1
|
Zihni C. Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics. Bioessays 2025; 47:e2300197. [PMID: 39663766 DOI: 10.1002/bies.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a "nibbling" action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an "integrin adhesome-like" network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.
Collapse
Affiliation(s)
- Ceniz Zihni
- Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Wibbe N, Steinbacher T, Tellkamp F, Beckmann N, Brinkmann F, Stecher M, Gerke V, Niessen CM, Ebnet K. RhoGDI1 regulates cell-cell junctions in polarized epithelial cells. Front Cell Dev Biol 2024; 12:1279723. [PMID: 39086660 PMCID: PMC11288927 DOI: 10.3389/fcell.2024.1279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Niklas Beckmann
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Manuel Stecher
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| |
Collapse
|
3
|
Thüring EM, Hartmann C, Maddumage JC, Javorsky A, Michels BE, Gerke V, Banks L, Humbert PO, Kvansakul M, Ebnet K. Membrane recruitment of the polarity protein Scribble by the cell adhesion receptor TMIGD1. Commun Biol 2023; 6:702. [PMID: 37430142 DOI: 10.1038/s42003-023-05088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Janesha C Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
5
|
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells 2022; 11:cells11233775. [PMID: 36497035 PMCID: PMC9740252 DOI: 10.3390/cells11233775] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.
Collapse
|
6
|
Zihni C, Georgiadis A, Ramsden CM, Sanchez-Heras E, Haas AJ, Nommiste B, Semenyuk O, Bainbridge JWB, Coffey PJ, Smith AJ, Ali RR, Balda MS, Matter K. Spatiotemporal control of actomyosin contractility by MRCKβ signaling drives phagocytosis. J Biophys Biochem Cytol 2022; 221:213476. [PMID: 36121394 PMCID: PMC9485704 DOI: 10.1083/jcb.202012042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKβ/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKβ/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKβ is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKβ signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKβ is also required for efficient particle translocation from the cortex into the cell body in Fc receptor–mediated phagocytosis. Thus, conserved MRCKβ signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anastasios Georgiadis
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - Conor M Ramsden
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Britta Nommiste
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Olha Semenyuk
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute for Health and Care Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
| | - Peter J Coffey
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alexander J Smith
- Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute for Health and Care Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
Jiang R, Tang X, Pan J, Li G, Yang N, Tang Y, Bi S, Cai H, Chen Q, Chen D, Wang H, Kong S. CDC42 governs normal oviduct multiciliogenesis through activating AKT to ensure timely embryo transport. Cell Death Dis 2022; 13:757. [PMID: 36056002 PMCID: PMC9440026 DOI: 10.1038/s41419-022-05184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ciliated and secretory cells are two major cell types that comprise the oviduct epithelia. Accumulating evidences support a role of oviductal multiciliated epithelia for embryo transport, however the mechanisms underlying this specialized cell type differentiation remain elusive. Here, we report that CDC42 depletion in oviduct epithelia hampers the morphogenesis of multiciliated cell, and results in embryo retention, leading to early pregnancy failure. Utilizing the oviduct organoid model, we further observed that CDC42 guides secretory cells transition into multiciliated cells independent of its GTPase activity and the well-known Notch pathway. Further exploration uncovered the AKT as a novel indispensable regulator for multiciliated cells differentiation, whose activity was maintained by CDC42 through interacting with the p110β. Consistently, re-activating AKT partially incites multiciliated cells differentiation in Cdc42 knockout oviductal organoids. Finally, low levels of CDC42 and phospho-AKT with reduced multiciliated cells in the oviduct are observed in women with ectopic pregnancy. Collectively, we provide previously unappreciated evidence that CDC42-AKT signaling is a critical determinant for morphogenesis of oviduct multiciliated cell, which possesses the clinical application in understanding the pathology of ectopic pregnancy and facilitating the development of prevention strategies.
