1
|
Yin L, Wang Q, Liu S, Chen J, Zhang Y, Lu L, Lu H, Song Z, Zhang L. iTRAQ-based proteomic study on monocyte cell model discovered an association of LAMP2 downregulation with HIV-1 latency. Proteome Sci 2024; 22:6. [PMID: 38750478 PMCID: PMC11095035 DOI: 10.1186/s12953-024-00230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Patients with immunodeficiency virus-1 (HIV-1) infection are challenging to be cured completely due to the existence of HIV-1 latency reservoirs. However, the knowledge of the mechanisms and biomarkers associated with HIV-1 latency is limited. Therefore, identifying proteins related to HIV-1 latency could provide new insights into the underlying mechanisms of HIV-1 latency, and ultimately contribute to the eradication of HIV reservoirs. METHODS An Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-labeled subcellular proteomic study was performed on an HIV-1 latently infected cell model (U1, a HIV-1-integrated U937 cell line) and its control (U937). Differentially expressed proteins (DEPs) were analyzed using STRING-DB. Selected DEPs were further evaluated by western blotting and multiple reaction monitoring technology in both cell model and patient-derived cluster of differentiation 4 (CD4)+ T cells. Finally, we investigated the relationship between a specific DEP lysosome-associated membrane glycoprotein 2 (LAMP2) and HIV-1 reactivation by panobinostat or lysosome regulation by a lysosomotropic agent hydroxychloroquine in U1 and U937 cells. RESULTS In total, 110 DEPs were identified in U1 cells comparing to U937 control cells. Bioinformatics analysis suggested associations of the altered proteins with the immune response and endosomal/lysosomal pathway. LAMP2, leukocyte surface antigen CD47, CD55, and ITGA6 were downregulated in HIV-1 latent cells. Downregulated LAMP2 was further confirmed in resting CD4+ T cells from patients with latent HIV-1 infection. Furthermore, both HIV-1 reactivation by panobinostat and stimulation with hydroxychloroquine upregulated LAMP2 expression. CONCLUSIONS Our results indicated the involvement of the endosomal/lysosomal pathway in HIV-1 latency in macrophage cell model. The down-modulation of LAMP2 was associated with HIV latency, and the restoration of LAMP2 expression accompanied the transition of viral latency to active infection. This study provides new insights into the mechanism of HIV-1 latency and potential strategies for eradicating HIV-1 reservoirs by targeting LAMP2 expression.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Siyuan Liu
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lingqing Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Faure-Dupuy S, Jubrail J, Depierre M, Africano-Gomez K, Öberg L, Israelsson E, Thörn K, Delevoye C, Castellano F, Herit F, Guilbert T, Russell DG, Mayer G, Cunoosamy DM, Kurian N, Niedergang F. ARL5b inhibits human rhinovirus 16 propagation and impairs macrophage-mediated bacterial clearance. EMBO Rep 2024; 25:1156-1175. [PMID: 38332148 PMCID: PMC10933434 DOI: 10.1038/s44319-024-00069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.
Collapse
Affiliation(s)
| | - Jamil Jubrail
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Southampton Solent University, East Park Terrace, Southampton, SO14 0YN, UK
| | - Manon Depierre
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | | | - Lisa Öberg
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Elisabeth Israelsson
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Flavia Castellano
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Université Paris Est Creteil, INSERM, IMRB, Creteil, 94010, France
| | - Floriane Herit
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Thomas Guilbert
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gaell Mayer
- Immunology, Late stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Danen M Cunoosamy
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Nisha Kurian
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | | |
Collapse
|
3
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
4
|
Yu Y, Zhang Z, Yu Y. Timing of Phagosome Maturation Depends on Their Transport Switching from Actin to Microtubule Tracks. J Phys Chem B 2023; 127:9312-9322. [PMID: 37871280 PMCID: PMC10759163 DOI: 10.1021/acs.jpcb.3c05647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
5
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
6
|
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res 2023; 115:87-134. [PMID: 37173066 DOI: 10.1016/bs.aivir.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
7
|
LL-37 antimicrobial peptide and heterologous prime-boost vaccination regimen significantly induce HIV-1 Nef-Vpr antigen- and virion-specific immune responses in mice. Biotechnol Lett 2023; 45:33-45. [PMID: 36550339 DOI: 10.1007/s10529-022-03339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES HIV infection still remains a leading cause of morbidity and mortality worldwide. The inability of highly-active antiretroviral therapy in HIV-1 eradication led to development of therapeutic vaccines. Exploiting effective immunogenic constructs and potent delivery systems are important to generate effective therapeutic vaccines, and overcome their poor membrane permeability. Among HIV-1 proteins, the Nef and Vpr proteins can be considered as antigen candidates in vaccine design. METHODS In this study, the immunogenicity of Nef-Vpr antigen candidate in different regimens along with antimicrobial peptide LL-37 (as a DNA carrier) and Montanide 720 (as an adjuvant) was studied in mice. Moreover, the secretion of cytokines was assessed in virion-exposed mice lymphocytes in vitro. RESULTS Our data indicated that groups immunized with the homologous protein + Montanide regimen (group 1), and also the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) could significantly generate strong immune responses as compared to groups immunized with the DNA constructs (groups 3 & 4). Moreover, immunization of mice with the homologous DNA + LL-37 regimen in low dose of DNA (5 µg) could induce higher immune responses than the homologous naked DNA regimen in high dose of DNA (50 µg) indicating the role of LL-37 as a cell penetrating peptide. Additionally, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) induced significantly IFN-gamma secretion from virion-exposed lymphocytes in vitro. CONCLUSION Generally, the use of LL-37 for DNA delivery, Montanide 720 as an adjuvant, and heterologous DNA prime/protein boost strategy could significantly increase IgG2a, IFN-gamma, and Granzyme B, and maintain cytokine secretion after exposure to virions. Indeed, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen can be considered as a potent strategy for development of therapeutic HIV vaccines.
