1
|
Qin M, Ou R, He W, Han H, Zhang Y, Huang Y, Chen Z, Pan X, Chi Y, He S, Gao L. Salvianolic acid B enhances tissue repair and regeneration by regulating immune cell migration and Caveolin-1-mediated blastema formation in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155553. [PMID: 38820664 DOI: 10.1016/j.phymed.2024.155553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.
Collapse
Affiliation(s)
- Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rouxuan Ou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiyi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haoyang Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuxue Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaohan Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yali Chi
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University (SMU), Guangzhou, China.
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
3
|
King HO, Owusu-Boaitey KE, Fincher CT, Reddien PW. A transcription factor atlas of stem cell fate in planarians. Cell Rep 2024; 43:113843. [PMID: 38401119 PMCID: PMC11232438 DOI: 10.1016/j.celrep.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Collapse
Affiliation(s)
- Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Li S, Tao G. Perish in the Attempt: Regulated Cell Death in Regenerative and Nonregenerative Tissue. Antioxid Redox Signal 2023; 39:1053-1069. [PMID: 37218435 PMCID: PMC10715443 DOI: 10.1089/ars.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Significance: A cell plays its roles throughout its life span, even during its demise. Regulated cell death (RCD) is one of the key topics in modern biomedical studies. It is considered the main approach for removing stressed and/or damaged cells. Research during the past two decades revealed more roles of RCD, such as coordinating tissue development and driving compensatory proliferation during tissue repair. Recent Advances: Compensatory proliferation, initially identified in primitive organisms during the regeneration of lost tissue, is an evolutionarily conserved process that also functions in mammals. Among various types of RCD, apoptosis is considered the top candidate to induce compensatory proliferation in damaged tissue. Critical Issues: The roles of apoptosis in the recovery of nonregenerative tissue are still vague. The roles of other types of RCD, such as necroptosis and ferroptosis, have not been well characterized in the context of tissue regeneration. Future Directions: In this review article, we attempt to summarize the recent insights on the role of RCD in tissue repair. We focus on apoptosis, with expansion to ferroptosis and necroptosis, in primitive organisms with significant regenerative capacity as well as common mammalian research models. After gathering hints from regenerative tissue, in the second half of the review, we take a notoriously nonregenerative tissue, the myocardium, as an example to discuss the role of RCD in terminally differentiated quiescent cells. Antioxid. Redox Signal. 39, 1053-1069.
Collapse
Affiliation(s)
- Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Abstract
Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
7
|
Ge XL, Zhang X, Li CH, Pan K, He L, Ren WZ. Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats. Curr Med Sci 2023; 43:1013-1022. [PMID: 37837571 DOI: 10.1007/s11596-023-2779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/26/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver. METHODS We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated. RESULTS At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1. CONCLUSION In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.
Collapse
Affiliation(s)
- Xin-Lan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Xuan Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Chong-Hui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Ke Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Lei He
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| | - Wei-Zheng Ren
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
8
|
Castillo V, Díaz-Astudillo P, Corrales-Orovio R, San Martín S, Egaña JT. Comprehensive Characterization of Tissues Derived from Animals at Different Regenerative Stages: A Comparative Analysis between Fetal and Adult Mouse Skin. Cells 2023; 12:cells12091215. [PMID: 37174615 PMCID: PMC10177150 DOI: 10.3390/cells12091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Tissue regeneration capabilities vary significantly throughout an organism's lifespan. For example, mammals can fully regenerate until they reach specific developmental stages, after which they can only repair the tissue without restoring its original architecture and function. The high regenerative potential of fetal stages has been attributed to various factors, such as stem cells, the immune system, specific growth factors, and the presence of extracellular matrix molecules upon damage. To better understand the local differences between regenerative and reparative tissues, we conducted a comparative analysis of skin derived from mice at regenerative and reparative stages. Our findings show that both types of skin differ in their molecular composition, structure, and functionality. We observed a significant increase in cellular density, nucleic acid content, neutral lipid density, Collagen III, and glycosaminoglycans in regenerative skin compared with reparative skin. Additionally, regenerative skin had significantly higher porosity, metabolic activity, water absorption capacity, and elasticity than reparative skin. Finally, our results also revealed significant differences in lipid distribution, extracellular matrix pore size, and proteoglycans between the two groups. This study provides comprehensive data on the molecular and structural clues that enable full tissue regeneration in fetal stages, which could aid in developing new biomaterials and strategies for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Valentina Castillo
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
9
|
Wang S, Shibata Y, Fu L, Tanizaki Y, Luu N, Bao L, Peng Z, Shi YB. Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax. Cell Biosci 2023; 13:40. [PMID: 36823612 PMCID: PMC9948486 DOI: 10.1186/s13578-023-00989-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration. Intriguingly, plasma T3 level peaks during amphibian metamorphosis, which is very similar to postembryonic development in humans. In addition, many organs, such as heart and tail, also lose their regenerative ability during metamorphosis. These make frogs as a good model to address how the organs gradually lose their regenerative ability during development and what roles T3 may play in this. Early tail regeneration studies have been done mainly in the tetraploid Xenopus laevis (X. laevis), which is difficult for gene knockout studies. Here we use the highly related but diploid anuran X. tropicalis to investigate the role of T3 signaling in tail regeneration with gene knockout approaches. RESULTS We discovered that X. tropicalis tadpoles could regenerate their tail from premetamorphic stages up to the climax stage 59 then lose regenerative capacity as tail resorption begins, just like what observed for X. laevis. To test the hypothesis that T3-induced metamorphic program inhibits tail regeneration, we used TR double knockout (TRDKO) tadpoles lacking both TRα and TRβ, the only two receptor genes in vertebrates, for tail regeneration studies. Our results showed that TRs were not necessary for tail regeneration at all stages. However, unlike wild type tadpoles, TRDKO tadpoles retained regenerative capacity at the climax stages 60/61, likely in part by increasing apoptosis at the early regenerative period and enhancing subsequent cell proliferation. In addition, TRDKO animals had higher levels of amputation-induced expression of many genes implicated to be important for tail regeneration, compared to the non-regenerative wild type tadpoles at stage 61. Finally, the high level of apoptosis in the remaining uncut portion of the tail as wild type tadpoles undergo tail resorption after stage 61 appeared to also contribute to the loss of regenerative ability. CONCLUSIONS Our findings for the first time revealed an evolutionary conservation in the loss of tail regeneration capacity at metamorphic climax between X. laevis and X. tropicalis. Our studies with molecular and genetic approaches demonstrated that TR-mediated, T3-induced gene regulation program is responsible not only for tail resorption but also for the loss of tail regeneration capacity. Further studies by using the model should uncover how T3 modulates the regenerative outcome and offer potential new avenues for regenerative medicines toward human patients.
