1
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin complexes mediate actin dynamics during cell wound repair. Cell Rep 2024; 43:114215. [PMID: 38728140 PMCID: PMC11203717 DOI: 10.1016/j.celrep.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Maw JJ, Coker JA, Arya T, Goins CM, Sonawane D, Han SH, Rees MG, Ronan MM, Roth JA, Wang NS, Heemers HV, Macdonald JD, Stauffer SR. Discovery and Characterization of Selective, First-in-Class Inhibitors of Citron Kinase. J Med Chem 2024; 67:2631-2666. [PMID: 38330278 DOI: 10.1021/acs.jmedchem.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.
Collapse
Affiliation(s)
- Joshua J Maw
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Tarun Arya
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Dhiraj Sonawane
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sang Hoon Han
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Nancy S Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jonathan D Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
3
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin Complexes Mediate Actin Dynamics During Cell Wound Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567084. [PMID: 38014090 PMCID: PMC10680708 DOI: 10.1101/2023.11.14.567084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1-Sep2-Pnut and Sep4-Sep5-Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side-by-side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
4
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Carim SC, Hickson GR. The Rho1 GTPase controls anillo-septin assembly to facilitate contractile ring closure during cytokinesis. iScience 2023; 26:106903. [PMID: 37378349 PMCID: PMC10291328 DOI: 10.1016/j.isci.2023.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gilles R.X. Hickson
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
7
|
Price KL, Tharakan DM, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Dev Cell 2023; 58:474-488.e5. [PMID: 36898376 PMCID: PMC10059090 DOI: 10.1016/j.devcel.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
How canonical cytokinesis is altered during germ cell division to produce stable intercellular bridges, called "ring canals," is poorly understood. Here, using time-lapse imaging in Drosophila, we observe that ring canal formation occurs through extensive remodeling of the germ cell midbody, a structure classically associated with its function in recruiting abscission-regulating proteins in complete cytokinesis. Germ cell midbody cores reorganize and join the midbody ring rather than being discarded, and this transition is accompanied by changes in centralspindlin dynamics. The midbody-to-ring canal transformation is conserved in the Drosophila male and female germlines and during mouse and Hydra spermatogenesis. In Drosophila, ring canal formation depends on Citron kinase function to stabilize the midbody, similar to its role during somatic cell cytokinesis. Our results provide important insights into the broader functions of incomplete cytokinesis events across biological systems, such as those observed during development and disease states.
Collapse
Affiliation(s)
- Kari L Price
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dyuthi M Tharakan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
9
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
11
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Garno C, Irons ZH, Gamache CM, McKim Q, Reyes G, Wu X, Shuster CB, Henson JH. Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network. PLoS One 2021; 16:e0252845. [PMID: 34962917 PMCID: PMC8714119 DOI: 10.1371/journal.pone.0252845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.
Collapse
Affiliation(s)
- Chelsea Garno
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Zoe H. Irons
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Courtney M. Gamache
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Quenelle McKim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Xufeng Wu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - John H. Henson
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Russo G, Krauss M. Septin Remodeling During Mammalian Cytokinesis. Front Cell Dev Biol 2021; 9:768309. [PMID: 34805175 PMCID: PMC8600141 DOI: 10.3389/fcell.2021.768309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis mediates the final separation of a mother cell into two daughter cells. Septins are recruited to the cleavage furrow at an early stage. During cytokinetic progression the septin cytoskeleton is constantly rearranged, ultimately leading to a concentration of septins within the intercellular bridge (ICB), and to the formation of two rings adjacent to the midbody that aid ESCRT-dependent abscission. The molecular mechanisms underlying this behavior are poorly understood. Based on observations that septins can associate with actin, microtubules and associated motors, we review here established roles of septins in mammalian cytokinesis, and discuss, how septins may support cytokinetic progression by exerting their functions at particular sites. Finally, we discuss how this might be assisted by phosphoinositide-metabolizing enzymes.
Collapse
Affiliation(s)
- Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
14
|
Abstract
Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.