Collapse
|
8
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
9
|
Cardozo-Ojeda EF, Perelson AS. Modeling HIV-1 Within-Host Dynamics After Passive Infusion of the Broadly Neutralizing Antibody VRC01. Front Immunol 2021; 12:710012. [PMID: 34531859 PMCID: PMC8438300 DOI: 10.3389/fimmu.2021.710012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
VRC01 is a broadly neutralizing antibody that targets the CD4 binding site of HIV-1 gp120. Passive administration of VRC01 in humans has assessed the safety and the effect on plasma viremia of this monoclonal antibody (mAb) in a phase 1 clinical trial. After VRC01 infusion, the plasma viral load in most of the participants was reduced but had particular dynamics not observed during antiretroviral therapy. In this paper, we introduce different mathematical models to explain the observed dynamics and fit them to the plasma viral load data. Based on the fitting results we argue that a model containing reversible Ab binding to virions and clearance of virus-VRC01 complexes by a two-step process that includes (1) saturable capture followed by (2) internalization/degradation by phagocytes, best explains the data. This model predicts that VRC01 may enhance the clearance of Ab-virus complexes, explaining the initial viral decay observed immediately after antibody infusion in some participants. Because Ab-virus complexes are assumed to be unable to infect cells, i.e., contain neutralized virus, the model predicts a longer-term viral decay consistent with that observed in the VRC01 treated participants. By assuming a homogeneous viral population sensitive to VRC01, the model provides good fits to all of the participant data. However, the fits are improved by assuming that there were two populations of virus, one more susceptible to antibody-mediated neutralization than the other.
Collapse
Affiliation(s)
- E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
10
|
Post-translational modifications and stabilization of microtubules regulate transport of viral factors during infections. Biochem Soc Trans 2021; 49:1735-1748. [PMID: 34436545 DOI: 10.1042/bst20210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Tubulin post-translational modifications (PTMs) constitute a source of diversity for microtubule (MT) functions, in addition to the different isotypes of α and β-tubulin acting as building blocks of MTs. Also, MT-associated proteins (MAPs) confer different characteristics to MTs. The combination of all these factors regulates the stability of these structures that act as rails to transport organelles within the cell, facilitating the association of motor complexes. All these functions are involved in crucial cellular processes in most cell types, ranging from spindle formation in mitosis to the defense against incoming cellular threats during phagocytosis mediated by immune cells. The regulation of MT dynamics through tubulin PTMs has evolved to depend on many different factors that act in a complex orchestrated manner. These tightly regulated processes are particularly relevant during the induction of effective immune responses against pathogens. Viruses have proved not only to hijack MTs and MAPs in order to favor an efficient infection, but also to induce certain PTMs that improve their cellular spread and lead to secondary consequences of viral processes. In this review, we offer a perspective on relevant MT-related elements exploited by viruses.
