1
|
Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans 2024; 52:2385-2398. [PMID: 39666440 DOI: 10.1042/bst20230642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Sun Z, Wang X, Peng C, Dai L, Wang T, Zhang Y. Regulation of cytoskeleton dynamics and its interplay with force in plant cells. BIOPHYSICS REVIEWS 2024; 5:041307. [PMID: 39606182 PMCID: PMC11596143 DOI: 10.1063/5.0201899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The plant cytoskeleton is an intricate network composed of actin filaments and microtubules. The cytoskeleton undergoes continuous dynamic changes that provide the basis for rapidly responding to intrinsic and extrinsic stimuli, including mechanical stress. Microtubules can respond to alterations of mechanical stress and reorient along the direction of maximal tensile stress in plant cells. The cytoskeleton can also generate driving force for cytoplasmic streaming, organelle movement, and vesicle transportation. In this review, we discuss the progress of how the plant cytoskeleton responds to mechanical stress. We also summarize the roles of the cytoskeleton in generating force that drive organelles and nuclear transportation in plant cells. Finally, some hypotheses concerning the link between the roles of the cytoskeleton in force response and organelle movement, as well as several key questions that remain to be addressed in the field, are highlighted.
Collapse
Affiliation(s)
- Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueqing Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaoyong Peng
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Ohno M, Higuchi Y, Yamai K, Fuchigami S, Sasaki T, Oda Y, Hayashi I. Structural analysis of microtubule binding by minus-end targeting protein Spiral2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119858. [PMID: 39370045 DOI: 10.1016/j.bbamcr.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Microtubules (MTs) are dynamic cytoskeletal polymers that play a critical role in determining cell polarity and shape. In plant cells, acentrosomal MTs are localized on the cell surface and are referred to as cortical MTs. Cortical MTs nucleate in the cell cortex and detach from nucleation sites. The released MT filaments perform treadmilling, with the plus-ends of MTs polymerizing and the minus-ends depolymerizing. Minus-end targeting proteins, -TIPs, include Spiral2, which regulates the minus-end dynamics of acentrosomal MTs. Spiral2 accumulates autonomously at MT minus-ends and inhibits filament shrinkage, but the mechanism by which Spiral2 specifically recognizes minus-ends of MTs remains unknown. Here we describe the crystal structure of Spiral2's N-terminal MT-binding domain. The structural properties of this domain resemble those of the HEAT repeat structure of the tumor overexpressed gene (TOG) domain, but the number of HEAT repeats is different and the conformation is highly arched. Gel filtration and co-sedimentation analyses demonstrate that the domain binds preferentially to MT filaments rather than the tubulin dimer, and that the tubulin-binding mode of Spiral2 via the basic surface is similar to that of the TOG domain. We constructed an in silico model of the Spiral2-tubulin complex to identify residues that potentially recognize tubulin. Mutational analysis revealed that the key residues inferred in the model are involved in microtubule recognition, and provide insight into the mechanism by which end-targeting proteins stabilize MT ends.
Collapse
Affiliation(s)
- Marina Ohno
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Higuchi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kazune Yamai
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
4
|
Yagi N, Fujita S, Nakamura M. Plant microtubule nucleating apparatus and its potential signaling pathway. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102624. [PMID: 39232346 DOI: 10.1016/j.pbi.2024.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Plant cell cortical microtubules are located beneath the plasma membrane and direct the location of cellulose synthases during interphase, influencing cell morphology. Microtubule-associated proteins (MAPs) regulate these microtubules in response to growth and environmental stimuli. This review focuses on recent advances in understanding microtubule nucleation mechanisms in plants and the spatiotemporal regulation of cortical arrays via phytohormone signaling. Emphasis is placed on the conserved nature of the gamma-tubulin ring complex (γTuRC) and plant-specific components. The discussion includes the role of the Augmin complex and the distinct function of the Msd1-Wdr8 complex in plants. We also explore the effects of hormone signaling, particularly brassinosteroids, on the microtubule regulatory apparatus. The interplay between hormone signaling pathways and microtubule dynamics, including phosphorylation events and post-translational modifications, is also addressed. Finally, the impact of environmental signals and the role of protein post-translational modifications in regulating microtubule organization are suggested for future research.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 Chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Institute of Advanced Research, Nagoya University, Nagoya, 464-0814, Japan.