Collapse
Affiliation(s)
- Ruiwei Jiang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China ,grid.41156.370000 0001 2314 964XCenter for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210093 Nanjing, Jiangsu China
| | - Xiaofang Tang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Jiale Pan
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Gaizhen Li
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Ningjie Yang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Yedong Tang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Shilei Bi
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Han Cai
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Qionghua Chen
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Dunjin Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Haibin Wang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Shuangbo Kong
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| |
Collapse
|
8
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
9
|
Grahammer F, Huber TB, Artunc F. Role of mTOR Signaling for Tubular Function and Disease. Physiology (Bethesda) 2021; 36:350-358. [PMID: 34514872 DOI: 10.1152/physiol.00021.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) forms two distinct intracellular multiprotein complexes that control a multitude of intracellular processes linked to metabolism, proliferation, actin cytoskeleton, and survival. Recent studies have identified the importance of these complexes for transport regulation of ions and nutrients along the entire nephron. First reports could link altered activity of these complexes to certain disease entities, i.e. diabetic nephropathy, acute kidney injury or hyperkalemia.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Intestinal brush border assembly during the peri-hatch period and its contribution to surface area expansion. Poult Sci 2021; 100:101401. [PMID: 34464930 PMCID: PMC8408528 DOI: 10.1016/j.psj.2021.101401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Microvilli generate the small intestinal brush border, the main site of nutrient digestion and absorption. Mucosal structuring of the small intestine of chicken during the perihatch period has been widely researched, yet the developmental dynamics of microvilli during this period have not been fully characterized. In this study, we examined the structural and molecular characteristics of microvilli assembly and maturation during the perihatch period. Small intestines of broiler embryos and chicks were sampled at prehatch ages 17 E and 19 E, at day of hatch (DOH) and at 1, 3, 7, and 10 d posthatch. Morphological evaluations and measurements were conducted by scanning electron microscopy (SEM) and light microscopy (LM) (n = 3/timepoint), and expression of microvilli structural genes Plastin 1, Ezrin, and Myo1a was examined by Real-Time qPCR (n = 6/timepoint). Results revealed dissimilar patterns of microvilli and villi development during the perihatch period. From 19 E to 1 d, microvilli lengths increased 4.3-fold while villi lengths increased 2.8-fold (P < 0.0001). From 3 to 7 d, villi lengths increased by 20% (P < 0.005), while microvilli lengths decreased by 41% (P = 0.001). At 10 d, microvilli lengths stabilized, while villi continued to elongate by 26% (P < 0.0001). Estimations of the microvilli amplification factor (MAF) and total enterocyte surface area (TESA) revealed similar trends, with peak values of 78.53 and 1961.67 µm2, respectively, at 3 d. Microvilli structural gene expression portrayed diverse patterns. Expression of Plastin 1, which bundles and binds actin cores to the terminal web, increased 8.7-fold between 17 E and DOH (P = 0.005), and gradually increased up to 7 d (P = 0.045). Ezrin and Myo1a, both actin core-cell membrane cross-linkers, portrayed different expression patterns throughout the perihatch period, as Ezrin expression was relatively stable, while Myo1a expression increased 15.8-fold between 17 E and 10 d (P < 0.0001). We conclude that microvilli assembly during the perihatch period is a rapid, coordinated process, which dramatically expands the digestive and absorptive surface area of the small intestine before the completion of villi maturation.
Collapse
|
11
|
Abstract
The epithelium forms a smart barrier to the external environment that can remodel whilst maintaining tissue integrity, a feature important for development, homeostasis, and function. Its dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical cortex are poorly understood. This review focusses on a growing body of evidence that suggest myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in morphogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will also be discussed.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK
| |
Collapse
|
12
|
Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22052506. [PMID: 33801524 PMCID: PMC7958858 DOI: 10.3390/ijms22052506] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Tight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions. After a brief presentation of the organization and modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to permeability breakdown of the gut barrier as a consequence of tight junctions’ attack by pathogens, including bacteria, viruses, fungi, and parasites.