Collapse
|
11
|
McMullen K, Bateman K, Stanley A, Combrinck M, Engelbrecht S, Bryer A. Viral protein R polymorphisms in the pathogenesis of HIV-associated acute ischaemic stroke: a case-control study. J Neurovirol 2021; 27:137-144. [PMID: 33462790 DOI: 10.1007/s13365-020-00936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
HIV-1 viral proteins have been implicated in endothelial dysfunction, which is a major determinant of ischaemic stroke risk in HIV-infected individuals. Polymorphisms in HIV-1 viral protein R (Vpr) may alter its potential to promote endothelial dysfunction, by modifying its effects on viral replication, reactivation of latent cells, upregulation of pro-inflammatory cytokines and infection of macrophages. We analysed Vpr polymorphisms and their association with acute ischaemic stroke by comparing Vpr signature amino acids between 54 HIV-infected individuals with acute ischaemic stroke, and 80 age-matched HIV-infected non-stroke controls. Isoleucine at position 22 and serine at position 41 were associated with ischaemic stroke in HIV. Individuals with stroke had lower CD4 counts and CD4 nadirs than controls. These polymorphisms are unique to individuals with stroke compared to South African subtype C and the control group consensus sequences. Signature Vpr polymorphisms are associated with acute ischaemic stroke in HIV. These may increase stroke risk by promoting endothelial dysfunction and susceptibility to opportunistic infections. Therapeutic targeting of HIV-1 viral proteins may present an additional mechanism of decreasing stroke risk in HIV-infected individuals.
Collapse
Affiliation(s)
- Kate McMullen
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | - Kathleen Bateman
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Alan Stanley
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Marc Combrinck
- Division of Geriatric Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Services, Cape Town, South Africa
| | - Alan Bryer
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Fan J, Zhang M, Liu C, Zhu M, Zhang Z, Wu K, Li Z, Li W, Fan S, Ju C, Yi L, Ding H, Zhao M, Chen J. The Network of Interactions Between Classical Swine Fever Virus Nonstructural Protein p7 and Host Proteins. Front Microbiol 2020; 11:597893. [PMID: 33329485 PMCID: PMC7733924 DOI: 10.3389/fmicb.2020.597893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious viral disease causing severe economic losses to the swine industry. As viroporins of viruses modulate the cellular ion balance and then take over the cellular machinery, blocking the activity of viroporin or developing viroporin-defective attenuated vaccines offers new approaches to treat or prevent viral infection. Non-structural protein p7 of CSF virus (CSFV) is a viroporin, which was highly involved in CSFV virulence. Deciphering the interaction between p7 and host proteins will aid our understanding of the mechanism of p7-cellular protein interaction affecting CSFV replication. In the present study, seven host cellular proteins including microtubule-associated protein RP/EB family member 1 (MAPRE1), voltage-dependent anion channel 1 (VDAC1), proteasome maturation protein (POMP), protein inhibitor of activated STAT 1 (PIAS1), gametogenetin binding protein 2 (GGNBP2), COP9 signalosome subunit 2 (COPS2), and contactin 1 (CNTN1) were identified as the potential interactive cellular proteins of CSFV p7 by using yeast two-hybrid (Y2H) screening. Plus, the interaction of CSFV p7 with MAPRE1 and VDAC1 was further evaluated by co-immunoprecipitation and GST-pulldown assay. Besides, the p7-cellular protein interaction network was constructed based on these seven host cellular proteins and the STRING database. Enrichment analysis of GO and KEGG indicated that many host proteins in the p7-cellular protein interaction network were mainly related to the ubiquitin-proteasome system, cGMP-PKG signaling pathway, calcium signaling pathway, and JAK-STAT pathway. Overall, this study identified potential interactive cellular proteins of CSFV p7, constructed the p7-cellular protein interaction network, and predicted the potential pathways involved in the interaction between CSFV p7 and host cells.
Collapse
Affiliation(s)
- Jindai Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengru Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenchen Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengjiao Zhu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zilin Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoyao Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenhui Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chunmei Ju
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
13
|
Al-Mukh H, Baudoin L, Bouaboud A, Sanchez-Salgado JL, Maraqa N, Khair M, Pagesy P, Bismuth G, Niedergang F, Issad T. Lipopolysaccharide Induces GFAT2 Expression to Promote O-Linked β- N-Acetylglucosaminylation and Attenuate Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:2499-2510. [PMID: 32978282 DOI: 10.4049/jimmunol.2000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.
Collapse
Affiliation(s)
- Hasanain Al-Mukh
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Léa Baudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | | | - Nabih Maraqa
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Mostafa Khair
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Patrick Pagesy
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| |
Collapse
|
14
|
Auld SC, Staitieh BS. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology 2020; 17:32. [PMID: 32967690 PMCID: PMC7509826 DOI: 10.1186/s12977-020-00540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
As HIV has fueled a global resurgence of tuberculosis over the last several decades, there is a growing awareness that HIV-mediated impairments in both innate and adaptive immunity contribute to the heightened risk of tuberculosis in people with HIV. Since early immune responses to Mycobacterium tuberculosis (Mtb) set the stage for subsequent control or progression to active tuberculosis disease, early host-pathogen interactions following Mtb infection can be thought of as establishing a mycobacterial "set point," which we define as the mycobacterial burden at the point of adaptive immune activation. This early immune response is impaired in the context of HIV coinfection, allowing for a higher mycobacterial set point and greater likelihood of progression to active disease with greater bacterial burden. Alveolar macrophages, as the first cells to encounter Mtb in the lungs, play a critical role in containing Mtb growth and establishing the mycobacterial set point. However, a number of key macrophage functions, ranging from pathogen recognition and uptake to phagocytosis and microbial killing, are blunted in HIV coinfection. To date, research evaluating the effects of HIV on the alveolar macrophage response to Mtb has been relatively limited, particularly with regard to the critical early events that help to dictate the mycobacterial set point. A greater understanding of alveolar macrophage functions impacted by HIV coinfection will improve our understanding of protective immunity to Mtb and may reveal novel pathways amenable to intervention to improve both early immune control of Mtb and clinical outcomes for the millions of people worldwide infected with HIV.
