1
|
Chen L, Xiong L, Guo H, Feng X, Zhu X, Xiong WC. Osteoclastic ATP6AP2 maintains β-catenin levels to prevent hyper-osteoclastic activation and trabecular bone-loss. J Bone Miner Res 2024; 39:1821-1834. [PMID: 39400061 DOI: 10.1093/jbmr/zjae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteoclast (OC) formation and bone resorption are regulated by several factors, including V-ATPase, Wnt/β-catenin, and RANKL/RANK signaling. ATP6AP2, also known as the prorenin receptor (PRR), is an accessory subunit of V-ATPase and a regulator of Wnt/β-catenin signaling. While the V-ATPase subunit ATP6AP1 is essential for OC formation and function, the role of ATP6AP2 in OC-lineage cells is less clear. Here, we provide evidence that ATP6AP2 plays a negative role in osteoclastogenesis and function, contrasting with the positive role of ATP6AP1. Mice with conditional KO (cKO) of ATP6AP2 in OCs (Atp6ap2LysM) exhibit trabecular bone loss, likely due to the increased osteoclastogenesis and activity, since bone formation rates (BFRs) are comparable to control mice. In vitro assays using bone marrow macrophages (BMMs) show that Atp6ap2LysM cultures have more RANKL-induced TRAP+ OC-like cells and increased bone resorptive activity. Further studies reveal that while RANKL signaling and V-ATPase activity are normal, ATP6AP2 KO OCs, but not BMMs, have reduced basal levels of Wnt/β-catenin pathway proteins, such as LRP5/6 and β-catenin, compared to controls. Wnt3A treatment induces β-catenin and suppresses OC formation in both control and ATP6AP2 KO OC-lineage cells, indicating that Wnt/β-catenin signaling negatively regulates OC-formation and operates independently of ATP6AP2. Overall, these results suggest that ATP6AP2 is critical for maintaining basal levels of LRP5/6 receptors and β-catenin in OCs, thus acting as a negative regulator of osteoclastogenesis and activation.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Xu Feng
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 619 19th St S Ste P210, Birmingham, AL 35233, United States
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| |
Collapse
|
2
|
Xiong L, Guo HH, Pan JX, Ren X, Lee D, Chen L, Mei L, Xiong WC. ATP6AP2, a regulator of LRP6/β-catenin protein trafficking, promotes Wnt/β-catenin signaling and bone formation in a cell type dependent manner. Bone Res 2024; 12:33. [PMID: 38811544 PMCID: PMC11137048 DOI: 10.1038/s41413-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired β-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of β-catenin phosphorylation, but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active β-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating β-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Li P, Jin Q, Zeng K, Niu C, Xie Q, Dong T, Huang Z, Dou X, Feng C. Amino acid-based supramolecular chiral hydrogels promote osteogenesis of human dental pulp stem cells via the MAPK pathway. Mater Today Bio 2024; 25:100971. [PMID: 38347936 PMCID: PMC10859303 DOI: 10.1016/j.mtbio.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.