| |
Collapse
|
5
|
Saltini M, Deinum EE. Microtubule simulations in plant biology: A field coming to maturity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102596. [PMID: 38981324 DOI: 10.1016/j.pbi.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.
Collapse
Affiliation(s)
- Marco Saltini
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Eva E Deinum
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
6
|
Fruleux A, Hong L, Roeder AHK, Li CB, Boudaoud A. Growth couples temporal and spatial fluctuations of tissue properties during morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2318481121. [PMID: 38814869 PMCID: PMC11161797 DOI: 10.1073/pnas.2318481121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.
Collapse
Affiliation(s)
- Antoine Fruleux
- Reproduction et Développement des Plantes, Université de Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, CNRS, 69364Lyon Cedex 07, France
- Laboratoire d’Hydrodynamique, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
- Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay, 91405Orsay, France
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91Stockholm, Sweden
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, CNRS, 69364Lyon Cedex 07, France
- Laboratoire d’Hydrodynamique, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| |
Collapse
|
7
|
Fruleux A, Hong L, Roeder AHK, Li CB, Boudaoud A. Growth couples temporal and spatial fluctuations of tissue properties during morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563640. [PMID: 37961547 PMCID: PMC10634752 DOI: 10.1101/2023.10.23.563640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Living tissues display fluctuations - random spatial and temporal variations of tissue properties around their reference values - at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call 'fluctuation stretching' - growth enlarges the lengthscale of variation of this quantity. We then analysed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed Cellular Fourier Transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into an unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.
Collapse
Affiliation(s)
- Antoine Fruleux
- RDP, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRAE, CNRS, 69364 Lyon Cedex 07, France LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France and LPTMS, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
| | - Arezki Boudaoud
- RDP, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRAE, CNRS, 69364 Lyon Cedex 07, France and LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
8
|
Fan Y, Bilkey N, Bolhuis DL, Slep KC, Dixit R. A divergent tumor overexpressed gene domain and oligomerization contribute to SPIRAL2 function in stabilizing microtubule minus ends. THE PLANT CELL 2024; 36:1056-1071. [PMID: 38011314 PMCID: PMC10980349 DOI: 10.1093/plcell/koad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The acentrosomal cortical microtubules (MTs) of higher plants dynamically assemble into specific array patterns that determine the axis of cell expansion. Recently, the Arabidopsis (Arabidopsis thaliana) SPIRAL2 (SPR2) protein was shown to regulate cortical MT length and light-induced array reorientation by stabilizing MT minus ends. SPR2 autonomously localizes to both the MT lattice and MT minus ends, where it decreases the minus end depolymerization rate. However, the structural determinants that contribute to the ability of SPR2 to target and stabilize MT minus ends remain unknown. Here, we present the crystal structure of the SPR2 N-terminal domain, which reveals a unique tumor overexpressed gene (TOG) domain architecture with 7 HEAT repeats. We demonstrate that a coiled-coil domain mediates the multimerization of SPR2, which provides avidity for MT binding, and is essential to bind soluble tubulin. In addition, we found that an SPR2 construct spanning the TOG domain, basic region, and coiled-coil domain targets and stabilizes MT minus ends similar to full-length SPR2 in plants. These results reveal how a TOG domain, which is typically found in microtubule plus-end regulators, has been appropriated in plants to regulate MT minus ends.