Collapse
|
13
|
Fic W, Bastock R, Raimondi F, Los E, Inoue Y, Gallop JL, Russell RB, St Johnston D. RhoGAP19D inhibits Cdc42 laterally to control epithelial cell shape and prevent invasion. J Cell Biol 2021; 220:211832. [PMID: 33646271 PMCID: PMC7927664 DOI: 10.1083/jcb.202009116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Cdc42-GTP is required for apical domain formation in epithelial cells, where it recruits and activates the Par-6-aPKC polarity complex, but how the activity of Cdc42 itself is restricted apically is unclear. We used sequence analysis and 3D structural modeling to determine which Drosophila GTPase-activating proteins (GAPs) are likely to interact with Cdc42 and identified RhoGAP19D as the only high-probability Cdc42GAP required for polarity in the follicular epithelium. RhoGAP19D is recruited by α-catenin to lateral E-cadherin adhesion complexes, resulting in exclusion of active Cdc42 from the lateral domain. rhogap19d mutants therefore lead to lateral Cdc42 activity, which expands the apical domain through increased Par-6/aPKC activity and stimulates lateral contractility through the myosin light chain kinase, Genghis khan (MRCK). This causes buckling of the epithelium and invasion into the adjacent tissue, a phenotype resembling that of precancerous breast lesions. Thus, RhoGAP19D couples lateral cadherin adhesion to the apical localization of active Cdc42, thereby suppressing epithelial invasion.
Collapse
Affiliation(s)
- Weronika Fic
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Rebecca Bastock
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Raimondi
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Erinn Los
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yoshiko Inoue
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jennifer L. Gallop
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert B. Russell
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daniel St Johnston
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK,Correspondence to Daniel St Johnston:
| |
Collapse
|
14
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
15
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
16
|
Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Rep 2020; 32:107924. [PMID: 32697990 PMCID: PMC7383227 DOI: 10.1016/j.celrep.2020.107924] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.
Collapse
Affiliation(s)
- Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Artur Ruppel
- LiPhy, CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
17
|
The Mammalian Crumbs Complex Defines a Distinct Polarity Domain Apical of Epithelial Tight Junctions. Curr Biol 2020; 30:2791-2804.e6. [PMID: 32531288 DOI: 10.1016/j.cub.2020.05.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Epithelial apico-basal polarity is established through the asymmetric cortical distribution of the Par, Crumbs and Scribble polarity modules. Apical (Par and Crumbs) and basolateral (Scribble) polarity modules overlap at the apical-lateral border, which, in mammals, is defined by the apical junctional complex (AJC). The AJC is composed of tight junctions (TJ) and adherens junctions (AJ) and plays fundamental roles in epithelial morphogenesis and plasticity. However, the molecular composition and precise sub-junctional organization of the AJC and its associated polarity regulators are not well defined. Here, we used the peroxidase APEX2 for quantitative proximity proteomics (QPP) and electron microscopy (EM) imaging to dissect the architecture of the AJC in fully polarized MDCK-II cells. We present a high-confidence proteome of the apical-lateral border in which TJ and AJ components and apical and lateral compartment markers are spatially resolved. We further demonstrate that the Crumbs complex (Pals1, PatJ, Lin7c, and Crumbs3) defines a hitherto unidentified membrane compartment apical of TJ, which we coin the vertebrate marginal zone (VMZ). QPP, imaging, and immunoprecipitation assays showed that the HOMER scaffolding proteins, PKN2 and PTPN13, and the membrane-proximal HIPPO pathway proteins ARHGAP29 and STXBP4 are recruited to the VMZ via the PDZ domains of PatJ. Taken together, our work defines the spatial and molecular organization of the apical-lateral border in mammalian epithelial cells, reveals an intriguing molecular and spatial conservation of invertebrate and vertebrate cell polarity protein domains, and identifies a VMZ-associated protein network implicated in HIPPO signaling and the control of the cortical actin cytoskeleton.