Collapse
Affiliation(s)
- Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biology, Nippon Medical School, Musashino, Tokyo, Japan
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
10
|
Sun F, Ou J, Shoffner AR, Luan Y, Yang H, Song L, Safi A, Cao J, Yue F, Crawford GE, Poss KD. Enhancer selection dictates gene expression responses in remote organs during tissue regeneration. Nat Cell Biol 2022; 24:685-696. [PMID: 35513710 DOI: 10.1038/s41556-022-00906-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Acute trauma stimulates local repair mechanisms but can also impact structures distant from the injury, for example through the activity of circulating factors. To study the responses of remote tissues during tissue regeneration, we profiled transcriptomes of zebrafish brains after experimental cardiac damage. We found that the transcription factor gene cebpd was upregulated remotely in brain ependymal cells as well as kidney tubular cells, in addition to its local induction in epicardial cells. cebpd mutations altered both local and distant cardiac injury responses, altering the cycling of epicardial cells as well as exchange between distant fluid compartments. Genome-wide profiling and transgenesis identified a hormone-responsive enhancer near cebpd that exists in a permissive state, enabling rapid gene expression in heart, brain and kidney after cardiac injury. Deletion of this sequence selectively abolished cebpd induction in remote tissues and disrupted fluid regulation after injury, without affecting its local cardiac expression response. Our findings suggest a model to broaden gene function during regeneration in which enhancer regulatory elements define short- and long-range expression responses to injury.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Duke University, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Adam R Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA. .,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Wang X, Zhao Y, Li D, Feng Y, Xie Y, Zhou Y, Zhou M, Wang Y, Qu J, Zuo W. Intrapulmonary distal airway stem cell transplantation repairs lung injury in chronic obstructive pulmonary disease. Cell Prolif 2021; 54:e13046. [PMID: 33960563 PMCID: PMC8168420 DOI: 10.1111/cpr.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage including chronic bronchitis and emphysema, which could further develop into respiratory failure. Many studies have revealed a potential regenerative function of the distal airway stem/progenitor cells (DASCs) after lung injury. Materials and Methods Mouse and human DASCs were expanded, analysed, and engrafted into injured mouse lungs. Single‐cell analyses were performed to reveal the differentiation path of the engrafted cells. Finally, human DASCs were transplanted into COPD mice induced by porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) administration. Results We showed that isolated mouse and human DASCs could be indefinitely expanded and were able to further differentiate into mature alveolar structures in vitro. Single‐cell analysis indicated that the engrafted cells expressed typical cellular markers of type I alveolar cells as well as the specific secreted proteins. Interestingly, transplantation of human DASCs derived from COPD patients into the lungs of NOD‐SCID mice with COPD injury repaired the tissue damage and improved the pulmonary function. Conclusions The findings demonstrated that functional lung structure could be reconstituted by intrapulmonary transplantation of DASCs, suggesting a potential therapeutic role of DASCs transplantation in treatment for chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Xiaofan Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dandan Li
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueqing Zhou
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Kiangnan Stem Cell Institute, Zhejiang, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zuo
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Kiangnan Stem Cell Institute, Zhejiang, China.,Ningxia Medical University, Yinchuan, China.,The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Li Y, Ge L, Chen X, Mao Y, Gu X, Ren B, Zeng Y, Chen M, Chen S, Liu J, Yang Y, Xu H. The common YAP activation mediates corneal epithelial regeneration and repair with different-sized wounds. NPJ Regen Med 2021; 6:16. [PMID: 33772031 PMCID: PMC7997881 DOI: 10.1038/s41536-021-00126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration/repair after injury can be endowed by adult stem cells (ASCs) or lineage restricted and even terminally differentiated cells. In corneal epithelium, regeneration after a large wound depends on ASCs (limbal epithelial stem cells, LESCs), whereas repair after a small wound is LESCs-independent. Here, using rat corneal epithelial wounds with different sizes, we show that YAP activation promotes the activation and expansion of LESCs after a large wound, as well as the reprogramming of local epithelial cells (repairing epithelial cells) after a small wound, which contributes to LESCs-dependent and -independent wound healing, respectively. Mechanically, we highlight that the reciprocal regulation of YAP activity and the assembly of cell junction and cortical F-actin cytoskeleton accelerates corneal epithelial healing with different-sized wounds. Together, the common YAP activation and the underlying regulatory mechanism are harnessed by LESCs and lineage-restricted epithelial cells to cope with corneal epithelial wounds with different sizes.