Collapse
Affiliation(s)
- Peilun Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Kangrui Zeng
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Chen L, Xiong L, Yao L, Pan J, Arzola E, Zhu X, Mei L, Xiong WC. Attenuation of Alzheimer's brain pathology in 5XFAD mice by PTH 1-34, a peptide of parathyroid hormone. Alzheimers Res Ther 2023; 15:53. [PMID: 36918976 PMCID: PMC10012528 DOI: 10.1186/s13195-023-01202-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and osteoporosis are two distinct diseases but often occur in the same patient. Their relationship remains poorly understood. Studies using Tg2576 AD animal model demonstrate bone deficits, which precede the brain phenotypes by several months, arguing for the independence of bone deficits on brain degeneration and raising a question if the bone deficits contribute to the AD development. To address this question, we investigated the effects of PTH1-34, a peptide of parathyroid hormone analog and a well-recognized effective anabolic therapy drug for patients with osteoporosis, on 5XFAD animal model. METHODS 5XFAD mice, an early onset β-amyloid (Aβ)-based AD mouse model, were treated with PTH1-34 intermittently [once daily injection of hPTH1-34 (50 μg/Kg), 5 days/week, starting at 2-month old (MO) for 2-3 month]. Wild type mice (C57BL/6) were used as control. The bone phenotypes were examined by microCT and evaluated by measuring serum bone formation and resorption markers. The AD relevant brain pathology (e.g., Aβ and glial activation) and behaviors were assessed by a combination of immunohistochemical staining analysis, western blots, and behavior tests. Additionally, systemic and brain inflammation were evaluated by serum cytokine array, real-time PCR (qPCR), and RNAscope. RESULTS A reduced trabecular, but not cortical, bone mass, accompanied with a decrease in bone formation and an increase in bone resorption, was detected in 5XFAD mice at age of 5/6-month old (MO). Upon PTH1-34 treatments, not only these bone deficits but also Aβ-associated brain pathologies, including Aβ and Aβ deposition levels, dystrophic neurites, glial cell activation, and brain inflammatory cytokines, were all diminished; and the cognitive function was improved. Further studies suggest that PTH1-34 acts on not only osteoblasts in the bone but also astrocytes in the brain, suppressing astrocyte senescence and expression of inflammatory cytokines in 5XFAD mice. CONCLUSIONS These results suggest that PTH1-34 may act as a senolytic-like drug, reducing systemic and brain inflammation and improving cognitive function, and implicate PTH1-34's therapeutic potential for patients with not only osteoporosis but also AD.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emily Arzola
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA
| | - Xiaojuan Zhu
- Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy 2023:1-19. [PMID: 36858962 PMCID: PMC10392742 DOI: 10.1080/15548627.2023.2186112] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The skeletal system is the basis of the vertebral body composition, which affords stabilization sites for muscle attachment, protects vital organs, stores mineral ions, supplies places to the hematopoietic system, and participates in complex endocrine and immune system. Not surprisingly, bones are constantly reabsorbed, formed, and remodeled under physiological conditions. Once bone metabolic homeostasis is interrupted (including inflammation, tumors, fractures, and bone metabolic diseases), the body rapidly initiates bone regeneration to maintain bone tissue structure and quality. Macroautophagy/autophagy is an essential metabolic process in eukaryotic cells, which maintains metabolic energy homeostasis and plays a vital role in bone regeneration by controlling molecular degradation and organelle renewal. One relatively new observation is that mesenchymal cells, osteoblasts, osteoclasts, osteocytes, chondrocytes, and vascularization process exhibit autophagy, and the molecular mechanisms and targets involved are being explored and updated. The role of autophagy is also emerging in degenerative diseases (intervertebral disc degeneration [IVDD], osteoarthritis [OA], etc.) and bone metabolic diseases (osteoporosis [OP], osteitis deformans, osteosclerosis). The use of autophagy regulators to modulate autophagy has benefited bone regeneration, including MTOR (mechanistic target of rapamycin kinase) inhibitors, AMPK activators, and emerging phytochemicals. The application of biomaterials (especially nanomaterials) to trigger autophagy is also an attractive research direction, which can exert superior therapeutic properties from the material-loaded molecules/drugs or the material's properties such as shape, roughness, surface chemistry, etc. All of these have essential clinical significance with the discovery of autophagy associated signals, pathways, mechanisms, and treatments in bone diseases in the future.Abbreviations: Δψm: mitochondrial transmembrane potential AMPK: AMP-activated protein kinase ARO: autosomal recessive osteosclerosis ATF4: activating transcription