Collapse
|
18
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
19
|
Branca JJ, Gulisano M, Nicoletti C. Intestinal epithelial barrier functions in ageing. Ageing Res Rev 2019; 54:100938. [PMID: 31369869 DOI: 10.1016/j.arr.2019.100938] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The intestinal epithelial barrier protects the mucosa of the gastrointestinal (GI)-tract and plays a key role in maintaining the host homeostasis. It encompasses several elements that include the intestinal epithelium and biochemical and immunological products, such as the mucus layer, antimicrobial peptides (AMPs) and secretory immunologlobulin A (sIgA). These components are interlinked with the large microbial community inhabiting the gut to form a highly sophisticated biological system that plays an important role on many aspects of human health both locally and systemically. Like any other organ and tissue, the intestinal epithelial barrier is affected by the ageing process. New insights have surfaced showing that critical functions, including intestinal stem cell regeneration and regulation of the intestinal crypt homeostasis, barrier integrity, production of regulatory cytokines, and epithelial innate immunity to pathogenic antigens change across life. Here we review the age-associated changes of the various components of the intestinal epithelial barrier and we highlight the necessity to elucidate further the mechanisms underlying these changes. Expanding our knowledge in this area is a goal of high medical relevance and it will help to define intervention strategies to ameliorate the quality of life of the ever-expanding elderly population.
Collapse
|
20
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
21
|
Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol 2018; 98:1-11. [PMID: 30473389 DOI: 10.1016/j.ejcb.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
22
|
Anton KA, Kajita M, Narumi R, Fujita Y, Tada M. Src-transformed cells hijack mitosis to extrude from the epithelium. Nat Commun 2018; 9:4695. [PMID: 30410020 PMCID: PMC6224566 DOI: 10.1038/s41467-018-07163-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process. Potentially cancerous cells undergo live apical extrusion from normal monolayers and vSrc expression induces this in zebrafish epithelia. Here, the authors show that vSrc coordinates cytokinetic ring formation, cell cycle progression, junctional integrity, cell survival and apicobasal polarity to induce extrusion of transformed cells.
Collapse
Affiliation(s)
- Katarzyna A Anton
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Rika Narumi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Masazumi Tada
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
23
|
Pinette JA, Mao S, Millis BA, Krystofiak ES, Faust JJ, Tyska MJ. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell 2018; 30:108-118. [PMID: 30403560 PMCID: PMC6337912 DOI: 10.1091/mbc.e18-09-0558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transporting epithelial cells optimize their morphology for solute uptake by building an apical specialization: a dense array of microvilli that serves to increase membrane surface area. In the intestinal tract, individual cells build thousands of microvilli, which pack tightly to form the brush border. Recent studies implicate adhesion molecule CDHR2 in the regulation of microvillar packing via the formation of adhesion complexes between the tips of adjacent protrusions. To gain insight on how CDHR2 contributes to brush border morphogenesis and enterocyte function under native in vivo conditions, we generated mice lacking CDHR2 expression in the intestinal tract. Although CDHR2 knockout (KO) mice are viable, body weight trends lower and careful examination of tissue, cell, and brush border morphology revealed several perturbations that likely contribute to reduced functional capacity of KO intestine. In the absence of CDHR2, microvilli are significantly shorter, and exhibit disordered packing and a 30% decrease in packing density. These structural perturbations are linked to decreased levels of key solute processing and transporting factors in the brush border. Thus, CDHR2 functions to elongate microvilli and maximize their numbers on the apical surface, which together serve to increase the functional capacity of enterocyte.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Suli Mao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
24
|