Collapse
|
15
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao B, Xiu Y. Novel circRNA_0071196/miRNA‑19b‑3p/CIT axis is associated with proliferation and migration of bladder cancer. Int J Oncol 2020; 57:767-779. [PMID: 32705161 PMCID: PMC7384843 DOI: 10.3892/ijo.2020.5093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that are connected at the 3′ and 5′ ends by an exon or intron. Studies increasingly show that circRNAs play an important role in tumorigenesis by acting as a 'sponge' for microRNAs (miRNAs), which abrogates the latter's effect on their target mRNAs. To identify a possible circRNA/miRNA/mRNA network in bladder cancer (BCa), we analyzed the circRNA and mRNA expression profiles of BCa and adjacent normal bladder tissues. A total of 127 circRNAs and 1,612 mRNAs were differentially expressed in the tumor tissues, and were primarily associated with cancer-related pathways. A competing endogenous RNAs (ceRNA) network was then constructed which predicted a regulatory axis of circRNA_0071196, miRNA-19b-3p and its target gene citron Rho-interacting serine/threonine kinase (CIT). Luciferase reporter assay validated the relationship between circRNA_0071196 and miRNA-19b-3p and of the latter with CIT. Furthermore, CIT was overexpressed in the BCa tissues, and was found to be correlated with metastasis and tumor histological grade. Knockdown of CIT in the human bladder cancer cell line 5367 significantly inhibited the proliferation, migration and colony formation capacity of the cells, and also upregulated the mediators of the p53 and RhoA-ROCK signaling cascades that regulate cell cycle and migration. Taken together, our findings indicate that circRNA-0071196 upregulates CIT levels in BCa by sponging off miRNA-19b-3p, and the circRNA_0071196/miRNA-19b-3p/CIT axis is a potential therapeutic target in BCa.
Collapse
Affiliation(s)
- Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shunyao Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dasen Lin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bang Xiao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Sun J, Zheng MY, Li YW, Zhang SW. Structure and function of Septin 9 and its role in human malignant tumors. World J Gastrointest Oncol 2020; 12:619-631. [PMID: 32699577 PMCID: PMC7340996 DOI: 10.4251/wjgo.v12.i6.619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 02/05/2023] Open
Abstract
The treatment and prognosis of malignant tumors are closely related to the time when the tumors are diagnosed; the earlier the diagnosis of the tumor, the better the prognosis. However, most tumors are not detected in the early stages of screening and diagnosis. It is of great clinical significance to study the correlation between multiple pathogeneses of tumors and explore simple, safe, specific, and sensitive molecular indicators for early screening, diagnosis, and prognosis. The Septin 9 (SEPT9) gene has been found to be associated with a variety of human diseases, and it plays a role in the development of tumors. SEPT9 is a member of the conserved family of cytoskeletal GTPase, which consists of a P-loop-based GTP-binding domain flanked by a variable N-terminal region and a C-terminal region. SEPT9 is involved in many biological processes such as cytokinesis, polarization, vesicle trafficking, membrane reconstruction, deoxyribonucleic acid repair, cell migration, and apoptosis. Several studies have shown that SEPT9 may serve as a marker for early screening, diagnosis, and prognosis of some malignant tumors, and have the potential to become a new target for anti-cancer therapy. This article reviews the progress in research on the SEPT9 gene in early screening, diagnosis, and prognosis of tumors.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Min-Ying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yu-Wei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shi-Wu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
18
|
The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis. Nat Commun 2020; 11:1941. [PMID: 32321914 PMCID: PMC7176721 DOI: 10.1038/s41467-020-15205-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle. Among these proteins, we further characterized a plasma membrane-to-ESCRT module composed of the transmembrane proteoglycan syndecan-4, ALIX and syntenin, a protein that bridges ESCRT-III/ALIX to syndecans. The three proteins are highly recruited first at the midbody then at the abscission site, and their depletion delays abscission. Mechanistically, direct interactions between ALIX, syntenin and syndecan-4 are essential for proper enrichment of the ESCRT-III machinery at the abscission site, but not at the midbody. We propose that the ESCRT-III machinery must be physically coupled to a membrane protein at the cytokinetic abscission site for efficient scission, uncovering common requirements in cytokinesis, exosome formation and HIV budding.
Collapse
|
19
|
Tedeschi A, Almagro J, Renshaw MJ, Messal HA, Behrens A, Petronczki M. Cep55 promotes cytokinesis of neural progenitors but is dispensable for most mammalian cell divisions. Nat Commun 2020; 11:1746. [PMID: 32269212 PMCID: PMC7142149 DOI: 10.1038/s41467-020-15359-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
In mammalian cell lines, the endosomal sorting complex required for transport (ESCRT)-III mediates abscission, the process that physically separates daughter cells and completes cell division. Cep55 protein is regarded as the master regulator of abscission, because it recruits ESCRT-III to the midbody (MB), the site of abscission. However, the importance of this mechanism in a mammalian organism has never been tested. Here we show that Cep55 is dispensable for mouse embryonic development and adult tissue homeostasis. Cep55-knockout offspring show microcephaly and primary neural progenitors require Cep55 and ESCRT for survival and abscission. However, Cep55 is dispensable for cell division in embryonic or adult tissues. In vitro, division of primary fibroblasts occurs without Cep55 and ESCRT-III at the midbody and is not affected by ESCRT depletion. Our work defines Cep55 as an abscission regulator only in specific tissue contexts and necessitates the re-evaluation of an alternative ESCRT-independent cell division mechanism.