Collapse
Affiliation(s)
- Sara C Auld
- Emory University School of Medicine, Atlanta, GA, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
15
|
Lê-Bury G, Deschamps C, Kizilyaprak C, Blanchard W, Daraspe J, Dumas A, Gordon MA, Hinton JCD, Humbel BM, Niedergang F. Increased intracellular survival of Salmonella Typhimurium ST313 in HIV-1-infected primary human macrophages is not associated with Salmonella hijacking the HIV compartment. Biol Cell 2020; 112:92-101. [PMID: 31922615 DOI: 10.1111/boc.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) causes a severe invasive syndrome (iNTS disease) described in HIV-positive adults. The impact of HIV-1 on Salmonella pathogenesis and the molecular basis for the differences between these bacteria and classical diarrhoeal S. Typhimurium remains unclear. RESULTS Here, we show that iNTS-associated S. Typhimurium Sequence Type 313 (ST313) bacteria show greater intracellular survival in primary human macrophages, compared with a 'classical' diarrhoeal S. Typhimurium ST19 isolate. The increased intracellular survival phenotype of ST313 is more pronounced in HIV-infected macrophages. We explored the possibility that the bacteria take advantage of the HIV-associated viral-containing compartments created in human macrophages that have low pH. Confocal fluorescence microscopy and focussed ion beam-scanning electron microscopy tomography showed that Salmonella did not co-localise extensively with HIV-positive compartments. CONCLUSION The capacity of ST313 bacteria to survive better than ST19 bacteria within primary human macrophages is enhanced in cells pre-infected with HIV-1. Our results indicate that the ST313 bacteria do not directly benefit from the niche created by the virus in HIV-1-infected macrophages, and that they might take advantage from a more globally modified host cell. SIGNIFICANCE A better understanding of the interplay between HIV-1 and Salmonella is important not only for these bacteria but also for other opportunistic pathogens.
Collapse
Affiliation(s)
- G Lê-Bury
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - C Deschamps
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - C Kizilyaprak
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - W Blanchard
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - J Daraspe
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - A Dumas
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - M A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Malawi-Liverpool-Welcome Trust B=Clinical Research Programme, Malawi
| | - J C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - B M Humbel
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland.,IMG, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - F Niedergang
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| |
Collapse
|
16
|
Liang Z, Li P, Wang C, Singh D, Zhang X. Visualizing the Transport of Porcine Reproductive and Respiratory Syndrome Virus in Live Cells by Quantum Dots-Based Single Virus Tracking. Virol Sin 2019; 35:407-416. [PMID: 31872331 DOI: 10.1007/s12250-019-00187-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023] Open
Abstract
Quantum dots (QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time. The porcine reproductive and respiratory syndrome virus (PRRSV) is a small virus with the virion size of 40-60 nm which causes great economic losses to the swine industry worldwide. A clear understanding of the viral infection mechanism is essential for the development of effective antiviral strategies. In this study, we labeled the PRRSV with QDs using the streptavidin-biotin labeling system and monitored the viral infection process in live cells. Our results indicated that the labeling method had negligible effect on viral infectivity. We also observed that prior to the entry, PRRSV vibrated on the plasma membrane, and entered the cells via endosome mediated cell entry pathway. Viruses moved in a slow-fast-slow oscillatory movement pattern and finally accumulated in a perinuclear region of the cell. Our results also showed that once inside the cell, PRRSV moved along the microtubule, microfilament and vimentin cytoskeletal elements. During the transport process, virus particles also made contacts with non-muscle myosin heavy chain II-A (NMHC II-A), visualized as small spheres in cytoplasm. This study can facilitate the application of QDs in virus infection imaging, especially the smaller-sized viruses and provide some novel and important insights into PRRSV infection mechanism.
Collapse
Affiliation(s)
- Zhenpu Liang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Pengjuan Li
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Caiping Wang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Xiaoxia Zhang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China.
| |
Collapse
|
17
|
Comparative transcriptome analysis of the human endocervix and ectocervix during the proliferative and secretory phases of the menstrual cycle. Sci Rep 2019; 9:13494. [PMID: 31530865 PMCID: PMC6749057 DOI: 10.1038/s41598-019-49647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/β-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.
