.ra119.007472] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are linked to many cell-surface proteins, anchor these proteins in the membrane, and are well characterized. However, GPIs that exist in the free form on the mammalian cell surface remain largely unexplored. To investigate free GPIs in cultured cell lines and mouse tissues, here we used the T5-4E10 mAb (T5 mAb), which recognizes unlinked GPIs having an N-acetylgalactosamine (GalNAc) side chain linked to the first mannose at the nonreducing terminus. We detected free GPIs bearing the GalNAc side chain on the surface of Neuro2a and CHO, but not of HEK293, K562, and C2C12 cells. Furthermore, free GPIs were present in mouse pons, medulla oblongata, spinal cord, testis, epididymis, and kidney. Using a panel of Chinese hamster ovary cells defective in both GPI-transamidase and GPI remodeling pathway, we demonstrate that free GPIs follow the same structural remodeling pathway during passage from the endoplasmic reticulum to the plasma membrane as do protein-linked GPI. Specifically, free GPIs underwent post-GPI attachment to protein 1 (PGAP1)-mediated inositol deacylation, PGAP5-mediated removal of the ethanolamine phosphate from the second mannose, and PGAP3- and PGAP2-mediated fatty acid remodeling. Moreover, T5 mAb recognized free GPIs even if the inositol-linked acyl chain or ethanolamine-phosphate side chain linked to the second mannose is not removed. In contrast, addition of a fourth mannose by phosphatidylinositol glycan anchor biosynthesis class Z (PIGZ) inhibited T5 mAb-mediated detection of free GPIs. Our results indicate that free GPIs are normal components of the plasma membrane in some tissues and further characterize free GPIs in mammalian cells.
Collapse
Affiliation(s)
- Yicheng Wang
- From the Research Institute for Microbial Diseases and.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan and
| | | | - Yusuke Maeda
- From the Research Institute for Microbial Diseases and
| | - Yoshiko Murakami
- From the Research Institute for Microbial Diseases and.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan and
| | - Morihisa Fujita
- the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Taroh Kinoshita
- From the Research Institute for Microbial Diseases and .,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan and
| |
Collapse
|
45
|
Hou W, Jerome-Majewska LA. TMED2/emp24 is required in both the chorion and the allantois for placental labyrinth layer development. Dev Biol 2018; 444:20-32. [PMID: 30236446 DOI: 10.1016/j.ydbio.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
TMED2, a member of the transmembrane emp24 domain (TMED) family, is required for transport of cargo proteins between the ER and Golgi. TMED2 is also important for normal morphogenesis of mouse embryos and their associated placenta, and in fact Tmed2 homozygous mutant embryos arrest at mid-gestation due to a failure of placental labyrinth layer formation. Differentiation of the placental labyrinth layer depends on chorioallantoic attachment (contact between the chorion and allantois), and branching morphogenesis (mingling of cells from these two tissues). Since Tmed2 mRNA was found in both the chorion and allantois, and 50% of Tmed2 homozygous mutant embryos failed to undergo chorioallantoic attachment, the tissue-specific requirement of Tmed2 during placental labyrinth layer formation remained a mystery. Herein, we report differential localization of TMED2 protein in the chorion and allantois, abnormal ER retention of Fibronectin in Tmed2 homozygous mutant allantoises and cell-autonomous requirement for Tmed2 in the chorion for chorioallantoic attachment and fusion. Using an ex vivo model of explanted chorions and allantoises, we showed that chorioallantoic attachment failed to occur in 50% of samples when homozygous mutant chorions were recombined with wild type allantoises. Furthermore, though expression of genes associated with trophoblast differentiation was maintained in Tmed2 mutant chorions with chorioallantoic attachment, expression of these genes was attenuated. In addition, Tmed2 homozygous mutant allantoises could undergo branching morphogenesis, however the region of mixing between mutant and wild type cells was reduced, and expression of genes associated with trophoblast differentiation was also attenuated. Our data also suggest that Fibronectin is a cargo protein of TMED2 and indicates that Tmed2 is required cell-autonomously and non-autonomously in the chorion and the allantois for placental labyrinth layer formation.
Collapse
Affiliation(s)
- Wenyang Hou
- Department of Human Genetics, McGill University, 1205 Avenue Docteur Penfield, N5/13, Montreal, QC, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, 1205 Avenue Docteur Penfield, N5/13, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, 1001 Decarie Blvd, EM02210, Montreal, QC, Canada H4A 3J1; McGill University Health Centre Glen Site, 1001 Decarie Blvd, EM0.2210, Montreal, QC, Canada H4A 3J1.
| |
Collapse
|
46
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
47
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
48
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
49
|
Kinoshita T. Congenital Defects in the Expression of the Glycosylphosphatidylinositol-Anchored Complement Regulatory Proteins CD59 and Decay-Accelerating Factor. Semin Hematol 2018; 55:136-140. [DOI: 10.1053/j.seminhematol.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022]
|
50
|
Pastor-Cantizano N, Bernat-Silvestre C, Marcote MJ, Aniento F. Loss of Arabidopsis p24 function affects ERD2 trafficking and Golgi structure, and activates the unfolded protein response. J Cell Sci 2018; 131:jcs.203802. [PMID: 28871045 DOI: 10.1242/jcs.203802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, probably due to an inhibition of COPI-dependent Golgi-to-ER transport of ERD2a and thus retrieval of K/HDEL ligands. Although the p24δ3δ4δ5δ6 mutant showed enhanced sensitivity to salt stress, it did not show obvious phenotypic alterations under standard growth conditions. Interestingly, this mutant showed a constitutive activation of the unfolded protein response (UPR) and the transcriptional upregulation of the COPII subunit gene SEC31A, which may help the plant to cope with the transport defects seen in the absence of p24 proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| |
Collapse
|