Collapse
Affiliation(s)
- Antonio Tedeschi
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cell Division and Aneuploidy Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, London, EN6 3LD, UK.
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Faculty of Life Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, London, EN6 3LD, UK
- Boehringer Ingelheim RCV GmbH & Co KG, A-1121, Vienna, Austria
| |
Collapse
|
20
|
Beaudet D, Pham N, Skaik N, Piekny A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol Biol Cell 2020; 31:1124-1139. [PMID: 32238082 PMCID: PMC7353161 DOI: 10.1091/mbc.e20-01-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that cleaves a cell into two daughters. This process is tightly controlled to avoid aneuploidy, and we previously showed that active Ran coordinates ring positioning with chromatin. Active Ran is high around chromatin, and forms an inverse gradient to cargo-bound importins. We found that the ring component anillin contains a nuclear localization signal (NLS) that binds to importin and is required for its function during cytokinesis. Here we reveal the mechanism whereby importin binding favors a conformation required for anillin's recruitment to the equatorial cortex. Active RhoA binds to the RhoA-binding domain causing an increase in accessibility of the nearby C2 domain containing the NLS. Importin binding subsequently stabilizes a conformation that favors interactions for cortical recruitment. In addition to revealing a novel mechanism for the importin-mediated regulation of a cortical protein, we also show how importin binding positively regulates protein function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0G4
| | - Nhat Pham
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Noha Skaik
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| |
Collapse
|
21
|
Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proc Natl Acad Sci U S A 2020; 117:4169-4179. [PMID: 32029597 DOI: 10.1073/pnas.1911629117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abscission is the terminal step of cytokinesis leading to the physical separation of the daughter cells. In response to the abnormal presence of lagging chromatin between dividing cells, an evolutionarily conserved abscission/NoCut checkpoint delays abscission and prevents formation of binucleated cells by stabilizing the cytokinetic intercellular bridge (ICB). How this bridge is stably maintained for hours while the checkpoint is activated is poorly understood and has been proposed to rely on F-actin in the bridge region. Here, we show that actin polymerization is indeed essential for stabilizing the ICB when lagging chromatin is present, but not in normal dividing cells. Mechanistically, we found that a cytosolic pool of human methionine sulfoxide reductase B2 (MsrB2) is strongly recruited at the midbody in response to the presence of lagging chromatin and functions within the ICB to promote actin polymerization there. Consistently, in MsrB2-depleted cells, F-actin levels are decreased in ICBs, and dividing cells with lagging chromatin become binucleated as a consequence of unstable bridges. We further demonstrate that MsrB2 selectively reduces oxidized actin monomers and thereby counteracts MICAL1, an enzyme known to depolymerize actin filaments by direct oxidation. Finally, MsrB2 colocalizes and genetically interacts with the checkpoint components Aurora B and ANCHR, and the abscission delay upon checkpoint activation by nuclear pore defects also depends on MsrB2. Altogether, this work reveals that actin reduction by MsrB2 is a key component of the abscission checkpoint that favors F-actin polymerization and limits tetraploidy, a starting point for tumorigenesis.
Collapse
|
22
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
23
|
Matsuda K, Sugawa M, Yamagishi M, Kodera N, Yajima J. Visualizing dynamic actin cross‐linking processes driven by the actin‐binding protein anillin. FEBS Lett 2019; 594:1237-1247. [DOI: 10.1002/1873-3468.13720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Kyohei Matsuda
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Mitsuhiro Sugawa
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
| | - Masahiko Yamagishi
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Japan
| | - Junichiro Yajima
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
- Research Center for Complex Systems Biology The University of Tokyo Japan
| |
Collapse
|
24
|
Qiu R, Runxiang Q, Geng A, Liu J, Xu CW, Menon MB, Gaestel M, Lu Q. SEPT7 Interacts with KIF20A and Regulates the Proliferative State of Neural Progenitor Cells During Cortical Development. Cereb Cortex 2019; 30:3030-3043. [PMID: 31813992 DOI: 10.1093/cercor/bhz292] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Balanced proliferation and differentiation of neural progenitor cells (NPCs) are critical for brain development, but how the process is regulated and what components of the cell division machinery is involved are not well understood. Here we report that SEPT7, a cell division regulator originally identified in Saccharomyces cerevisiae, interacts with KIF20A in the intercellular bridge of dividing NPCs and plays an essential role in maintaining the proliferative state of NPCs during cortical development. Knockdown of SEPT7 in NPCs results in displacement of KIF20A from the midbody and early neuronal differentiation. NPC-specific inducible knockout of Sept7 causes early cell cycle exit, precocious neuronal differentiation, and ventriculomegaly in the cortex, but surprisingly does not lead to noticeable cytokinesis defect. Our data uncover an interaction of SEPT7 and KIF20A during NPC divisions and demonstrate a crucial role of SEPT7 in cell fate determination. In addition, this study presents a functional approach for identifying additional cell fate regulators of the mammalian brain.