Collapse
Affiliation(s)
- Yuanwei Fan
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Natasha Bilkey
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Derek L Bolhuis
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Kevin C Slep
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Kolli R. TOGging up microtubule ends: The plant-specific microtubule minus-end tracking SPR2 has a unique TOG domain. THE PLANT CELL 2024; 36:803-804. [PMID: 38134392 PMCID: PMC10980340 DOI: 10.1093/plcell/koad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Renuka Kolli
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Deinum EE, Jacobs B. Rho of Plants patterning: linking mathematical models and molecular diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1274-1288. [PMID: 37962515 PMCID: PMC10901209 DOI: 10.1093/jxb/erad447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
ROPs (Rho of Plants) are plant specific small GTPases involved in many membrane patterning processes and play important roles in the establishment and communication of cell polarity. These small GTPases can produce a wide variety of patterns, ranging from a single cluster in tip-growing root hairs and pollen tubes to an oriented stripe pattern controlling protoxylem cell wall deposition. For an understanding of what controls these various patterns, models are indispensable. Consequently, many modelling studies on small GTPase patterning exist, often focusing on yeast or animal cells. Multiple patterns occurring in plants, however, require the stable co-existence of multiple active ROP clusters, which does not occur with the most common yeast/animal models. The possibility of such patterns critically depends on the precise model formulation. Additionally, different small GTPases are usually treated interchangeably in models, even though plants possess two types of ROPs with distinct molecular properties, one of which is unique to plants. Furthermore, the shape and even the type of ROP patterns may be affected by the cortical cytoskeleton, and cortex composition and anisotropy differ dramatically between plants and animals. Here, we review insights into ROP patterning from modelling efforts across kingdoms, as well as some outstanding questions arising from these models and recent experimental findings.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Higa T, Kijima ST, Sasaki T, Takatani S, Asano R, Kondo Y, Wakazaki M, Sato M, Toyooka K, Demura T, Fukuda H, Oda Y. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana. NATURE PLANTS 2024; 10:100-117. [PMID: 38172572 DOI: 10.1038/s41477-023-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryosuke Asano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroo Fukuda
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
13
|
Bolhuis DL, Dixit R, Slep KC. Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain reveals a p80-Katanin-like domain. PLoS One 2023; 18:e0290024. [PMID: 38157339 PMCID: PMC10756542 DOI: 10.1371/journal.pone.0290024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/01/2023] [Indexed: 01/03/2024] Open
Abstract
Epidermal cells of dark-grown plant seedlings reorient their cortical microtubule arrays in response to blue light from a net lateral orientation to a net longitudinal orientation with respect to the long axis of cells. The molecular mechanism underlying this microtubule array reorientation involves katanin, a microtubule severing enzyme, and a plant-specific microtubule associated protein called SPIRAL2. Katanin preferentially severs longitudinal microtubules, generating seeds that amplify the longitudinal array. Upon severing, SPIRAL2 binds nascent microtubule minus ends and limits their dynamics, thereby stabilizing the longitudinal array while the lateral array undergoes net depolymerization. To date, no experimental structural information is available for SPIRAL2 to help inform its mechanism. To gain insight into SPIRAL2 structure and function, we determined a 1.8 Å resolution crystal structure of the Arabidopsis thaliana SPIRAL2 C-terminal domain. The domain is composed of seven core α-helices, arranged in an α-solenoid. Amino-acid sequence conservation maps primarily to one face of the domain involving helices α1, α3, α5, and an extended loop, the α6-α7 loop. The domain fold is similar to, yet structurally distinct from the C-terminal domain of Ge-1 (an mRNA decapping complex factor involved in P-body localization) and, surprisingly, the C-terminal domain of the katanin p80 regulatory subunit. The katanin p80 C-terminal domain heterodimerizes with the MIT domain of the katanin p60 catalytic subunit, and in metazoans, binds the microtubule minus-end factors CAMSAP3 and ASPM. Structural analysis predicts that SPIRAL2 does not engage katanin p60 in a mode homologous to katanin p80. The SPIRAL2 structure highlights an interesting evolutionary convergence of domain architecture and microtubule minus-end localization between SPIRAL2 and katanin complexes, and establishes a foundation upon which structure-function analysis can be conducted to elucidate the role of this domain in the regulation of plant microtubule arrays.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