Collapse
Affiliation(s)
- Yijian Li
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xia Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China ,grid.263906.8Southwest University, Chongqing, China
| | - Yumei Mao
- grid.449525.b0000 0004 1798 4472North Sichuan Medical College, Sichuan, China
| | - Xianliang Gu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yuxiao Zeng
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Min Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Siyu Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jinhua Liu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yuli Yang
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
13
|
Davidian D, Ziman B, Escobar AL, Oviedo NJ. Direct Current Electric Stimulation Alters the Frequency and the Distribution of Mitotic Cells in Planarians. Bioelectricity 2021; 3:77-91. [PMID: 34476379 DOI: 10.1089/bioe.2020.0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: The use of direct current electric stimulation (DCS) is an effective strategy to treat disease and enhance body functionality. Thus, treatment with DCS is an attractive biomedical alternative, but the molecular underpinnings remain mostly unknown. The lack of experimental models to dissect the effects of DCS from molecular to organismal levels is an important caveat. Here, we introduce the planarian flatworm Schmidtea mediterranea as a tractable organism for in vivo studies of DCS. We developed an experimental method that facilitates the application of direct current electrical stimulation to the whole planarian body (pDCS). Materials and Methods: Planarian immobilization was achieved by combining treatment with anesthesia, agar embedding, and low temperature via a dedicated thermoelectric cooling unit. Electric currents for pDCS were delivered using pulled glass microelectrodes. The electric potential was supplied through a constant voltage power supply. pDCS was administered up to six hours, and behavioral and molecular effects were measured by using video recordings, immunohistochemistry, and gene expression analysis. Results: The behavioral immobilization effects are reversible, and pDCS resulted in a redistribution of mitotic cells along the mediolateral axis of the planarian body. The pDCS effects were dependent on the polarity of the electric field, which led to either increase in reductions in mitotic densities associated with the time of pDCS. The changes in mitotic cells were consistent with apparent redistribution in gene expression of the stem cell marker smedwi-1. Conclusion: The immobilization technique presented in this work facilitates studies aimed at dissecting the effects of exogenous electric stimulation in the adult body. Treatment with DCS can be administered for varying times, and the consequences evaluated at different levels, including animal behavior, cellular and transcriptional changes. Indeed, treatment with pDCS can alter cellular and transcriptional parameters depending on the polarity of the electric field and duration of the exposure.
Collapse
Affiliation(s)
- Devon Davidian
- Department of Molecular & Cell Biology and University of California Merced, Merced, California, USA
| | - Benjamin Ziman
- Department of Molecular & Cell Biology and University of California Merced, Merced, California, USA
| | - Ariel L Escobar
- Department of Bioengineering, University of California Merced, Merced, California, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology and University of California Merced, Merced, California, USA
| |
Collapse
|
14
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
15
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Nazimova SV, Ivanova MY, Chereshneva EV, Yaglov VV, Lomanovskaya TA. Transcription factors β-catenin and Hex in postnatal development of the rat adrenal cortex: implication in proliferation control. Heliyon 2021; 7:e05932. [PMID: 33490685 PMCID: PMC7809185 DOI: 10.1016/j.heliyon.2021.e05932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of growth, maturation, and cell turnover in adrenal cortex during postnatal development has been significantly less studied than in embryonic period, while elucidation of factors mediating its normal postnatal morphogenesis could clarify mechanisms of tumorigenesis in adrenal cortex. Expression of transcription factors Hex, β-catenin, and Wnt signaling in the adrenal cortex of male pubertal and postpubertal Wistar rats were examined. Adrenal cortex morphology and hormone production during postnatal development were also studied. Adrenocortical zones demonstrated similar reduction of Ki-67-expressing cells, but different patterns of morphological and functional changes. Age-dependent decrease in percentage of cells with membrane localization of β-catenin and stable rate of cells with nuclear β-catenin, indicative of Wnt signaling activation, were revealed in each cortical zone. Nuclear β-catenin was not observed in immature areas of zona fasciculata. No association between Wnt signaling activation and rates of proliferation as well as changes in secretion of adrenocortical hormones was observed in postnatal development of rat adrenal cortex. Hex, known as antiproliferative factor, showed up-regulation of expression after puberty. Strong inverse correlations between ratio of Hex-positive cells and proliferating cells were found in zona glomerulosa and zona fasciculata. Zona reticularis demonstrated moderate correlation. Thus, these findings suggest a role for Hex in proliferation control during postnatal development of the rat adrenal cortex and possible implication of Hex down-regulation in adrenocortical dysplasia and neoplasia, which requires further study. Evaluation of Hex expression may also be considered a potent tool in assessment of cell proliferation in rat adrenal cortex.
Collapse
Affiliation(s)
- Natalya V Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Dibakhan A Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia.,Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey S Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Svetlana V Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Marina Y Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta V Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valentin V Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Tatiana A Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Piovani L, Czarkwiani A, Ferrario C, Sugni M, Oliveri P. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. BMC Biol 2021; 19:9. [PMID: 33461552 PMCID: PMC7814545 DOI: 10.1186/s12915-020-00937-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.
Collapse
Affiliation(s)
- Laura Piovani
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Center for Life Origins and Evolution, University College London, London, UK
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Present Address: DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Dresden, Germany
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy.
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK.
- Center for Life Origins and Evolution, University College London, London, UK.