Collapse
Affiliation(s)
- Runxiang Qiu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiu Runxiang
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Anqi Geng
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Institute of Medical Research, Northwestern Polytechnical University, Xian, Shaanxi Province, China
| | - Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - C Wilson Xu
- Balto Pharmaceuticals, Inc., South Pasadena, CA 91030, USA
| | - Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover 30625, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New-Delhi 110016, India
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover 30625, Germany
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Addi C, Echard A. Cell Biology: Alix ESCRTs Pavarotti during Cell Division. Curr Biol 2019; 29:R1074-R1077. [PMID: 31639350 DOI: 10.1016/j.cub.2019.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokinesis leads to the physical separation of the daughter cells and requires the constriction of ESCRT filaments. How the ESCRT machinery is recruited in non-vertebrate organisms was puzzling, and is now shown to rely on a direct interaction between the ESCRT-associated protein Alix and the kinesin motor Pavarotti in Drosophila.
Collapse
Affiliation(s)
- Cyril Addi
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
26
|
Gupta DK, Kamranvar SA, Du J, Liu L, Johansson S. Septin and Ras regulate cytokinetic abscission in detached cells. Cell Div 2019; 14:8. [PMID: 31452675 PMCID: PMC6702736 DOI: 10.1186/s13008-019-0051-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Background Integrin-mediated adhesion is normally required for cytokinetic abscission, and failure in the process can generate potentially oncogenic tetraploid cells. Here, detachment-induced formation of oncogenic tetraploid cells was analyzed in non-transformed human BJ fibroblasts and BJ expressing SV40LT (BJ-LT) ± overactive HRas. Results In contrast to BJ and BJ-LT cells, non-adherent BJ-LT-Ras cells recruited ALIX and CHMP4B to the midbody and divided. In detached BJ and BJ-LT cells regression of the cytokinetic furrow was suppressed by intercellular bridge-associated septin; after re-adhesion these cells divided by cytofission, however, some cells became bi-nucleated because of septin reorganization and furrow regression. Adherent bi-nucleated BJ cells became senescent in G1 with p21 accumulation in the nucleus, apparently due to p53 activation since adherent bi-nucleated BJ-LT cells passed through next cell cycle and divided into mono-nucleated tetraploids; the two centrosomes present in bi-nucleated BJ cells fused after furrow regression, pointing to the PIDDosome pathway as a possible mechanism for the p53 activation. Conclusions Several mechanisms prevent detached normal cells from generating tumor-causing tetraploid cells unless they have a suppressed p53 response by viruses, mutation or inflammation. Importantly, activating Ras mutations promote colony growth of detached transformed cells by inducing anchorage-independent cytokinetic abscission in single cells.
Collapse
Affiliation(s)
- Deepesh Kumar Gupta
- 1Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Siamak A Kamranvar
- 1Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Jian Du
- 1Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden.,2First Hospital of Jilin University, Changchun, Jilin China
| | - Liangwen Liu
- 1Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Staffan Johansson
- 1Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
27
|
Karasmanis EP, Hwang D, Nakos K, Bowen JR, Angelis D, Spiliotis ET. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Curr Biol 2019; 29:2174-2182.e7. [PMID: 31204162 DOI: 10.1016/j.cub.2019.05.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Abscission is the terminal step of mitosis that physically separates two daughter cells [1, 2]. Abscission requires the endocytic sorting complex required for transport (ESCRT), a molecular machinery of multiple subcomplexes (ESCRT-I/II/III) that promotes membrane remodeling and scission [3-5]. Recruitment of ESCRT-I/II complexes to the midbody of telophase cells initiates ESCRT-III assembly into two rings, which subsequently expand into helices and spirals that narrow down to the incipient site of abscission [6-8]. ESCRT-III assembly is highly dynamic and spatiotemporally ordered, but the underlying mechanisms are poorly understood. Here, we report that, after cleavage furrow closure, septins form a membrane-bound double ring that controls the organization and function of ESCRT-III. The septin double ring demarcates the sites of ESCRT-III assembly into rings and disassembles before ESCRT-III rings expand into helices and spirals. We show that septin 9 (SEPT9) depletion, which abrogates abscission, impairs recruitment of VPS25 (ESCRT-II) and CHMP6 (ESCRT-III). Strikingly, ESCRT-III subunits (CHMP4B and CHMP2A/B) accumulate to the midbody, but they are highly disorganized, failing to form symmetric rings and to expand laterally into the cone-shaped helices and spirals of abscission. We found that SEPT9 interacts directly with the ubiquitin E2 variant (UEV) domain of ESCRT-I protein TSG101 through two N-terminal PTAP motifs, which are required for the recruitment of VPS25 and CHMP6, and the spatial organization of ESCRT-III (CHMP4B and CHMP2B) into functional rings. These results reveal that septins function in the ESCRT-I-ESCRT-II-CHMP6 pathway of ESCRT-III assembly and provide a framework for the spatiotemporal control of the ESCRT machinery of cytokinetic abscission.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Daniel Hwang
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
El-Amine N, Carim SC, Wernike D, Hickson GRX. Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation. Mol Biol Cell 2019; 30:2185-2204. [PMID: 31166845 PMCID: PMC6743463 DOI: 10.1091/mbc.e19-04-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.