14
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Luo Z, Gao M, Zhao X, Wang L, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Anatomical observation and transcriptome analysis of branch-twisted mutations in Chinese jujube. BMC Genomics 2023; 24:500. [PMID: 37644409 PMCID: PMC10466873 DOI: 10.1186/s12864-023-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Plant organs grow in a certain direction and organ twisted growth, a rare and distinctive trait, is associated with internal structure changes and special genes. The twisted branch mutant of Chinese jujube jujube, an important fruit tree native to China and introduced to nearly 50 countries, provides new typical materials for exploration of plant twisted growth. RESULTS In this study, the cytological characteristics and related genes of twisted branches in Chinese jujube were revealed by microscopy observation and transcriptome analysis. The unique coexistence of primary and secondary structures appeared in the twisted parts of branches, and special structures such as collateral bundle, cortical bundles, and internal phloem were formed. Ninety differentially expressed genes of 'Dongzao' and its twisted mutant were observed, in which ZjTBL43, ZjFLA11, ZjFLA12 and ZjIQD1 were selected as candidate genes. ZjTBL43 was homologous to AtTBL43 in Arabidopsis, which was involved in the synthesis and deposition of cellular secondary wall cellulose. The attbl43 mutant showed significant inflorescence stem bending growth. The transgenic lines of attbl43 with overexpression of ZjTBL43 were phenotypically normal.The branch twisted growth may be caused by mutations in ZjTBL43 in Chinese jujube. AtIQD10, AtFLA11 and AtFLA12 were homologous to ZjIQD1, ZjFLA11 and ZjFLA12, respectively. However, the phenotype of their function defect mutants was normal. CONCLUSION In summary, these findings will provide new insights into the plant organ twisted growth and a reference for investigation of controlling mechanisms of plant growth direction.
Collapse
Affiliation(s)
- Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
17
|
Colin L, Ruhnow F, Zhu JK, Zhao C, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress. THE PLANT CELL 2023; 35:201-217. [PMID: 36149287 PMCID: PMC9806596 DOI: 10.1093/plcell/koac292] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Salt stress simultaneously causes ionic toxicity, osmotic stress, and oxidative stress, which directly impact plant growth and development. Plants have developed numerous strategies to adapt to saline environments. Whereas some of these strategies have been investigated and exploited for crop improvement, much remains to be understood, including how salt stress is perceived by plants and how plants coordinate effective responses to the stress. It is, however, clear that the plant cell wall is the first contact point between external salt and the plant. In this context, significant advances in our understanding of halotropism, cell wall synthesis, and integrity surveillance, as well as salt-related cytoskeletal rearrangements, have been achieved. Indeed, molecular mechanisms underpinning some of these processes have recently been elucidated. In this review, we aim to provide insights into how plants respond and adapt to salt stress, with a special focus on primary cell wall biology in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Leia Colin
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | |
Collapse
|
18
|
Ohno M, Higuchi Y, Hayashi I. Crystal structure of the C-terminal domain of the plant-specific microtubule-associated protein Spiral2. Acta Crystallogr F Struct Biol Commun 2023; 79:17-22. [PMID: 36598352 PMCID: PMC9813970 DOI: 10.1107/s2053230x22011815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Plant cells form microtubule arrays, called `cortical microtubules', beneath the plasma membrane which are critical for cell-wall organization and directional cell growth. Cortical microtubules are nucleated independently of centrosomes. Spiral2 is a land-plant-specific microtubule minus-end-targeting protein that stabilizes the minus ends by inhibiting depolymerization of the filament. Spiral2 possesses an N-terminal microtubule-binding domain and a conserved C-terminal domain whose function is unknown. In this study, the crystal structure of the conserved C-terminal domain of Spiral2 was determined using the single-wavelength anomalous dispersion method. Refinement of the model to a resolution of 2.2 Å revealed a helix-turn-helix fold with seven α-helices. The protein crystallized as a dimer, but SEC-MALS analysis showed the protein to be monomeric. A structural homology search revealed that the protein has similarity to the C-terminal domain of the katanin regulatory subunit p80. The structure presented here suggests that the C-terminal domain of Spiral2 represents a new class of microtubule dynamics modulator across the kingdom.