| |
Collapse
|
17
|
Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry. Mol Biol Rep 2021; 48:513-526. [PMID: 33442831 DOI: 10.1007/s11033-020-06083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Genus Zephyranthes consists of economically important plant species due to their high ornamental value and presence of valuable bioactive compounds. However, this genus propagates by asexual division only which gives slow propagation rate. Plant tissue culture has the potential to provide efficient techniques for rapid multiplication and genetic improvement of the genus. In this work, a dual in vitro regeneration system through callus mediated shoot regeneration and direct shoot regeneration in species Zephyranthes candida, Zephyranthes grandiflora and Zephyranthes citrina was investigated. Bulb, leaf and root explants were cultured on Murashige and Skoog (MS) medium amended with different plant growth regulators (PGR's) viz. 2,4-dichlorophenoxyacetic acid (2,4-D), 1-Naphthalene acetic acid (NAA), 6-benzyl amino purine (BAP), N-phenyl-N'-1,2,3 -thiadiazol-5-ylurea (TDZ), 6-Furfuryl- aminopurine (KIN) alone or in combinations for callus induction and regeneration. Only bulb explants showed callus induction and regeneration response on different PGR combinations with a varied response in callus induction percentage, callus color and callus texture. Creamish compact callus (CC) was induced on 2 mg L[Formula: see text] 2,4-D, brown friable callus (BF) on 2 mg L[Formula: see text] NAA + 1 mg L[Formula: see text] BAP and green friable callus (GF) callus on 1 mg L[Formula: see text] KIN + 3 mg L[Formula: see text] NAA. The maximum shoot multiplication from different callus types (indirect organogenesis) was achieved on 2 mg L[Formula: see text] BAP alone without combinations. Bulb explants of Z. grandiflora induced maximum callus induction percentage (86.4%) and shoot regeneration percentage (83.5%) with the maximum 08 shoots per 150 mg callus mass. The induction and regeneration response was followed in the order of Z. grandiflora > Z. candida > Z. citrina. Similarly, maximum direct organogenesis from bulb explants was obtained in Z. grandiflora (93.3%) followed by Z. candida (91.5%) and Z. citrina (90.4%) on 3 mg L[Formula: see text] TDZ amended MS media. Adventitious root induction was achieved on 2 mg L[Formula: see text] IBA with a maximum of 8 roots per shoot. The in vitro raised plantlets were successfully acclimatized in the field with 85% survival efficiency. The genome size (2C DNA content) of the field-grown plants and in vitro regenerated plants, evaluated through flow cytometry technique, were similar and showed no ploidy changes. An efficient mass propagation protocol was established for obtaining plants with unaltered genome size in the three species of Zephyranthes.
Collapse
|
18
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Ferrario C, Czarkwiani A, Dylus DV, Piovani L, Candia Carnevali MD, Sugni M, Oliveri P. Extracellular matrix gene expression during arm regeneration in Amphiura filiformis. Cell Tissue Res 2020; 381:411-426. [PMID: 32350640 DOI: 10.1007/s00441-020-03201-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
Abstract
Extracellular matrix (ECM) plays a dynamic role during tissue development and re-growth. Body part regeneration efficiency relies also on effective ECM remodelling and deposition. Among invertebrates, echinoderms are well known for their striking regenerative abilities since they can rapidly regenerate functioning complex structures. To gather insights on the involvement of ECM during arm regeneration, the brittle star Amphiura filiformis was chosen as experimental model. Eight ECM genes were identified and cloned, and their spatio-temporal and quantitative expression patterns were analysed by means of whole mount in situ hybridisation and quantitative PCR on early and advanced regenerative stages. Our results show that almost none of the selected ECM genes are expressed at early stages of regeneration, suggesting a delay in their activation that may be responsible for the high regeneration efficiency of these animals, as described for other echinoderms and in contrast to most vertebrates. Moreover, at advanced stages, these genes are spatially and temporally differentially expressed, suggesting that the molecular regulation of ECM deposition/remodelling varies throughout the regenerative process. Phylogenetic analyses of the identified collagen-like genes reveal complex evolutionary dynamics with many rounds of duplications and losses and pinpointed their homologues in selected vertebrates. The study of other ECM genes will allow a better understanding of ECM contribution to brittle star arm regeneration.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria, 16, 20133, Milan, Italy
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT,, UK
- Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - David Viktor Dylus
- Department of Computational Biology, University Lausanne, Genopode, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Genopode, 1015, Lausanne, Switzerland
| | - Laura Piovani
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT,, UK
| | - Maria Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy.
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria, 16, 20133, Milan, Italy.
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133, Milan, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT,, UK.
| |
Collapse
|
20
|
Pinal N, Calleja M, Morata G. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration. Open Biol 2020; 9:180256. [PMID: 30836847 PMCID: PMC6451367 DOI: 10.1098/rsob.180256] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It appears to be conserved in all animal species where it regulates important physiological functions involved in apoptosis, cell migration, cell proliferation and regeneration. In this review, we focus on the functions of JNK in Drosophila imaginal discs, where it has been reported that it can induce both cell death and cell proliferation. We discuss this apparent paradox in the light of recent findings and propose that the pro-apoptotic and the pro-proliferative functions are intrinsic properties of JNK activity. Whether one function or another is predominant depends on the cellular context.
Collapse
Affiliation(s)
- Noelia Pinal
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| | | | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| |
Collapse
|
21
|
Fields C, Bischof J, Levin M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology (Bethesda) 2020; 35:16-30. [DOI: 10.1152/physiol.00027.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems’ information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, Caunes Minervois, France
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
22
|
Mironova V, Xu J. A single-cell view of tissue regeneration in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:149-154. [PMID: 31655397 DOI: 10.1016/j.pbi.2019.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
With the development of advanced molecular-genetic and computational technologies it becomes possible to tackle individual cells within a regenerating tissue, to define morphogenetic and cellular changes in space and time by live imaging, to acquire transcriptome status with single-cell RNA sequencing (ScRNA-seq), and to delineate the candidate mechanisms by iterative computational and experimental approaches. Here, we review recent findings and current knowledge on tissue regeneration in plants, focusing on four evolutionarily conserved scenarios that a cell may embark on to facilitate the regeneration of a plant tissue structure lost by injury, namely cell death, division, dedifferentiation, and transdifferentiation. Understanding of these scenarios at single-cell resolution, singularly and in combination, could provide an unprecedented view of tissue regeneration in plants.
Collapse
Affiliation(s)
- Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia.