Collapse
Affiliation(s)
- Nour El-Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sabrya C Carim
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Denise Wernike
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Gilles R X Hickson
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
29
|
Li H, Saucedo-Cuevas L, Yuan L, Ross D, Johansen A, Sands D, Stanley V, Guemez-Gamboa A, Gregor A, Evans T, Chen S, Tan L, Molina H, Sheets N, Shiryaev SA, Terskikh AV, Gladfelter AS, Shresta S, Xu Z, Gleeson JG. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron 2019; 101:1089-1098.e4. [PMID: 30713029 PMCID: PMC6690588 DOI: 10.1016/j.neuron.2019.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/17/2018] [Accepted: 12/31/2018] [Indexed: 01/06/2023]
Abstract
Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hongda Li
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Laura Saucedo-Cuevas
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ling Yuan
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danica Ross
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anide Johansen
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniel Sands
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Valentina Stanley
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Alicia Guemez-Gamboa
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne Gregor
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Sheets
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Amy S Gladfelter
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zhiheng Xu
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
30
|
Li H, Saucedo-Cuevas L, Yuan L, Ross D, Johansen A, Sands D, Stanley V, Guemez-Gamboa A, Gregor A, Evans T, Chen S, Tan L, Molina H, Sheets N, Shiryaev SA, Terskikh AV, Gladfelter AS, Shresta S, Xu Z, Gleeson JG. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron 2019; 101:1089-1098.e4. [PMID: 30713029 PMCID: PMC6690588 DOI: 10.1016/j.neuron.2019.01.010#mmc4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/17/2018] [Accepted: 12/31/2018] [Indexed: 10/03/2024]
Abstract
Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hongda Li
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Laura Saucedo-Cuevas
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ling Yuan
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danica Ross
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anide Johansen
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniel Sands
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Valentina Stanley
- Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Alicia Guemez-Gamboa
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne Gregor
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Sheets
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Amy S Gladfelter
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zhiheng Xu
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Rady Children's Institute of Genomic Medicine, Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
31
|
Erwig MS, Patzig J, Steyer AM, Dibaj P, Heilmann M, Heilmann I, Jung RB, Kusch K, Möbius W, Jahn O, Nave KA, Werner HB. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. eLife 2019; 8:43888. [PMID: 30672734 PMCID: PMC6344079 DOI: 10.7554/elife.43888] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
32
|
Marquardt J, Chen X, Bi E. Architecture, remodeling, and functions of the septin cytoskeleton. Cytoskeleton (Hoboken) 2018; 76:7-14. [PMID: 29979831 DOI: 10.1002/cm.21475] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
The septin family of proteins has fascinated cell biologists for decades due to the elaborate architecture they adopt in different eukaryotic cells. Whether they exist as rings, collars, or gauzes in different cell types and at different times in the cell cycle illustrates a complex series of regulation in structure. While the organization of different septin structures at the cortex of different cell types during the cell cycle has been described to various degrees, the exact structure and regulation at the filament level are still largely unknown. Recent advances in fluorescent and electron microscopy, as well as work in septin biochemistry, have allowed new insights into the aspects of septin architecture, remodeling, and function in many cell types. This mini-review highlights many of the recent findings with an emphasis on the budding yeast model.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
|
34
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero‐oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jie Qu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
35
|
Addi C, Bai J, Echard A. Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Curr Opin Cell Biol 2018; 50:27-34. [PMID: 29438904 DOI: 10.1016/j.ceb.2018.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023]
Abstract
Cytokinesis is the process by which a mother cell is physically cleaved into two daughter cells. In animal cells, cytokinesis begins with the contraction of a plasma membrane-associated actomyosin ring that is responsible for the ingression of a cleavage furrow. However, the post-furrowing steps of cytokinesis are less understood. Here, we highlight key recent findings that reveal a profound remodeling of several classes of cytoskeletal elements and cytoplasmic filaments (septins, microtubules, actin and ESCRT) in the late steps of cytokinesis. We review how this remodeling is required first for the stabilization of the intercellular bridge connecting the daughter cells and then for the steps leading up to abscission. New players regulating the abscission (NoCut) checkpoint, which delays abscission via cytoskeleton and ESCRT remodeling in response to various cytokinetic stresses, will also be emphasized. Altogether, the latest discoveries reveal a crucial role for posttranslational modifications of the cytoskeleton (actin oxidation, septin SUMOylation) and an unexpected requirement of ESCRT-III polymer dynamics for successful abscission.