Collapse
|
18
|
Farkas Z, Petric M, Liu X, Herit F, Rajnavölgyi É, Szondy Z, Budai Z, Orbán TI, Sándor S, Mehta A, Bajtay Z, Kovács T, Jung SY, Afaq Shakir M, Qin J, Zhou Z, Niedergang F, Boissan M, Takács-Vellai K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/Dynamin. FASEB J 2019; 33:11606-11614. [PMID: 31242766 PMCID: PMC6819981 DOI: 10.1096/fj.201900220r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow–derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin–rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.—Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.
Collapse
Affiliation(s)
- Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Metka Petric
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Floriane Herit
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Éva Rajnavölgyi
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Zsófia Budai
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sára Sándor
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital Medical School, Dundee, United Kingdom
| | - Zsuzsa Bajtay
- Department of Immunology and MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Muhammed Afaq Shakir
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Niedergang
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, University Pierre and Marie Curie (UPMC) Paris 06, INSERM, Unité Mixte de Recherche (UMR) S938, Saint-Antoine Research Center, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hospital Tenon, Service de Biochimie et Hormonologie, Paris, France
| | | |
Collapse
|
19
|
Wenzel ED, Avdoshina V, Mocchetti I. HIV-associated neurodegeneration: exploitation of the neuronal cytoskeleton. J Neurovirol 2019; 25:301-312. [PMID: 30850975 DOI: 10.1007/s13365-019-00737-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system damages synapses and promotes axonal injury, ultimately resulting in HIV-associated neurocognitive disorders (HAND). The mechanisms through which HIV causes damage to neurons are still under investigation. The cytoskeleton and associated proteins are fundamental for axonal and dendritic integrity. In this article, we review evidence that HIV proteins, such as the envelope protein gp120 and transactivator of transcription (Tat), impair the structure and function of the neuronal cytoskeleton. Investigation into the effects of viral proteins on the neuronal cytoskeleton may provide a better understanding of HIV neurotoxicity and suggest new avenues for additional therapies.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
21
|
Wei M, Xu WT, Li KM, Chen YD, Wang L, Meng L, Zhao FZ, Chen SL. Cloning, characterization and functional analysis of dctn5 in immune response of Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2018; 77:392-401. [PMID: 29635065 DOI: 10.1016/j.fsi.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
In mammals, microtubule-dependent trafficking could participate the immune response, where the motor proteins are suggested to play an important role in this process, while the related study in fish was rare. In this study, dctn5, a subunit of dyactin complex for docking motor protein, was obtained by previous immune QTL screening. The full-length cDNAs of two dctn5 transcript variants were cloned and identified (named dctn5_tv1 and dctn5_tv2, respectively). Tissue distribution showed that dctn5_tv1 was widely distributed and high transcription was observed in immune tissue (skin), while dctn5_tv2 was predominantly detected in gonad and very low in other tissues. Time-course expression analysis revealed that dctn5_tv1 could be up-regulated in gill, intestine, skin, spleen, and kidney after Vibrio harveyi challenge. Moreover, recombinant Dctn5_tv1 exhibited high antimicrobial activity against Escherichia coli and Streptococcus agalactiae due to binding to bacteria cells. Taken together, these data suggest Dctn5_tv1 is involved in immune response of bacterial invasion in Chinese tongue sole.
Collapse
Affiliation(s)
- Min Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kun-Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya-Dong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Liang Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fa-Zhen Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Song-Lin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
22
|
HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J Neuroimmune Pharmacol 2018; 14:52-67. [PMID: 29572681 DOI: 10.1007/s11481-018-9785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.