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
23
|
Akhtar RW, Liu Z, Wang D, Ba H, Shah SAH, Li C. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). Gen Comp Endocrinol 2019; 283:113235. [PMID: 31369730 DOI: 10.1016/j.ygcen.2019.113235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/21/2019] [Accepted: 07/28/2019] [Indexed: 01/04/2023]
Abstract
Deer antlers offer a unique model to study organ regeneration in mammals. Antler regeneration relies on the pedicle periosteum (PP) cells and is triggered by a decrease in circulating testosterone (T). The molecular mechanism for antler regeneration is however, unclear. Label-free liquid chromatography-mass spectrometry (LC-MS/MS) was used to identify differentially-expressed proteins (DEPs) in the regeneration-potentiated PP (under low T environment) over the non-regeneration-potentiated PP (under high T environment). Out of total 273 DEPs, 189 were significantly up-regulated and 84 were down-regulated from these comparisons: after castration vs before castration, natural T vs before castration, and exogenous T vs before castration. We focused on the analysis only of those DEPs that were present in fully permissive environment to antler regeneration (low T). Nine transduction pathways were identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, including the estrogen signaling pathway. A total of 639 gene ontology terms were found to be significantly enriched in regeneration-potentiated PP (low T) from the DEPs. Reliability of the label free LC-MS/MS was determined by qRT-PCR to estimate the expression level of selected genes. The results suggest that up-regulated heat shock proteins (HSP90AB1, HSP90B1), peptidyl-prolyl cis-trans isomerase 4 (FKBP4), mitogen-activated protein kinase 3 (MAPK3) and calreticulin (CALR) and down-regulated SHC-transforming protein 1 (SHC1), heat shock protein family A member 1A (HSPA1A) and proto-oncogene tyrosine-protein kinase (SRC) may be associated directly or indirectly with antler regeneration. Further studies are required to investigate the roles of these proteins in regeneration using appropriate in vivo models.
Collapse
Affiliation(s)
- Rana Waseem Akhtar
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhen Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China.
| | - Syed Aftab Hussain Shah
- Pakistan Scientific & Technological Information Centre (PASTIC), Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China; Changchun Sci-Tech University, Changchun, China.
| |
Collapse
|
24
|
Abstract
Regeneration is the process by which lost or damaged tissue is replaced in adult organisms. Some organisms exhibit robust regenerative capabilities, while others, including humans, do not. Understanding the molecular principles governing the regenerative malleability of different organisms is of fundamental biological interest. Further, this problem has clear impact for the field of "regenerative medicine," which aspires to understand how human cells, tissues, and organs may be restored to normal function in scenarios of disease, damage, or age-related decline. This review will focus on the planarian flatworm as a powerful model system for studying the role of Ca2+ signals in regeneration. These invertebrate animals display an astounding innate regenerative capacity capable of regenerating complete organisms from tiny, excised fragments. New knowledge and methodological capabilities in this system highlight the potential for studying the role of Ca2+ signaling at multiple stages of the regenerative blueprint that controls stem cell behavior in vivo.
Collapse
Affiliation(s)
- Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
25
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
26
|
Fujita S, Kuranaga E, Nakajima YI. Cell proliferation controls body size growth, tentacle morphogenesis, and regeneration in hydrozoan jellyfish Cladonema pacificum. PeerJ 2019; 7:e7579. [PMID: 31523518 PMCID: PMC6714968 DOI: 10.7717/peerj.7579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Shi Y, Dong M, Zhou Y, Li W, Gao Y, Han L, Chen M, Lin H, Zuo W, Jin F. Distal airway stem cells ameliorate bleomycin-induced pulmonary fibrosis in mice. Stem Cell Res Ther 2019; 10:161. [PMID: 31159891 PMCID: PMC6547529 DOI: 10.1186/s13287-019-1257-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis is characterized by loss of lung epithelial cells and inexorable progression of fibrosis with no effective and approved treatments. The distal airway stem/progenitor cells (DASCs) have been shown to have potent regenerative capacity after lung injury. In this work, we aimed to define the role of mouse DASCs (mDASCs) in response to bleomycin-induced lung fibrosis in mice. Methods The mDASCs were isolated, expanded in vitro, and labeled with GFP by lentiviral infection. The labeled mDASCs were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice on day 7. Pathological change, collagen content, α-SMA expression, lung function, and mortality rate were assessed at 7, 14, and 21 days after bleomycin administration. Tissue section and direct fluorescence staining was used to show the distribution and differentiation of mDASCs in lung. Results The transplanted mDASCs could incorporate, proliferate, and differentiate into type I pneumocytes in bleomycin-injured lung. They also inhibited fibrogenesis by attenuating the deposition of collagen and expression of α-SMA. In addition, mDASCs improved pulmonary function and reduce mortality in bleomycin-induced pulmonary fibrosis mice. Conclusions The data strongly suggest that mDASCs could ameliorate bleomycin-induced pulmonary fibrosis by promotion of lung regeneration and inhibition of lung fibrogenesis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1257-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Shi
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingqing Dong
- Xi'an International University, Xi'an, 710077, People's Republic of China
| | - Yueqing Zhou
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.,Kiangnan Stem Cell Institute, Zhejiang, 311300, People's Republic of China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Luyao Han
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Hongwei Lin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Wei Zuo
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China. .,Kiangnan Stem Cell Institute, Zhejiang, 311300, People's Republic of China. .,Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
28
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
29
|
Maciel EI, Jiang C, Barghouth PG, Nobile CJ, Oviedo NJ. The planarian Schmidtea mediterranea is a new model to study host-pathogen interactions during fungal infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:18-27. [PMID: 30571995 PMCID: PMC6333478 DOI: 10.1016/j.dci.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 05/06/2023]
Abstract
Candida albicans is one of the most common fungal pathogens of humans. Currently, there are limitations in the evaluation of C. albicans infection in existing animal models, especially in terms of understanding the influence of specific infectious stages of the fungal pathogen on the host. We show that C. albicans infects, grows and invades tissues in the planarian flatworm Schmidtea mediterranea, and that the planarian responds to infection by activating components of the host innate immune system to clear and repair host tissues. We study different stages of C. albicans infection and demonstrate that planarian stem cells increase division in response to fungal infection, a process that is likely evolutionarily conserved in metazoans. Our results implicate MORN2 and TAK1/p38 signaling pathways as possible mediators of the host innate immune response to fungal infection. We propose the use of planarians as a model system to investigate host-pathogen interactions during fungal infections.