Collapse
Affiliation(s)
- Marina Ohno
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Higuchi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Jacobs B, Schneider R, Molenaar J, Filion L, Deinum EE. Microtubule nucleation complex behavior is critical for cortical array homogeneity and xylem wall patterning. Proc Natl Acad Sci U S A 2022; 119:e2203900119. [PMID: 36475944 PMCID: PMC9897462 DOI: 10.1073/pnas.2203900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.g., bands in protoxylem. The orientation and patterning of cellulose fibrils are guided by dynamic cortical microtubules. New microtubules are predominantly nucleated from parent microtubules causing positive feedback on local microtubule density with the potential to yield highly inhomogeneous patterns. Inhomogeneity indeed appears in all current cortical array simulations that include microtubule-based nucleation, suggesting that plant cells must possess an as-yet unknown balancing mechanism to prevent it. Here, in a combined simulation and experimental approach, we show that a limited local recruitment of nucleation complexes to microtubules can counter the positive feedback, whereas local tubulin depletion cannot. We observe that nucleation complexes preferentially appear at the plasma membrane near microtubules. By incorporating our experimental findings in stochastic simulations, we find that the spatial behavior of nucleation complexes delicately balances the positive feedback, such that differences in local microtubule dynamics-as in developing protoxylem-can quickly turn a homogeneous array into a banded one. Our results provide insight into how the plant cytoskeleton has evolved to meet diverse mechanical requirements and greatly increase the predictive power of computational cell biology studies.
Collapse
Affiliation(s)
- Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476Potsdam, Germany
| | - Jaap Molenaar
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| | - Laura Filion
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CCUtrecht, the Netherlands
| | - Eva E. Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| |
Collapse
|
20
|
Yu B, Zheng W, Xing L, Zhu JK, Persson S, Zhao Y. Root twisting drives halotropism via stress-induced microtubule reorientation. Dev Cell 2022. [PMID: 36243013 DOI: 10.1101/2022.06.05.494861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants have evolved signaling mechanisms that guide growth away from adverse environments that can cause yield losses. Root halotropism is a sodium-specific negative tropism that is crucial for surviving and thriving under high salinity. Although root halotropism was discovered some years ago, the underlying molecular and cellular mechanisms remain unknown. Here, we show that abscisic acid (ABA)-mediated root twisting determines halotropism in Arabidopsis. An ABA-activated SnRK2 protein kinase (SnRK2.6) phosphorylates the microtubule-associated protein SP2L at Ser406, which induces a change in the anisotropic cell expansion at the root transition zone and is required for root twisting during halotropism. Salt stress triggers SP2L-mediated cortical microtubule reorientation, which guides cellulose microfibril patterns. Our findings thus outline the molecular mechanism of root halotropism and indicate that anisotropic cell expansion through microtubule reorientation and microfibril deposition has a central role in mediating tropic responses.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenna Zheng
- Department of Plant & Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lu Xing
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Staffan Persson
- Department of Plant & Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
21
|
Root twisting drives halotropism via stress-induced microtubule reorientation. Dev Cell 2022; 57:2412-2425.e6. [DOI: 10.1016/j.devcel.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
22
|
Chen Y, Liu X, Zhang W, Li J, Liu H, Yang L, Lei P, Zhang H, Yu F. MOR1/MAP215 acts synergistically with katanin to control cell division and anisotropic cell elongation in Arabidopsis. THE PLANT CELL 2022; 34:3006-3027. [PMID: 35579372 PMCID: PMC9373954 DOI: 10.1093/plcell/koac147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 05/20/2023]
Abstract
The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.