GRP75 modulates oncogenic Dbl-driven endocytosis derailed via the CHIP-mediated ubiquitin degradation pathway. Cell Death Dis 2018; 9:971. [PMID: 30250167 PMCID: PMC6155137 DOI: 10.1038/s41419-018-1039-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Chaperone-assisted proteasome degradation of oncogenic protein acts as an upstream signal controlling tumorigenesis and progression. The understanding of the co-regulation of chaperone and oncoprotein of endocytosis pathways is extremely limited. In this study, we showed for the first time that proto-Dbl (dbl proto-oncogene product) is co-enriched with mitochondrial chaperone GRP75 in endocytosis vesicles from ovarian cancer cells. onco-Dbl, produced by oncogenic mutation/degradation of proto-Dbl, markedly enhanced cellular macropinocytosis but suppressed clathrin-mediated endocytosis and clathrin-independent endocytosis pathways, presenting a derailed endocytosis phenotype. GRP75 was associated with proto-Dbl inside cells and modulated Dbl-driven endocytosis derailed by a co-regulatory mode. In spite of not being a component of the Hsc70/Hsp90/proto-Dbl complex, the degradation of proto-Dbl was promoted by GRP75 through the CHIP-mediated ubiquitin–proteasome pathway, of which GRP75 acts as a cooperator with CHIP but also acts as a competitor to Hsc70 and Hsp90 in the multiple chaperones-assisted pro-folding/pro-degradation machinery. Knockdown or inhibition of GRP75 attenuated proto-Dbl degradation and reduced the onco-Dbl level, which differentially impaired Rho GTPases activation and therefore shifted the endocytosis-derailed phenotype. Our data uncovered a novel GRP75-Dbl endocytosis regulatory axis and provided an alternative using chaperone inhibitor to shut down the oncoprotein-driven endocytosis derailment mechanism.
Collapse
|
25
|
Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS, Turner JR. The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem 2018; 293:17317-17335. [PMID: 30242130 DOI: 10.1074/jbc.ra118.003908] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Polarized epithelia assemble into sheets that compartmentalize organs and generate tissue barriers by integrating apical surfaces into a single, unified structure. This tissue organization is shared across organs, species, and developmental stages. The processes that regulate development and maintenance of apical epithelial surfaces are, however, undefined. Here, using an intestinal epithelial-specific knockout (KO) mouse and cultured epithelial cells, we show that the tight junction scaffolding protein zonula occludens-1 (ZO-1) is essential for development of unified apical surfaces in vivo and in vitro We found that U5 and GuK domains of ZO-1 are necessary for proper apical surface assembly, including organization of microvilli and cortical F-actin; however, direct interactions with F-actin through the ZO-1 actin-binding region (ABR) are not required. ZO-1 lacking the PDZ1 domain, which binds claudins, rescued apical structure in ZO-1-deficient epithelia, but not in cells lacking both ZO-1 and ZO-2, suggesting that heterodimerization with ZO-2 restores PDZ1-dependent ZO-1 interactions that are vital to apical surface organization. Pharmacologic F-actin disruption, myosin II motor inhibition, or dynamin inactivation restored apical epithelial structure in vitro and in vivo, indicating that ZO-1 directs epithelial organization by regulating actomyosin contraction and membrane traffic. We conclude that multiple ZO-1-mediated interactions contribute to coordination of epithelial actomyosin function and genesis of unified apical surfaces.
Collapse
Affiliation(s)
| | - Wangsun Choi
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Wei-Ting Kuo
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Gurminder Singh
- From the Departments of Pathology and.,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Le Shen
- From the Departments of Pathology and.,Surgery, University of Chicago, Chicago, Illinois 60637
| | - Alan S Fanning
- the Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jerrold R Turner
- From the Departments of Pathology and .,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
26
|
Polarized Organization of the Cytoskeleton: Regulation by Cell Polarity Proteins. J Mol Biol 2018; 430:3565-3584. [DOI: 10.1016/j.jmb.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
|
27
|
Medelnik JP, Roensch K, Okawa S, Del Sol A, Chara O, Mchedlishvili L, Tanaka EM. Signaling-Dependent Control of Apical Membrane Size and Self-Renewal in Rosette-Stage Human Neuroepithelial Stem Cells. Stem Cell Reports 2018; 10:1751-1765. [PMID: 29779899 PMCID: PMC5993681 DOI: 10.1016/j.stemcr.2018.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components.