Collapse
Affiliation(s)
- Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Cen Jiang
- Department of Molecular & Cell Biology, University of California, Merced, USA; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Clarissa J Nobile
- Department of Molecular & Cell Biology, University of California, Merced, USA; Health Sciences Research Institute, University of California, Merced, USA.
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, USA; Health Sciences Research Institute, University of California, Merced, USA.
| |
Collapse
|
30
|
Lavrov AI, Bolshakov FV, Tokina DB, Ereskovsky AV. Sewing up the wounds : The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:351-371. [PMID: 30421540 DOI: 10.1002/jez.b.22830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Sponges (Porifera) demonstrate prominent regeneration abilities and possess a wide variety of mechanisms, used during this process. In the current study, we combined in vivo observations with histological, immunohistochemical, and ultrastructural technics to elucidate the fine cellular mechanisms of the regeneration in the calcareous sponge Leucosolenia cf. variabilis. The regeneration of Leucosolenia cf. variabilis ends within 4-6 days. The crucial step of the process is the formation of the transient regenerative membrane, formed by the epithelial morphogenesis-spreading of the intact exopinacoderm and choanoderm. The spreading of the choanoderm is accompanied by the transdifferentiation of the choanocytes. The regenerative membrane develops without any contribution of the mesohyl cells. Subsequently, the membrane gradually transforms into the body wall. The cell proliferation is neither affected nor contributes to the regeneration at any stage. Thus, Leucosolenia cf. variabilis regeneration relies on the remodeling of the intact tissues through the epithelial morphogenesis, accompanied by the transdifferentiation of some differentiated cell types, which makes it similar to the regeneration in homoscleromorphs and eumetazoans.
Collapse
Affiliation(s)
- Andrey I Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| | - Alexander V Ereskovsky
- Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| |
Collapse
|
31
|
Feng L, Vujicic S, Dietrich ME, Litbarg N, Setty S, Antoni A, Rauch J, Levine JS. Repeated exposure of epithelial cells to apoptotic cells induces the specific selection of an adaptive phenotype: Implications for tumorigenesis. J Biol Chem 2018; 293:10245-10263. [PMID: 29769319 DOI: 10.1074/jbc.ra117.001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/08/2018] [Indexed: 11/06/2022] Open
Abstract
The consequences of apoptosis extend beyond the mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here, we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPTSEL) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPTSEL responders fully resistant to apoptotic target-induced death (∼85% survival versus <10% survival of nonselected cells) but do so while retaining sensitivity to all other target-induced responses, including inhibition of proliferation and growth. Moreover, the resistance of BU.MPTSEL responders is specific to target-induced apoptosis, as apoptosis in response to other suicidal stimuli occurs normally. Comparison of the signaling events induced by apoptotic target exposure in selected versus nonselected responders indicated that the acquired resistance of BU.MPTSEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets.
Collapse
Affiliation(s)
- Lanfei Feng
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | - Snezana Vujicic
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | | | - Natalia Litbarg
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | - Suman Setty
- Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | - Angelika Antoni
- the Department of Biology, Kutztown University of Pennsylvania, Kutztown, Pennsylvania 19530, and
| | - Joyce Rauch
- the Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jerrold S Levine
- From the Section of Nephrology, Department of Medicine, and .,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| |
Collapse
|
32
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
33
|
Affiliation(s)
- Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
34
|
Abstract
Within an organism, environmental stresses can trigger cell death, particularly apoptotic cell death. Apoptotic cells, themselves, are potent regulators of their cellular environment, involved primarily in effecting homeostatic control. Tumors, especially, exist in a dynamic balance of cell proliferation and cell death. This special feature of the tumorous microenvironment—namely, the prominence and persistence of cell death—necessarily entails a magnification of the extrinsic, postmortem effects of dead cells. In both normal and malignant tissues, apoptotic regulation is exerted through immune as well as non-immune mechanisms. Apoptotic cells suppress the repertoire of immune reactivities, both by attenuating innate (especially inflammatory) responses and by abrogating adaptive responses. In addition, apoptotic cells modulate multiple vital cell activities, including survival, proliferation (cell number), and growth (cell size). While the microenvironment of the tumor may contribute to apoptosis, the postmortem effects of apoptotic cells feature prominently in the reciprocal acclimatization between the tumor and its environment. In much the same way that pathogens evade the host’s defenses through exploitation of key aspects of innate and adaptive immunity, cancer cells subvert several normal homeostatic processes, in particular wound healing and organ regeneration, to transform and overtake their environment. In understanding this subversion, it is crucial to view a tumor not simply as a clone of malignant cells, but rather as a complex and highly organized structure in which there exists a multidirectional flow of information between the cancer cells themselves and the multiple other cell types and extracellular matrix components of which the tumor is comprised. Apoptotic cells, therefore, have the unfortunate consequence of facilitating tumorigenesis and tumor survival.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Jerrold S Levine
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
35
|
He X, Guan H, Liang W, Huang Z, Xu L, Zhang P, Xu F, Li Y. Exendin-4 modifies adipogenesis of human adipose-derived stromal cells isolated from omentum through multiple mechanisms. Int J Obes (Lond) 2018. [PMID: 29515208 DOI: 10.1038/s41366-018-0024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abdominal obesity is considered a major factor in the development of metabolic disorders. Glucagon-like peptide-1 (GLP-1) has been reported to have positive effects on improving body metabolism and to reducing insulin resistance. However, it remains less clear whether GLP-1 plays a role in the adipogenesis process of visceral fat. METHODS Here, we analyzed the in vitro actions and probable mechanisms of Exendin-4, a GLP-1 receptor agonist, on human adipose-derived stromal cells (hADSCs) isolated from omentum. RESULTS Our results demonstrated that Exendin-4 improved cell viability via promoting proliferation and inhibiting apoptosis in hADSCs isolated from omentum. Mechanistically, the activation of MAPK/ ERK1/2, Akt/GSK-3β, and PKA/CREB pathways and downstream consequences induced are involved in the proliferative and anti-apoptotic roles of Exendin-4. More intriguingly, Exendin-4 could promote the differentiation of omental hADSCs. Underlying mechanisms of the differentiation of hADSCs are associated with the upregulation of the expression of pro-adipogenic genes and downregulation of the expression of anti-adipogenic genes. CONCLUSION Our data demonstrate that Exendin-4 modifies adipogenesis of hADSCs isolated from omentum through multiple mechanisms, these effects could contribute to the protective actions of GLP-1 receptor agonist body metabolism and insulin sensitivity.