Collapse
|
23
|
Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How Might They Be Implicated in the Development of Invasive Salmonella Typhimurium? Front Immunol 2018; 9:531. [PMID: 29628924 PMCID: PMC5876300 DOI: 10.3389/fimmu.2018.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and kills T cells, profoundly damaging the host-specific immune response. The virus also integrates into memory T cells and long-lived macrophages, establishing chronic infections. HIV-1 infection impairs the functions of macrophages both in vivo and in vitro, which contributes to the development of opportunistic diseases. Non-typhoidal Salmonella enterica serovar Typhimurium has been identified as the most common cause of bacterial bloodstream infections in HIV-infected adults. In this review, we report how the functions of macrophages are impaired post HIV infection; introduce what makes invasive Salmonella Typhimurium specific for its pathogenesis; and finally, we discuss why these bacteria may be particularly adapted to the HIV-infected host.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
24
|
Niedergang F, Grinstein S. How to build a phagosome: new concepts for an old process. Curr Opin Cell Biol 2018; 50:57-63. [DOI: 10.1016/j.ceb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
|
25
|
Milev MP, Yao X, Berthoux L, Mouland AJ. Impacts of virus-mediated manipulation of host Dynein. DYNEINS 2018. [PMCID: PMC7150161 DOI: 10.1016/b978-0-12-809470-9.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In general viruses' modus operandi to propagate is achieved by the co-opting host cell components, membranes, proteins, and machineries to their advantage. This is true for virtually every aspect of a virus' replication cycle from virus entry to the budding or release of progeny virus particles. In this chapter, we will discuss new information on the impacts of virus-mediated manipulation of Dynein motor complexes and associated machineries and factors. We will highlight how these host cell components impact on pathogenicity and immune responses, as many of the virus-mediated hijacked components also play pivotal roles in immune responses to pathogen insult. There are several comprehensive reviews that define virus–Dynein interactions including the first edition of this book that describes how viruses manipulate the host cell machineries their advantage. An updated table is included to summarize these virus–host interactions. Notably, barriers to intracellular translocation represent major hurdles to viral components during de novo infection and during active replication and the generation of progeny virus particles. Clearly, the subversion of host cell molecular motor protein activities takes advantage of constitutive and regulated membrane trafficking events and will target virus components to intracytoplasmic locales and membrane assembly. Broadening our understanding of the interplay between viruses, Dynein and the cytoskeleton will likely inform on new types of therapies. Continual enhancement of the breadth of new information on how viruses manipulate host cell biology will inevitably aid in the identification of new targets that can be poisoned to block old, new, and emerging viruses alike in their tracks.
Collapse
|
26
|
Jubrail J, Kurian N, Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed J 2017; 40:305-312. [PMID: 29433833 PMCID: PMC6138611 DOI: 10.1016/j.bj.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023] Open
Abstract
In the normal non-diseased lung, various macrophage populations maintain homeostasis and sterility by ingesting and clearing inhaled particulates, pathogens and apoptotic cells from the local environment. This process of phagocytosis leads to the degradation of the internalized material, coordinated induction of gene expression, antigen presentation and cytokine production, implicating phagocytosis as a central regulator of innate immunity. Phagocytosis is extremely efficient and any perturbation of this function is deleterious. In inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), despite their increased numbers, macrophages demonstrate significantly reduced phagocytic capacity of bacteria and apoptotic cells. This defect could play a role in dysbiosis of the lung microbiome contributing to disease pathophysiology. In this review, we will discuss lung macrophages, describe phagocytosis and its related downstream processes and the reported phagocytosis defects in COPD. Finally, we will briefly examine current strategies that focus on restoring the phagocytic capabilities of lung macrophages that may have utility in COPD.
Collapse
Affiliation(s)
- Jamil Jubrail
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nisha Kurian
- AstraZeneca, Precision Medicine & Genomics, RIA Companion Diagnostics Unit, Sweden
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
27
|
T Cell-Macrophage Fusion Triggers Multinucleated Giant Cell Formation for HIV-1 Spreading. J Virol 2017; 91:JVI.01237-17. [PMID: 28978713 DOI: 10.1128/jvi.01237-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023] Open
Abstract
HIV-1-infected macrophages participate in virus dissemination and establishment of virus reservoirs in host tissues, but the mechanisms for virus cell-to-cell transfer to macrophages remain unknown. Here, we reveal the mechanisms for cell-to-cell transfer from infected T cells to macrophages and virus spreading between macrophages. We show that contacts between infected T lymphocytes and macrophages lead to cell fusion for the fast and massive transfer of CCR5-tropic viruses to macrophages. Through the merge of viral material between T cells and macrophages, these newly formed lymphocyte-macrophage fused cells acquire the ability to fuse with neighboring noninfected macrophages. Together, these two-step envelope-dependent cell fusion processes lead to the formation of highly virus-productive multinucleated giant cells reminiscent of the infected multinucleated giant macrophages detected in HIV-1-infected patients and simian immunodeficiency virus-infected macaques. These mechanisms represent an original mode of virus transmission for viral spreading and a new model for the formation of macrophage virus reservoirs during infection.IMPORTANCE We reveal a very efficient mechanism involved in cell-to-cell transfer from infected T cells to macrophages and subsequent virus spreading between macrophages by a two-step cell fusion process. Infected T cells first establish contacts and fuse with macrophage targets. The newly formed lymphocyte-macrophage fused cells then acquire the ability to fuse with surrounding uninfected macrophages, leading to the formation of infected multinucleated giant cells that can survive for a long time, as evidenced in vivo in lymphoid organs and the central nervous system. This route of infection may be a major determinant for virus dissemination and the formation of macrophage virus reservoirs in host tissues during HIV-1 infection.