Collapse
Affiliation(s)
- Jan-Philip Medelnik
- Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Kathleen Roensch
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| | - Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, 01062 Dresden, Germany; Systems Biology Group (SysBio), Instituto de Física de Líquidos y Sistemas Biológicos (IFLySIB), CONICET, Universidad Nacional de La Plata (UNLP), B1900BTE, La Plata, Argentina
| | - Levan Mchedlishvili
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Elly M Tanaka
- Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
28
|
Murata M, Osanai M, Takasawa A, Takasawa K, Aoyama T, Kawada Y, Yamamoto A, Ono Y, Hiratsuka Y, Kojima T, Sawada N. Occludin induces microvillus formation via phosphorylation of ezrin in a mouse hepatic cell line. Exp Cell Res 2018; 366:172-180. [PMID: 29555369 DOI: 10.1016/j.yexcr.2018.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
Apical and basolateral cell membranes are separated by tight junctions (TJs). Microvilli are limited to the apical cell membrane. TJs and microvilli are the landmarks for epithelial cell polarity. However, the direct relationship between TJ proteins (TJPs) and the components of microvilli remains unclear. In this study, we investigated whether occludin, which is considered to be a functional TJP, is involved in microvillus formation. In occludin knockout mouse hepatic cells (OcKO cells), the microvillus density was less than that in wild-type (WT) cells and the length of microvilli was short. Immunoreactivity of ezrin was decreased in OcKO cells compared with that in WT cells. Although there was no change in the expression level of ezrin, phosphorylation of ezrin was decreased in OcKO cells. The microvillus density and the length of microvilli were increased in OcKO cells by transfection of full-length mouse occludin and COOH-terminal domains of occludin. These results suggested that occludin induced microvillus formation via phosphorylation of ezrin and that the COOH-terminal domain of occludin, which is localized in non-TJ areas, might be able to induce microvilli formation. Our results provide new insights into the function of occludin.
Collapse
Affiliation(s)
- Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yuka Kawada
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Akihiro Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yutaro Hiratsuka
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
29
|
Zilberman Y, Abrams J, Anderson DC, Nance J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 2017; 216:3729-3744. [PMID: 28903999 PMCID: PMC5674880 DOI: 10.1083/jcb.201611061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Joshua Abrams
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Dorian C Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
30
|
Zihni C, Vlassaks E, Terry S, Carlton J, Leung TKC, Olson M, Pichaud F, Balda MS, Matter K. An apical MRCK-driven morphogenetic pathway controls epithelial polarity. Nat Cell Biol 2017; 19:1049-1060. [PMID: 28825699 PMCID: PMC5617103 DOI: 10.1038/ncb3592] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling.
Collapse
Affiliation(s)
- Ceniz Zihni
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Evi Vlassaks
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen Terry
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Jeremy Carlton
- Division of Cancer Studies, Section of Cell Biology and Imaging, King's College London, London SE1 1UL, UK
| | - Thomas King Chor Leung
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and the Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Michael Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maria Susana Balda
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
31
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
32
|
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17:564-80. [PMID: 27353478 DOI: 10.1038/nrm.2016.80] [Citation(s) in RCA: 950] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Clare Mills
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
33
|
Grahammer F, Ramakrishnan SK, Rinschen MM, Larionov AA, Syed M, Khatib H, Roerden M, Sass JO, Helmstaedter M, Osenberg D, Kühne L, Kretz O, Wanner N, Jouret F, Benzing T, Artunc F, Huber TB, Theilig F. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J Am Soc Nephrol 2016; 28:230-241. [PMID: 27297946 DOI: 10.1681/asn.2015111224] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/14/2016] [Indexed: 01/03/2023] Open
Abstract
Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Suresh K Ramakrishnan
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexey A Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maryam Syed
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Hazim Khatib
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Jörn Oliver Sass
- Bioanalytics and Biochemistry, Department of Natural Sciences, Bonn Rhein Sieg University of Applied Sciences, Rheinbach, Germany.,Division of Clinical Chemistry and Biochemistry and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Martin Helmstaedter
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothea Osenberg
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucas Kühne
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicola Wanner
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liege, Belgium; and
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ferruh Artunc
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS, Centre for Biological Signalling Studies and.,FRIAS, Freiburg Institute for Advanced Studies and ZBSA, Center for Biological System Analysis, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland;
| |
Collapse
|
34
|
Balda MS, Matter K. Tight junctions as regulators of tissue remodelling. Curr Opin Cell Biol 2016; 42:94-101. [PMID: 27236618 DOI: 10.1016/j.ceb.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
Abstract
Formation of tissue barriers by epithelial and endothelial cells requires neighbouring cells to interact via intercellular junctions, which includes tight junctions. Tight junctions form a semipermeable paracellular diffusion barrier and act as signalling hubs that guide cell behaviour and differentiation. Components of tight junctions are also expressed in cell types not forming tight junctions, such as cardiomyocytes, where they associate with facia adherens and/or gap junctions. This review will focus on tight junction proteins and their importance in tissue homeostasis and remodelling with a particular emphasis on what we have learned from animal models and human diseases.