factor 4 ATG: autophagy-related β-ECD: β-ecdysone BMSC: bone marrow mesenchymal stem cell ER: endoplasmic reticulum FOXO: forkhead box O GC: glucocorticoid HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha HSC: hematopoietic stem cell HSP: heat shock protein IGF1: insulin like growth factor 1 IL1B/IL-1β: interleukin 1 beta IVDD: intervertebral disc degradation LPS: lipopolysaccharide MAPK: mitogen-activated protein kinase MSC: mesenchymal stem cell MTOR: mechanistic target of rapamycin kinase NP: nucleus pulposus NPWT: negative pressure wound therapy OA: osteoarthritis OP: osteoporosis PTH: parathyroid hormone ROS: reactive oxygen species SIRT1: sirtuin 1 SIRT3: sirtuin 3 SQSTM1/p62: sequestosome 1 TNFRSF11B/OPG: TNF receptor superfamily member 11b TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11 TSC1: tuberous sclerosis complex 1 ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jin Cao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Zihan Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.,School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
7
|
RNF185 antisense RNA 1 (RNF185-AS1) promotes proliferation, migration, and invasion in papillary thyroid carcinoma. Anticancer Drugs 2022; 33:595-606. [PMID: 35324519 DOI: 10.1097/cad.0000000000001295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long noncoding RNA (lncRNA) plays an important role in multiple cancers. So far, the exact function of lncRNAs in papillary thyroid carcinoma (PTC) is unclear. The purposes of this work were to investigate the function and underlying mechanisms of RNF185 antisense RNA 1 (RNF185-AS1) in PTC. The expression of RNF185-AS1 was analyzed by quantitative real-time PCR (qRT-PCR). Colony formation, 5-ethynyl-2'-deoxyuridine, and Cell Counting Kit-8 assays were utilized to determine cell proliferation. Cell migration and invasion were tested using wound healing and transwell assays. A mouse transplantation tumor model was used for tumor growth analyses in vivo. The regulation of RNF185-AS1 on the downstream miR-429/lipoprotein receptor-related protein (LRP4) axis was predicted and identified through bioinformatic analysis, dual-luciferase reporter assay, and RNA immunoprecipitation (RIP) assay. RNF185-AS1 was dramatically overexpressed in PTC tumors and cells. High RNF185-AS1 expression was associated with bigger tumor size, lymph node metastasis, and advanced tumor-node-metastasis stage in PTC patients. Silencing of RNF185-AS1 impeded the proliferation, migration, and invasion in vitro and constrained tumorigenesis in vivo. Mechanistically, RNF185-AS1 could act as a sponge of miR-429 to regulate the expression of LRP4. In addition, downregulation of miR-429 or upregulation of LRP4 could relieve the proliferation, migration, and invasion of IHH-4 and TPC-1 cells that inhibited by RNF185-AS1 knockdown. Downregulation of RNF185-AS1 may suppress PTC progression through functioning as a sponge of miR-429 to hinder the expression of LRP4. The RNF185-AS1/miR-429/LRP4 axis will lay the groundwork for future therapeutic strategies in PTC.
Collapse
|
8
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
9
|
Mao Z, Wang Z, Zhang S, Pu Y, Wang J, Zhang T, Long Y, Liu Y, Ma Y, Zhu J. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2021; 29:245-253. [PMID: 32675391 DOI: 10.3233/cbm-190571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 4 (LRP4) has been reported to be implicated in multiple types of cancers. However, the significance of LRP4 in gastric cancer (GC) remains poorly elucidated. Therefore, it's urgent to investigate the importance and underlying mechanisms of LRP4 in GC. OBJECTIVE To investigate the clinical roles of LRP4 in GC. METHODS The LRP4 mRNA and miR-140-5p was measured by qRT-PCR. The protein expression was determined Western blot. Kaplan-Meier survival curves and Cox proportional hazard regression models were performed to evaluate prognosis. RESULTS We demonstrated that LRP4 mRNA and protein was up-regulated in GC tissues for the first time. Its high expression was significantly correlated with malignant clinical features including TNM stage and lymph-node metastasis and poor prognosis for GC patients. LRP4 promotes migration, invasion and epithelial-mesenchymal transition (EMT) progress of GC cells. Mechanically, LRP4 regulated PI3K/AKT in GC cells. AKT inhibitors reversed the effects of LRP4. Finally, LRP4 was regulated by miR-140-5p in GC. CONCLUSIONS Our findings showed that LRP4 has an important function in GC progression and promotes GC migration, invasion and EMT by regulating PI3K/AKT under regulation of miR-140-5p, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhijun Mao
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yansong Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jianhua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Tao Zhang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanbin Long