Collapse
|
28
|
Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. Proc Natl Acad Sci U S A 2017; 114:E10707-E10716. [PMID: 29180435 DOI: 10.1073/pnas.1712033114] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous viruses, including HIV-1, exploit the microtubule network to traffic toward the nucleus during infection. Although numerous studies have observed a role for the minus-end microtubule motor dynein in HIV-1 infection, the mechanism by which the viral core containing the viral genome associates with dynein and induces its perinuclear trafficking has remained unclear. Here, we report that the dynein adapter protein bicaudal D2 (BICD2) is able to interact with HIV-1 viral cores in target cells. We also observe that BICD2 can bind in vitro-assembled capsid tubes through its CC3 domain. We observe that BICD2 facilitates infection by promoting the trafficking of viral cores to the nucleus, thereby promoting nuclear entry of the viral genome and infection. Finally, we observe that depletion of BICD2 in the monocytic cell line THP-1 results in an induction of IFN-stimulated genes in these cells. Collectively, these results identify a microtubule adapter protein critical for trafficking of HIV-1 in the cytoplasm of target cells and evasion of innate sensing mechanisms in macrophages.
Collapse
|
29
|
Niedergang F, Gasman S, Vitale N, Desnos C, Lamaze C. Meeting after meeting: 20 years of discoveries by the members of the Exocytosis-Endocytosis Club. Biol Cell 2017; 109:339-353. [DOI: 10.1111/boc.201700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1016 Institut Cochin Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 8104 Paris France
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
- CNRS; UMR 8250 Paris France
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche; PSL Research University; Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory; Paris France
- CNRS; UMR 3666 Paris France
- INSERM; U1143 Paris France
| |
Collapse
|
30
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
31
|
Vanoni MA. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Arch Biochem Biophys 2017; 632:118-141. [PMID: 28602956 DOI: 10.1016/j.abb.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
32
|
Frémont S, Romet-Lemonne G, Houdusse A, Echard A. Emerging roles of MICAL family proteins - from actin oxidation to membrane trafficking during cytokinesis. J Cell Sci 2017; 130:1509-1517. [PMID: 28373242 DOI: 10.1242/jcs.202028] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokinetic abscission is the terminal step of cell division, leading to the physical separation of the two daughter cells. The exact mechanism mediating the final scission of the intercellular bridge connecting the dividing cells is not fully understood, but requires the local constriction of endosomal sorting complex required for transport (ESCRT)-III-dependent helices, as well as remodelling of lipids and the cytoskeleton at the site of abscission. In particular, microtubules and actin filaments must be locally disassembled for successful abscission. However, the mechanism that actively removes actin during abscission is poorly understood. In this Commentary, we will focus on the latest findings regarding the emerging role of the MICAL family of oxidoreductases in F-actin disassembly and describe how Rab GTPases regulate their enzymatic activity. We will also discuss the recently reported role of MICAL1 in controlling F-actin clearance in the ESCRT-III-mediated step of cytokinetic abscission. In addition, we will highlight how two other members of the MICAL family (MICAL3 and MICAL-L1) contribute to cytokinesis by regulating membrane trafficking. Taken together, these findings establish the MICAL family as a key regulator of actin cytoskeleton dynamics and membrane trafficking during cell division.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris 75013, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| |
Collapse
|
33
|
Abraham P, Maliekal TT. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research. Cell Mol Life Sci 2017; 74:1177-1189. [PMID: 27714408 PMCID: PMC11107591 DOI: 10.1007/s00018-016-2382-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023]
Abstract
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Collapse
Affiliation(s)
- Parvin Abraham
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
34
|
Portilho DM, Persson R, Arhel N. Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 2017; 7:283-292. [PMID: 27879481 DOI: 10.1515/bmc-2016-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
Viruses are entirely dependent on their ability to infect a host cell in order to replicate. To reach their site of replication as rapidly and efficiently as possible following cell entry, many have evolved elaborate mechanisms to hijack the cellular transport machinery to propel themselves across the cytoplasm. Long-range movements have been shown to involve motor proteins along microtubules (MTs) and direct interactions between viral proteins and dynein and/or kinesin motors have been well described. Although less well-characterized, it is also becoming increasingly clear that non-motile microtubule-associated proteins (MAPs), including structural MAPs of the MAP1 and MAP2 families, and microtubule plus-end tracking proteins (+TIPs), can also promote viral trafficking in infected cells, by mediating interaction of viruses with filaments and/or motor proteins, and modulating filament stability. Here we review our current knowledge on non-motile MAPs, their role in the regulation of cytoskeletal dynamics and in viral trafficking during the early steps of infection.