Collapse
Affiliation(s)
- Cyril Addi
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Jian Bai
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France.
| |
Collapse
|
36
|
Dema A, Macaluso F, Sgrò F, Berto GE, Bianchi FT, Chiotto AA, Pallavicini G, Di Cunto F, Gai M. Citron kinase-dependent F-actin maintenance at midbody secondary ingression sites mediates abscission. J Cell Sci 2018; 131:jcs.209080. [DOI: 10.1242/jcs.209080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/16/2018] [Indexed: 01/22/2023] Open
Abstract
Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where ESCRT III component CHMP4B is recruited and may mediate membrane fusion. It is presently unknown how cytoskeletal elements cooperate with CHMP4B to mediate abscission. In this report, we show that F-actin is associated with midbody secondary sites and is necessary for abscission. F-actin localization at secondary sites depends on the activity of RhoA and on the abscission regulator CITK. CITK depletion accelerates F-actin loss at the midbody and cytokinesis defects produced by CITK loss are reverted by restoring actin polymerization. Conversely, midbody hyperstabilization produced by CITK and ANLN overexpression is reverted by actin depolymerization. CITK is required for F-actin and ANLN localization at the abscission sites, as well as for CHMP4B recruitment. These results indicate that control of actin dynamics downstream of CITK prepares abscission site for final cut.
Collapse
Affiliation(s)
- Alessandro Dema
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- FMP-Berlin Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Francesca Macaluso
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Francesco Sgrò
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Gaia E. Berto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Federico T. Bianchi
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessandra A. Chiotto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Marta Gai
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| |
Collapse
|
37
|
Ribet D, Boscaini S, Cauvin C, Siguier M, Mostowy S, Echard A, Cossart P. SUMOylation of human septins is critical for septin filament bundling and cytokinesis. J Cell Biol 2017; 216:4041-4052. [PMID: 29051266 PMCID: PMC5716278 DOI: 10.1083/jcb.201703096] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are cytoskeletal proteins that assemble into nonpolar filaments. They are critical in diverse cellular functions, acting as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization. Human septins are encoded by 13 different genes and are classified into four groups based on sequence homology (SEPT2, SEPT3, SEPT6, and SEPT7 groups). In yeast, septins were among the first proteins reported to be modified by SUMOylation, a ubiquitin-like posttranslational modification. However, whether human septins could be modified by small ubiquitin-like modifiers (SUMOs) and what roles this modification may have in septin function remains unknown. In this study, we first show that septins from all four human septin groups can be covalently modified by SUMOs. We show in particular that endogenous SEPT7 is constitutively SUMOylated during the cell cycle. We then map SUMOylation sites to the C-terminal domain of septins belonging to the SEPT6 and SEPT7 groups and to the N-terminal domain of septins from the SEPT3 group. We finally demonstrate that expression of non-SUMOylatable septin variants from the SEPT6 and SEPT7 groups leads to aberrant septin bundle formation and defects in cytokinesis after furrow ingression. Altogether, our results demonstrate a pivotal role for SUMOylation in septin filament bundling and cell division.
Collapse
Affiliation(s)
- David Ribet
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serena Boscaini
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Clothilde Cauvin
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Martin Siguier
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serge Mostowy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, England, UK
| | - Arnaud Echard
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
38
|
Montembault E, Claverie MC, Bouit L, Landmann C, Jenkins J, Tsankova A, Cabernard C, Royou A. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nat Commun 2017; 8:326. [PMID: 28835609 PMCID: PMC5569077 DOI: 10.1038/s41467-017-00337-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a “chromatid separation checkpoint” that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone. Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.