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, Shen C, Chen WB, Tang FL, Lee D, Zhang JS, Mei L, Xiong WC. Critical Roles of Embryonic Born Dorsal Dentate Granule Neurons for Activity-Dependent Increases in BDNF, Adult Hippocampal Neurogenesis, and Antianxiety-like Behaviors. Biol Psychiatry 2021; 89:600-614. [PMID: 33183762 PMCID: PMC7889658 DOI: 10.1016/j.biopsych.2020.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Leena Milibari
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yang Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Bing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jun-Shi Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
11
|
Ma Y, Ran D, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141638. [PMID: 32858297 DOI: 10.1016/j.scitotenv.2020.141638] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a common environmental pollutant that accumulates in the bone and kidneys and causes severe health and social problems. However, the effects of Cd on the occurrence of osteoporosis and its mechanism of action in this process are unclear. To test whether Cd-induced osteoporosis is mediated via P2X7/PI3K/AKT signaling, duck bone marrow mesenchymal stem cells (BMSCs) and bone marrow macrophage cells (BMMs) were treated with Cd for 5 days, and duck embryos were treated with Cd. Micro-CT analysis indicated that Cd-induced osteoporosis occurs in vivo, and histopathology and immunohistochemical analyses also revealed that Cd induced bone damage and the downregulation of osteogenic and bone resorption-related proteins. Cd exposure significantly inhibited the differentiation of BMSCs and BMMs into osteoblasts and osteoclasts in vitro, and promoted osteoblast and osteoclast apoptosis. Cd exposure significantly downregulated the P2X7/PI3K/AKT signaling pathway in vivo and in vitro, and inhibition of this signaling pathway significantly aggravated osteoblast and osteoclast differentiation. Cd exposure also upregulated the OPG/RANKL ratio in vivo and in vitro, further inhibiting osteoclast differentiation. These results demonstrate that Cd causes osteoporosis in duck by inhibiting P2X7/PI3K/AKT signaling and increasing the OPG/RANKL ratio. These results establish a previously unknown mechanism of Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
12
|
Xiong L, Zhao K, Cao Y, Guo HH, Pan JX, Yang X, Ren X, Mei L, Xiong WC. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol 2020; 18:e3000731. [PMID: 32479501 PMCID: PMC7310860 DOI: 10.1371/journal.pbio.3000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-β-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
13
|
Geng Z, Yu Y, Li Z, Ma L, Zhu S, Liang Y, Cui Z, Wang J, Yang X, Liu C. miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110785. [DOI: 10.1016/j.msec.2020.110785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/02/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
|
14
|
A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Aβ Clearance. J Neurosci 2020; 40:5347-5361. [PMID: 32457076 DOI: 10.1523/jneurosci.0250-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aβ uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aβ plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aβ uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aβ pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Collapse
|
15
|
Zhang Y, Luo G, Yu X. Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development. Curr Med Chem 2020; 27:1151-1169. [PMID: 30068268 DOI: 10.2174/0929867325666180801145614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Background:Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods:We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were 'osteoporosis', 'osteocyte', 'osteoblast', 'osteoclast', 'bone remodeling', 'chondrocyte', 'osteoporosis treatment', 'osteoporosis therapy', 'bisphosphonates', 'denosumab', 'Selective Estrogen Receptor Modulator (SERM)', 'PTH', 'romosozumab', 'dkk-1 antagonist', 'strontium ranelate'. Results:A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion:There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Zhao L, Zhao Y, Tang FL, Xiong L, Su C, Mei L, Zhu XJ, Xiong WC. pHluorin-BACE1-mCherry Acts as a Reporter for the Intracellular Distribution of Active BACE1 In Vitro and In Vivo. Cells 2019; 8:E474. [PMID: 31108937 PMCID: PMC6562731 DOI: 10.3390/cells8050474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
β-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage and β-amyloid (Aβ) production, a critical step in the pathogenesis of Alzheimer's disease (AD). It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its maximal activity at acidic pH and GFP variant-pHluorin-displays pH dependence. In light of these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the fluorescence characteristics of these proteins in response to intracellular pH changes induced by chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex, which is critical for maintaining vesicular pH, regulates pHluorin's fluorescence and BACE1 activity in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yang Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Ce Su
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
17
|