Collapse
Affiliation(s)
- Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhimin Huang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijuan Xu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengyuan Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Diabetes Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Kha CX, Son PH, Lauper J, Tseng KAS. A model for investigating developmental eye repair in Xenopus laevis. Exp Eye Res 2018; 169:38-47. [PMID: 29357285 DOI: 10.1016/j.exer.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Philip H Son
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Julia Lauper
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States.
| |
Collapse
|
37
|
Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Oliveri P, Martinez P, Candia Carnevali MD. Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. Results Probl Cell Differ 2018; 65:285-320. [PMID: 30083925 DOI: 10.1007/978-3-319-92486-1_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy.
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | | |
Collapse
|
38
|
Elliott SA, Alvarado AS. Planarians and the History of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology. Methods Mol Biol 2018; 1774:207-239. [PMID: 29916157 DOI: 10.1007/978-1-4939-7802-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Regeneration has captured human imagination for much of recorded history. Its sociological influence is evident in ancient and modern folklore, art, politics, and even language. In many ways, the study of regeneration helped establish the field of biology as a legitimate scientific discipline. Furthermore, regeneration research yielded critical insights that challenged flawed scientific models and uncovered fundamental principles underpinning the workings of life on this planet. This chapter details some ways in which the study of animal regeneration-with special emphasis on planarian regeneration-influenced the evolution of thought in biology. This includes contributions to the discovery of stem cells, the nature of heredity, and key concepts in pattern formation.
Collapse
|
39
|
Hota J, Pati SS, Mahapatra PK. Spinal cord self-repair during tail regeneration in Polypedates maculatus and putative role of FGF1 as a neurotrophic factor. J Chem Neuroanat 2017; 88:70-75. [PMID: 29133075 DOI: 10.1016/j.jchemneu.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Spinal cord injury could be fatal in man and often results in irreversible medical conditions affecting mobility. However, anuran amphibians win over such pathological condition by the virtue of regeneration abilities. The tail of anuran tadpoles therefore allures researchers to study spinal cord injury and self- repair process. In the present study, we inflicted injury to the spinal cord by means of surgical transection of the tail and investigated the self-repair activity in the tadpoles of the Indian tree frog Polypedates maculatus. We also demonstrate for the first time by immunofluorescence localization the expression pattern of Fibroblast Growth Factor1 (FGF1) during spinal cord regeneration which has not been documented earlier in anurans. FGF1, bearer of the mitogenic and neurotrophic properties seems to be expressed by progenitor cells that facilitate regeneration. Spinal cord during tail regeneration in P. maculatus attains functional recovery within a span of 2 weeks thus enabling the organism to survive in an aquatic medium till metamorphosis. Moreover, during the course of spinal cord regeneration in the regenerating tail, melanocytes showed an interesting behaviour as these neural crest derivatives were missing near the early regenerates until their reappearance where they were positioned in close proximity with the regenerated spinal cord as in the normal tail.
Collapse
Affiliation(s)
- Jutshina Hota
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| | - Sushri Sangita Pati
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| | - Pravati Kumari Mahapatra
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
40
|
Cheng F, Eriksson JE. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb Perspect Biol 2017; 9:9/9/a022046. [PMID: 28864602 DOI: 10.1101/cshperspect.a022046] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies.
Collapse
Affiliation(s)
- Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
41
|
Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation. Sci Rep 2017; 7:8362. [PMID: 28827644 PMCID: PMC5567176 DOI: 10.1038/s41598-017-08947-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after apical resection by cardiomyocyte proliferation. Thus, we tested the hypothesis that apical resection either inhibits, delays, or reverses cardiomyocyte centrosome disassembly and binucleation. Our data show that apical resection rather transiently accelerates centrosome disassembly as well as the rate of binucleation. Consistent with the nearly 2-fold increased rate of binucleation there was a nearly 2-fold increase in the number of cardiomyocytes in mitosis indicating that the majority of injury-induced cardiomyocyte cell cycle activity results in binucleation, not proliferation. Concurrently, cardiomyocytes undergoing cytokinesis from embryonic hearts exhibited midbody formation consistent with successful abscission, whereas those from 3 day-old cardiomyocytes after apical resection exhibited midbody formation consistent with abscission failure. Lastly, injured hearts failed to fully regenerate as evidenced by persistent scarring and reduced wall motion. Collectively, these data suggest that should a regenerative program exist in the newborn mammalian heart, it is quickly curtailed by developmental mechanisms that render cardiomyocytes post-mitotic.
Collapse
|
42
|
Cippà PE, Fehr T. Pharmacological modulation of cell death in organ transplantation. Transpl Int 2017; 30:851-859. [PMID: 28480540 DOI: 10.1111/tri.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
New options to pharmacologically modulate fundamental mechanisms of regulated cell death are rapidly evolving and found first clinical applications in cancer therapy. Here, we present an overview on how the recent advances in the understanding of the biology and pharmacology of cell death might influence research and clinical practice in solid organ transplantation. Of particular interest are the novel opportunities related to organ preservation and immunomodulation, which might contribute to promote organ repair and to develop more selective ways to modulate allogeneic immune responses to prevent rejection and induce immunological tolerance.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| |
Collapse
|
43
|
Chen J, Chaurio RA, Maueröder C, Derer A, Rauh M, Kost A, Liu Y, Mo X, Hueber A, Bilyy R, Herrmann M, Zhao Y, Muñoz LE. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors. Front Immunol 2017; 8:504. [PMID: 28496447 PMCID: PMC5406388 DOI: 10.3389/fimmu.2017.00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023] Open
Abstract
Introduction Many antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells. Methods Cultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS) in the presence of dead and dying cells, their supernatants (SNs), or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo. Results The stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment. Conclusion Inosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.