Collapse
Affiliation(s)
- Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Forteza R, Figueroa Y, Mashukova A, Dulam V, Salas PJ. Conditional knockout of polarity complex (atypical) PKCι reveals an anti-inflammatory function mediated by NF-κB. Mol Biol Cell 2016; 27:2186-97. [PMID: 27226486 PMCID: PMC4945138 DOI: 10.1091/mbc.e16-02-0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/20/2016] [Indexed: 01/27/2023] Open
Abstract
Atypical PKC, Par6, and Par3 constitute a conserved complex signaling cell asymmetry. In contrast to its role in other tissues, atypical PKC inhibits NF-κB activation in epithelia and may function in maintaining low levels of inflammation in addition to establishing apicobasal polarity. The conserved proteins of the polarity complex made up of atypical PKC (aPKC, isoforms ι and ζ), Par6, and Par3 determine asymmetry in several cell types, from Caenorhabditis elegans oocytes to vertebrate epithelia and neurons. We previously showed that aPKC is down-regulated in intestinal epithelia under inflammatory stimulation. Further, expression of constitutively active PKCι decreases NF-κB activity in an epithelial cell line, the opposite of the effect reported in other cells. Here we tested the hypothesis that aPKC has a dual function in epithelia, inhibiting the NF-κB pathway in addition to having a role in apicobasal polarity. We achieved full aPKC down-regulation in small intestine villi and colon surface epithelium using a conditional epithelium-specific knockout mouse. The results show that aPKC is dispensable for polarity after cell differentiation, except for known targets, including ROCK and ezrin, claudin-4 expression, and barrier permeability. The aPKC defect resulted in increased NF-κB activity, which could be rescued by IKK and ROCK inhibitors. It also increased expression of proinflammatory cytokines. In contrast, expression of anti-inflammatory IL-10 decreased. We conclude that epithelial aPKC acts upstream of multiple mechanisms that participate in the inflammatory response in the intestine, including, but not restricted to, NF-κB.