Adenosine A2A Receptor Mediates Inhibition of Synovitis and Osteoclastogenesis after Electroacupuncture in Rats with Collagen-Induced Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4617464. [PMID: 30956681 PMCID: PMC6431381 DOI: 10.1155/2019/4617464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
Background This study was to investigate the role of adenosine A2A receptors (A2AR) in inhibiting the effect of electroacupuncture (EA) on osteoclastogenesis in collagen-induced arthritis (CIA). Methods Wistar rats were divided into four groups: sham-control group, CIA-control group, CIA-EA group, and CIA-EA-SCH58261 (A2AR antagonist) group. We detected tumor necrosis factor-α (TNF-α), nuclear transcription factor-κB (NF-κB), receptor activator of NF-κB ligand (RANKL), protein kinase A (PKA), and extracellular regulatory protein kinase 1/2 (ERK1/2) in peripheral blood by ELISA. PKA, ERK1/2, and NF-κB in ankle joints were determined by western blotting. We evaluated the arthritis damage by histological examination and determined the number of osteoclasts by tartrate-resistant acid phosphatase (TRAP) staining. Results EA treatment downregulated the expression of TNF-α, RANKL, PKA, ERK1/2, and NF-κB in peripheral blood but increased the levels of PKA and ERK1/2 in ankle joints. Importantly, EA treatment reduced bone erosion as evidenced by the histological findings and inhibited osteoclastogenesis as revealed by TRAP staining. All these effects of the EA treatment were reversed by combining EA treatment with the A2AR antagonist SCH58261. Conclusion Our data suggest that EA treatment activated A2AR. The effects of the A2AR antagonist SCH58261 suggest that the inhibition of osteoclast formation, the inhibition of TNF-α, RANKL, and NF-κB expression, and the increase of ERK1/2 are all dependent on this EA-induced A2AR activation. It is therefore likely that these pathways with clearly defined roles in inflammation and bone erosion are at least partially involved in the mediation of the inhibition of synovitis and osteoclast formation induced by EA.
Collapse
|
18
|
Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S, Liang Y, Cui Z, He H, Yang X. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci 2018; 6:2694-2703. [DOI: 10.1039/c8bm00716k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surgical failure, mainly caused by loosening implants, causes great mental and physical trauma to patients.
Collapse
|
19
|
Corciulo C, Irrera N, Cronstein BN. Adenosine Receptors Regulate Bone Remodeling and Cartilage Physiology. THE ADENOSINE RECEPTORS 2018:515-527. [DOI: 10.1007/978-3-319-90808-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Zhang N, Zhang Y, Lin J, Qiu X, Chen L, Pan X, Lu Y, Zhang J, Wang Y, Li D, Wang L. Low-density lipoprotein receptor deficiency impaired mice osteoblastogenesis in vitro. Biosci Trends 2017; 11:658-666. [PMID: 29269714 DOI: 10.5582/bst.2017.01267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal osteoporosis affected most elderly women with co-existence of lipid and bone metabolism disorders. However, the cellular and molecular mechanisms underlying the parallel progression and cross-talk of these systems remained unclear. In the present study, low-density lipoprotein receptor knockout (LDLR-/-) mice were chosen to elucidate the effect of LDLR in regulating the differentiation of osteoblasts, which were responsible for bone formation and modulation of osteoclastogenesis. Primary osteoblasts were isolated from the calvarium of newborn LDLR-/- or wild-type mice followed by osteoblastic differentiation culture in vitro. Alkaline phosphatase activity was significantly decreased in LDLR-/- osteoblasts compared to wild-type controls, combined with calcium deposit formation delay, implying impaired osteoblastogenesis in vitro. Consistent with these findings, the expression of runt-related transcription factor 2 (Runx2) was decreased 3 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls. Moreover, the expression of Osterix was decreased 7 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls, later than Runx2.However, the osteoclastogenesis modulation role of osteoblasts was unaffected by the LDLR deficiency, evidenced by the same level of osteoprotegerin (OPG)/receptor activator of nuclear factor-κ B ligand (RANKL) axis between LDLR-/- and wild-type control osteoblasts. Our results provide a novel insight into the role of LDLR during osteoblastic differentiation and improve understanding of cross-talk between bone and lipid metabolisms.
Collapse
Affiliation(s)
- Na Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yang Zhang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Jing Lin
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Lanting Chen
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xinyao Pan
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Youhui Lu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jiali Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Dajin Li
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Ling Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|