Collapse
Affiliation(s)
- Emilie Montembault
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| | - Marie-Charlotte Claverie
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Lou Bouit
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Cedric Landmann
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - James Jenkins
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Anna Tsankova
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Anne Royou
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
39
|
Johnson CA, Wright CE, Ghashghaei HT. Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Lett 2017; 591:4009-4026. [PMID: 28493553 DOI: 10.1002/1873-3468.12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Development of the cerebral cortices depends on tight regulation of cell divisions. In this system, stem and progenitor cells undergo symmetric and asymmetric divisions to ultimately produce neurons that establish the layers of the cortex. Cell division culminates with the formation of the midbody, a transient organelle that establishes the site of abscission between nascent daughter cells. During cytokinetic abscission, the final stage of cell division, one daughter cell will inherit the midbody remnant, which can then maintain or expel the remnant, but mechanisms and circumstances influencing this decision are unclear. This review describes the midbody and its constituent proteins, as well as the known consequences of their manipulation during cortical development. The potential functional relevance of midbody mechanisms is discussed.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA
| | - Catherine E Wright
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA.,Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
40
|
König J, Frankel EB, Audhya A, Müller-Reichert T. Membrane remodeling during embryonic abscission in Caenorhabditis elegans. J Cell Biol 2017; 216:1277-1286. [PMID: 28325808 PMCID: PMC5412558 DOI: 10.1083/jcb.201607030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023] Open
Abstract
Abscission is the final step of cytokinesis and results in the physical separation of two daughter cells. In this study, we conducted a time-resolved series of electron tomographic reconstructions to define the steps required for the first embryonic abscission in Caenorhabditis elegans Our findings indicate that membrane scission occurs on both sides of the midbody ring with random order and that completion of the scission process requires actomyosin-driven membrane remodeling, but not microtubules. Moreover, continuous membrane removal predominates during the late stages of cytokinesis, mediated by both dynamin and the ESCRT (endosomal sorting complex required for transport) machinery. Surprisingly, in the absence of ESCRT function in C. elegans, cytokinetic abscission is delayed but can be completed, suggesting the existence of parallel membrane-reorganizing pathways that cooperatively enable the efficient severing of cytoplasmic connections between dividing daughter cells.
Collapse
Affiliation(s)
- Julia König
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
41
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
42
|
Multimodal and Polymorphic Interactions between Anillin and Actin: Their Implications for Cytokinesis. J Mol Biol 2017; 429:715-731. [DOI: 10.1016/j.jmb.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
43
|
Frémont S, Hammich H, Bai J, Wioland H, Klinkert K, Rocancourt M, Kikuti C, Stroebel D, Romet-Lemonne G, Pylypenko O, Houdusse A, Echard A. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 2017; 8:14528. [PMID: 28230050 PMCID: PMC5331220 DOI: 10.1038/ncomms14528] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division. Cytokinetic abscission relies on the local constriction after cytoskeleton disassembly, but it is not known how the actin filaments are disassembled. Here, the authors show that the redox enzyme MICAL1 is recruited by Rab35 and induces oxidation-mediated depolymerization of actin, which is required to recruit ESCRT-III and complete abscission.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| | - Hussein Hammich
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Jian Bai
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris Cedex 15, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, 75013 Paris, France
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris Cedex 15, France
| | - Murielle Rocancourt
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - David Stroebel
- Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), 75005 Paris, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, 75013 Paris, France
| | - Olena Pylypenko
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| |
Collapse
|
44
|
Proteomics Screen Identifies Class I Rab11 Family Interacting Proteins as Key Regulators of Cytokinesis. Mol Cell Biol 2017; 37:MCB.00278-16. [PMID: 27872148 DOI: 10.1128/mcb.00278-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
The 14-3-3 protein family orchestrates a complex network of molecular interactions that regulates various biological processes. Owing to their role in regulating the cell cycle and protein trafficking, 14-3-3 proteins are prevalent in human diseases such as cancer, diabetes, and neurodegeneration. 14-3-3 proteins are expressed in all eukaryotic cells, suggesting that they mediate their biological functions through evolutionarily conserved protein interactions. To identify these core 14-3-3 client proteins, we used an affinity-based proteomics approach to characterize and compare the human and Drosophila 14-3-3 interactomes. Using this approach, we identified a group of Rab11 effector proteins, termed class I Rab11 family interacting proteins (Rab11-FIPs), or Rip11 in Drosophila We found that 14-3-3 binds to Rip11 in a phospho-dependent manner to ensure its proper subcellular distribution during cell division. Our results indicate that Rip11 plays an essential role in the regulation of cytokinesis and that this function requires its association with 14-3-3 but not with Rab11. Together, our results suggest an evolutionarily conserved role for 14-3-3 in controlling Rip11-dependent protein transport during cytokinesis.
Collapse
|
45
|
Abstract
ABSTRACT
Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
46
|
|
47
|
Cortez BA, Rezende-Teixeira P, Redick S, Doxsey S, Machado-Santelli GM. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression. Oncotarget 2016; 7:8979-92. [PMID: 26788989 PMCID: PMC4891019 DOI: 10.18632/oncotarget.6924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development.