Collapse
Affiliation(s)
- Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yolanda Figueroa
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136 Department of Physiology, Nova Southeastern University, Ft. Lauderdale, FL 33314
| | - Vipin Dulam
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
36
|
Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA. Cell Rep 2016; 15:45-53. [PMID: 27052178 PMCID: PMC4826445 DOI: 10.1016/j.celrep.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/19/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. Pak4 regulates adherens junction accumulation at the zonula adherens Pak4 promotes Par3 (Bazooka) retention at the zonula adherens Par1 and Pak4 synergize in preventing lateral accumulation of Par3
Collapse
|
37
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
38
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
39
|
Manninen A. Epithelial polarity – Generating and integrating signals from the ECM with integrins. Exp Cell Res 2015; 334:337-49. [DOI: 10.1016/j.yexcr.2015.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/20/2023]
|
40
|
Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 2015; 127:3401-13. [PMID: 25125573 DOI: 10.1242/jcs.145029] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tight junctions are a component of the epithelial junctional complex, and they form the paracellular diffusion barrier that enables epithelial cells to create cellular sheets that separate compartments with different compositions. The assembly and function of tight junctions are intimately linked to the actomyosin cytoskeleton and, hence, are under the control of signalling mechanisms that regulate cytoskeletal dynamics. Tight junctions not only receive signals that guide their assembly and function, but transmit information to the cell interior to regulate cell proliferation, migration and survival. As a crucial component of the epithelial barrier, they are often targeted by pathogenic viruses and bacteria, aiding infection and the development of disease. In this Commentary, we review recent progress in the understanding of the molecular signalling mechanisms that drive junction assembly and function, and the signalling processes by which tight junctions regulate cell behaviour and survival. We also discuss the way in which junctional components are exploited by pathogenic viruses and bacteria, and how this might affect junctional signalling mechanisms.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
41
|
Abstract
Epithelial cells from diverse tissues, including the enterocytes that line the intestinal tract, remodel their apical surface during differentiation to form a brush border: an array of actin-supported membrane protrusions known as microvilli that increases the functional capacity of the tissue. Although our understanding of how epithelial cells assemble, stabilize, and organize apical microvilli is still developing, investigations of the biochemical and physical underpinnings of these processes suggest that cells coordinate cytoskeletal remodeling, membrane-cytoskeleton cross-linking, and extracellular adhesion to shape the apical brush border domain.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
42
|
RhoGTPase signalling at epithelial tight junctions: Bridging the GAP between polarity and cancer. Int J Biochem Cell Biol 2015; 64:120-5. [PMID: 25757376 PMCID: PMC4503795 DOI: 10.1016/j.biocel.2015.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
The establishment and maintenance of epithelial polarity must be correctly controlled for normal development and homeostasis. Tight junctions (TJ) in vertebrates define apical and basolateral membrane domains in polarized epithelia via bi-directional, complex signalling pathways between TJ themselves and the cytoskeleton they are associated with. RhoGTPases are central to these processes and evidence suggests that their regulation is coordinated by interactions between GEFs and GAPs with junctional, cytoplasmic adapter proteins. In this InFocus review we determine that the expression, localization or stability of a variety of these adaptor proteins is altered in various cancers, potentially representing an important mechanistic link between loss of polarity and cancer. We focus here, on two well characterized RhoGTPases Cdc42 and RhoA who's GEFs and GAPs are predominantly localized to TJ via cytoplasmic adaptor proteins.
Collapse
|
43
|
Durgan J, Tao G, Walters MS, Florey O, Schmidt A, Arbelaez V, Rosen N, Crystal RG, Hall A. SOS1 and Ras regulate epithelial tight junction formation in the human airway through EMP1. EMBO Rep 2015; 16:87-96. [PMID: 25394671 PMCID: PMC4304732 DOI: 10.15252/embr.201439218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022] Open
Abstract
The human airway is lined with respiratory epithelial cells, which create a critical barrier through the formation of apical tight junctions. To investigate the molecular mechanisms underlying this process, an RNAi screen for guanine nucleotide exchange factors (GEFs) was performed in human bronchial epithelial cells (16HBE). We report that SOS1, acting through the Ras/MEK/ERK pathway, is essential for tight junction formation. Global microarray analysis identifies epithelial membrane protein 1 (EMP1), an integral tetraspan membrane protein, as a major transcriptional target. EMP1 is indispensable for tight junction formation and function in 16HBE cells and in a human airway basal progenitor-like cell line (BCi-NS1.1). Furthermore, EMP1 is significantly downregulated in human lung cancers. Together, these data identify important roles for SOS1/Ras and EMP1 in tight junction assembly during airway morphogenesis.
Collapse
Affiliation(s)
- Joanne Durgan
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangbo Tao
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Florey
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anja Schmidt
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Vanessa Arbelaez
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alan Hall
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
44
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
45
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|