Collapse
|
35
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
36
|
Sanfilippo C, Nunnari G, Calcagno A, Malaguarnera L, Blennow K, Zetterberg H, Di Rosa M. The chitinases expression is related to Simian Immunodeficiency Virus Encephalitis (SIVE) and in HIV encephalitis (HIVE). Virus Res 2017; 227:220-230. [DOI: 10.1016/j.virusres.2016.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 01/15/2023]
|
37
|
Zhao L, Tu J, Zhang Y, Wang J, Yang L, Wang W, Wu Z, Meng Q, Lin L. Transcriptomic analysis of the head kidney of Topmouth culter (Culter alburnus) infected with Flavobacterium columnare with an emphasis on phagosome pathway. FISH & SHELLFISH IMMUNOLOGY 2016; 57:413-418. [PMID: 27601296 DOI: 10.1016/j.fsi.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Flavobacterium columnare (FC) has caused worldwide fish columnaris disease with high mortality and great economic losses in cultured fish, including Topmouth culter (Culter alburnus). However, the knowledge about the host factors involved in FC infection is little known. In this study, the transcriptomic profiles of the head kidney from Topmouth culter with or without FC infection were obtained using HiSeq™ 2500 (Illumina). Totally 79,641 unigenes with high quality were obtained. Among them, 4037 differently expressed genes, including 1217 up-regulated and 2820 down-regulated genes, were identified and enriched using databases of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differently expressed genes were mainly associated with pathways such as immune response, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Since phagocytosis is a central mechanism of innate immune response by host cells to defense against infectious agents, genes related to the phagosome pathway were scrutinized and 9 differently expressed phagosome-related genes were identified including 3 up-regulated and 6 down-regulated genes. Five of them were further validated by quantitative real-time polymerase chain reaction (qRT-PCR). This transcriptomic analysis of host genes in response to FC infection provides data towards understanding the infection mechanisms and will shed a new light on the prevention of columnaris.
Collapse
Affiliation(s)
- Lijuan Zhao
- Shandong Freshwater Fisheries Research Institute, Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, Shandong, 250013, China; Department of Aquatic Animal Medicine, College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yulei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinfu Wang
- Shandong Freshwater Fisheries Research Institute, Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, Shandong, 250013, China
| | - Ling Yang
- Shandong Freshwater Fisheries Research Institute, Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, Shandong, 250013, China
| | - Weimin Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zaohe Wu
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qinglei Meng
- Shandong Freshwater Fisheries Research Institute, Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, Shandong, 250013, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
38
|
Pandey D, Podder A, Pandit M, Latha N. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies. J Biomol Struct Dyn 2016; 35:2631-2644. [PMID: 27545652 DOI: 10.1080/07391102.2016.1227722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.
Collapse
Affiliation(s)
- Deeksha Pandey
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Avijit Podder
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Mansi Pandit
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Narayanan Latha
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| |
Collapse
|
39
|
Lê-Bury G, Deschamps C, Dumas A, Niedergang F. Phagosome Migration and Velocity Measured in Live Primary Human Macrophages Infected with HIV-1. J Vis Exp 2016. [PMID: 27684087 DOI: 10.3791/54568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrophages are phagocytic cells that play a major role at the crossroads between innate and specific immunity. They can be infected by the human immunodeficiency virus (HIV)-1 and because of their resistance to its cytopathic effects they can be considered to be persistent viral reservoirs. In addition, HIV-infected macrophages exhibit defective functions that contribute to the development of opportunistic diseases. The exact mechanism by which HIV-1 impairs the phagocytic response of macrophages was unknown. We had previously shown that the uptake of various particulate material by macrophages was inhibited when they were infected with HIV-1. This inhibition was only partial and phagosomes did form within HIV-infected macrophages. Therefore, we focused on analyzing the fate of these phagosomes. Phagosome maturation is accompanied by migration of these compartments towards the cell center, where they fuse with lysosomes, generating phagolysosomes, responsible for degradation of the ingested material. We used IgG-opsonized Sheep Red Blood Cells as a target for phagocytosis. To measure the speed of centripetal movement of phagosomes in individual HIV-infected macrophages, we used a combination of bright field and fluorescence confocal microscopy. We established a method to calculate the distance of phagosomes towards the nucleus, and then to calculate the velocity of the phagosomes. HIV-infected cells were identified thanks to a GFP-expressing virus, but the method is applicable to non-infected cells or any type of infection or treatment.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- Inserm U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité
| | - Chantal Deschamps
- Inserm U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité
| | - Audrey Dumas
- Inserm U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité
| | - Florence Niedergang
- Inserm U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité;
| |
Collapse
|
40
|
Caly L, Kassouf VT, Moseley GW, Diefenbach RJ, Cunningham AL, Jans DA. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate. Biochem Biophys Res Commun 2016; 470:735-740. [PMID: 26792716 DOI: 10.1016/j.bbrc.2016.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications.
Collapse
Affiliation(s)
- Leon Caly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia
| | - Vicki T Kassouf
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| |
Collapse
|