Collapse
Affiliation(s)
- Jin Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ricardo A Chaurio
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Maueröder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andriy Kost
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Axel Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
44
|
Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017; 144:1787-1797. [PMID: 28432214 DOI: 10.1242/dev.144097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle.
Collapse
Affiliation(s)
- Elijah J Spina
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA .,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
45
|
Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell 2017; 31:342-354. [PMID: 28292437 DOI: 10.1016/j.ccell.2017.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Nerve dependence has long been described in animal regeneration, where the outgrowth of axons is necessary to the reconstitution of lost body parts and tissue remodeling in various species. Recent discoveries have demonstrated that denervation can suppress tumor growth and metastasis, pointing to nerve dependence in cancer. Regeneration and cancer share similarities in regard to the stimulatory role of nerves, and there are indications that the stem cell compartment is a preferred target of innervation. Thus, the neurobiology of cancer is an emerging discipline that opens new perspectives in oncology.
Collapse
Affiliation(s)
- Benoni Boilly
- UFR de Biologie, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
46
|
Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V. p53 on the crossroad between regeneration and cancer. Cell Death Differ 2016; 24:8-14. [PMID: 27768121 PMCID: PMC5260496 DOI: 10.1038/cdd.2016.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
Collapse
Affiliation(s)
- Meital Charni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Werner S, Vu HTK, Rink JC. Self-organization in development, regeneration and organoids. Curr Opin Cell Biol 2016; 44:102-109. [PMID: 27720307 DOI: 10.1016/j.ceb.2016.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 11/15/2022]
Abstract
Self-organization of cells is a fundamental design principle in biology, yet the inherent non-linearity of self-organizing systems often poses significant challenges in deciphering the underlying mechanisms. Here, we discuss recent progress in this respect, focusing on examples from development, regeneration and organoid differentiation. Together, these three paradigms emphasize the active material properties of tissues that result from the functional coupling between individual cells as active units. Further, we discuss the challenge of obtaining reproducible outcomes on the basis of self-organizing systems, which development and regeneration, but not the current organoid culture protocols, achieve.
Collapse
Affiliation(s)
- Steffen Werner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Hanh Thi-Kim Vu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
48
|
Lup SD, Tian X, Xu J, Pérez-Pérez JM. Wound signaling of regenerative cell reprogramming. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:178-187. [PMID: 27457994 DOI: 10.1016/j.plantsci.2016.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 05/08/2023]
Abstract
Plants are sessile organisms that must deal with various threats resulting in tissue damage, such as herbivore feeding, and physical wounding by wind, snow or crushing by animals. During wound healing, phytohormone crosstalk orchestrates cellular regeneration through the establishment of tissue-specific asymmetries. In turn, hormone-regulated transcription factors and their downstream targets coordinate cellular responses, including dedifferentiation, cell cycle reactivation and vascular regeneration. By comparing different examples of wound-induced tissue regeneration in the model plant Arabidopsis thaliana, a number of key regulators of developmental plasticity of plant cells have been identified. We present the relevance of these findings and of the dynamic establishment of differential auxin gradients for cell reprogramming after wounding.
Collapse
Affiliation(s)
- Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Alicante, Spain
| | - Xin Tian
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Xu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | |
Collapse
|
49
|
Gurtner GC, Chapman MA. Regenerative Medicine: Charting a New Course in Wound Healing. Adv Wound Care (New Rochelle) 2016; 5:314-328. [PMID: 27366592 PMCID: PMC4900191 DOI: 10.1089/wound.2015.0663] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/13/2015] [Indexed: 12/13/2022] Open
Abstract
Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval.
Collapse
|
50
|
Um J, Jung N, Chin S, Cho Y, Choi S, Park KS. Substance P enhances EPC mobilization for accelerated wound healing. Wound Repair Regen 2016; 24:402-10. [PMID: 26749197 DOI: 10.1111/wrr.12403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Wound healing is essential for the survival and tissue homeostasis of unicellular and multicellular organisms. The current study demonstrated that the neuropeptide substance P (SP) accelerated the wound healing process, particularly in the skin. Subcutaneous treatment of SP accelerated wound closing, increased the population of α-smooth muscle actin positive myofibroblasts, and increased extracellular matrix deposition at the wound site. Moreover, SP treatment enhances angiogenesis without a local increase in the expression levels of vascular endothelial growth factor and stromal cell-derived factor-1. Importantly, SP treatment increased both the population of circulating endothelial progenitor cells in the peripheral blood and in CD31 positive cells in Matrigel plugs. The tube forming potential of endothelial cells was also enhanced by SP treatment. The results suggested that the subcutaneous injection of SP accelerated the wound healing in the skin via better reconstitution of blood vessels, which possibly followed an increase in the systemic mobilization of endothelial progenitor cells and a more effective assembly of endothelial cells into tubes.
Collapse
Affiliation(s)
- Jihyun Um
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Nunggum Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Sukbum Chin
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Younggil Cho
- Department of Genetic Engineering, Kyung Hee University, Yongin-si, South Korea
| | - Sanghyuk Choi
- Department of Genetic Engineering, Kyung Hee University, Yongin-si, South Korea
| | - Ki-Sook Park
- East-West Medical Research Institute/College of Medicine, Kyung Hee University, Seoul, Yongin-si, 02447, South Korea
| |
Collapse
|