Collapse
Affiliation(s)
- Beatriz Araujo Cortez
- Depto Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.,Depto Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Paula Rezende-Teixeira
- Depto Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Sambra Redick
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Glaucia Maria Machado-Santelli
- Depto Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
48
|
Harding BN, Moccia A, Drunat S, Soukarieh O, Tubeuf H, Chitty LS, Verloes A, Gressens P, El Ghouzzi V, Joriot S, Di Cunto F, Martins A, Passemard S, Bielas SL. Mutations in Citron Kinase Cause Recessive Microlissencephaly with Multinucleated Neurons. Am J Hum Genet 2016; 99:511-20. [PMID: 27453579 PMCID: PMC4974106 DOI: 10.1016/j.ajhg.2016.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023] Open
Abstract
Primary microcephaly is a neurodevelopmental disorder that is caused by a reduction in brain size as a result of defects in the proliferation of neural progenitor cells during development. Mutations in genes encoding proteins that localize to the mitotic spindle and centrosomes have been implicated in the pathogenicity of primary microcephaly. In contrast, the contractile ring and midbody required for cytokinesis, the final stage of mitosis, have not previously been implicated by human genetics in the molecular mechanisms of this phenotype. Citron kinase (CIT) is a multi-domain protein that localizes to the cleavage furrow and midbody of mitotic cells, where it is required for the completion of cytokinesis. Rodent models of Cit deficiency highlighted the role of this gene in neurogenesis and microcephaly over a decade ago. Here, we identify recessively inherited pathogenic variants in CIT as the genetic basis of severe microcephaly and neonatal death. We present postmortem data showing that CIT is critical to building a normally sized human brain. Consistent with cytokinesis defects attributed to CIT, multinucleated neurons were observed throughout the cerebral cortex and cerebellum of an affected proband, expanding our understanding of mechanisms attributed to primary microcephaly.
Collapse
Affiliation(s)
- Brian N Harding
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Séverine Drunat
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France
| | - Omar Soukarieh
- INSERM U1079, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Hélène Tubeuf
- INSERM U1079, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France; Interactive Biosoftware, Rouen 76000, France
| | - Lyn S Chitty
- Genetics and Genomic Medicine, UCL Institute of Child Health and Great Ormond Street NHS Foundation Trust, London WC1N 1EH, UK
| | - Alain Verloes
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris 75019, France; Université Paris Diderot, Hôpital Robert Debré, Paris 75019, France; Center for Developing Brain, King's College, St. Thomas' Campus, London WC2R 2LS, UK
| | | | - Sylvie Joriot
- Service de Neuropédiatrie, Centre Hospitalier Régional Universitaire de Lille, Lille 59037, France
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | | | - Sandrine Passemard
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France; Université Paris Diderot, Hôpital Robert Debré, Paris 75019, France
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Abstract
Cytokinesis is an essential step of cell proliferation leading to the physical separation of the dividing cells. Cytokinesis relies on both large scale and local scale cell shape changes, and terminates with the final abscission cut that requires close apposition of the plasma membrane. While furrow ingression is a prominent feature of the early phase of cytokinesis and is easy to visualize in all models, from dividing eggs to culture cells, the later steps of cytokinesis until abscission can be much more difficult to visualize. One key issue is to combine live-cell imaging over several hours and detailed, structural analysis of the cell shape changes in 3D, in particular at the time of cytokinetic abscission. Here, we describe the methodologies that we recently developed for studying cytokinetic abscission in human culture cells using live-cell phase-contrast microscopy, combined with correlative scanning electron microscopy. This allows us to determine the membrane surface and underlying cytoskeleton of the intercellular bridge with unprecedented precision and to determine the fate of the midbody remnant after abscission.
Collapse
|
50
|
Gould GW. Animal cell cytokinesis: The role of dynamic changes in the plasma membrane proteome and lipidome. Semin Cell Dev Biol 2015; 53:64-73. [PMID: 26721337 DOI: 10.1016/j.semcdb.2015.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
In animal cells, cytokinesis is characterised by the formation of the mitotic spindle that signals the assembly of an actomyosin ring between the spindle poles. Contraction of this ring drives ingression of the cleavage furrow, and culminates in the formation of a thin intercellular bridge between the daughter cells. At the centre of this bridge is the midbody, which is thought both to provide a site of attachment for the plasma membrane furrow and act as foci for the spatial and temporal control mechanisms that drive abscission. This review will focus upon recent studies that offer new insight into these events, in particular studies that elaborate on the mechanism of attachment between the furrow plasma membrane and the underlying cytoskeleton, and how dynamic changes in membrane composition might underpin key aspects of cytokinesis.
Collapse
Affiliation(s)
- Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|