Collapse
Affiliation(s)
| | | | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- Author for correspondence:
| |
Collapse
|
23
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
24
|
Nakamura M, Yagi N, Hashimoto T. Finding a right place to cut: How katanin is targeted to cellular severing sites. QUANTITATIVE PLANT BIOLOGY 2022; 3:e8. [PMID: 37077970 PMCID: PMC10095862 DOI: 10.1017/qpb.2022.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
Microtubule severing by katanin plays key roles in generating various array patterns of dynamic microtubules, while also responding to developmental and environmental stimuli. Quantitative imaging and molecular genetic analyses have uncovered that dysfunction of microtubule severing in plant cells leads to defects in anisotropic growth, division and other cell processes. Katanin is targeted to several subcellular severing sites. Intersections of two crossing cortical microtubules attract katanin, possibly by using local lattice deformation as a landmark. Cortical microtubule nucleation sites on preexisting microtubules are targeted for katanin-mediated severing. An evolutionary conserved microtubule anchoring complex not only stabilises the nucleated site, but also subsequently recruits katanin for timely release of a daughter microtubule. During cytokinesis, phragmoplast microtubules are severed at distal zones by katanin, which is tethered there by plant-specific microtubule-associated proteins. Recruitment and activation of katanin are essential for maintenance and reorganisation of plant microtubule arrays.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takashi Hashimoto
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| |
Collapse
|
25
|
Malivert A, Erguvan Ö, Chevallier A, Dehem A, Friaud R, Liu M, Martin M, Peyraud T, Hamant O, Verger S. FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol 2021; 19:e3001454. [PMID: 34767544 PMCID: PMC8612563 DOI: 10.1371/journal.pbio.3001454] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
To survive, cells must constantly resist mechanical stress. In plants, this involves the reinforcement of cell walls, notably through microtubule-dependent cellulose deposition. How wall sensing might contribute to this response is unknown. Here, we tested whether the microtubule response to stress acts downstream of known wall sensors. Using a multistep screen with 11 mutant lines, we identify FERONIA (FER) as the primary candidate for the cell’s response to stress in the shoot. However, this does not imply that FER acts upstream of the microtubule response to stress. In fact, when performing mechanical perturbations, we instead show that the expected microtubule response to stress does not require FER. We reveal that the feronia phenotype can be partially rescued by reducing tensile stress levels. Conversely, in the absence of both microtubules and FER, cells appear to swell and burst. Altogether, this shows that the microtubule response to stress acts as an independent pathway to resist stress, in parallel to FER. We propose that both pathways are required to maintain the mechanical integrity of plant cells. In all living organisms, cells must resist mechanical stress to survive. This study of the model plant Arabidopsis reveals that the candidate cell wall mechanoreceptor FERONIA and microtubules independently contribute to this mechanical feedback.
Collapse
Affiliation(s)
- Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Özer Erguvan
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Chevallier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Dehem
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Rodrigue Friaud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Théophile Peyraud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| | - Stéphane Verger
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| |
Collapse
|
26
|
Mani N, Wijeratne SS, Subramanian R. Micron-scale geometrical features of microtubules as regulators of microtubule organization. eLife 2021; 10:e63880. [PMID: 34114950 PMCID: PMC8195601 DOI: 10.7554/elife.63880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
The organization of micron-sized, multi-microtubule arrays from individual microtubules is essential for diverse cellular functions. The microtubule polymer is largely viewed as a passive building block during the organization process. An exception is the 'tubulin code' where alterations to tubulin at the amino acid level can influence the activity of microtubule-associated proteins. Recent studies reveal that micron-scale geometrical features of individual microtubules and polymer networks, such as microtubule length, overlap length, contact angle, and lattice defects, can also regulate the activity of microtubule-associated proteins and modulate polymer dynamics. We discuss how the interplay between such geometrical properties of the microtubule lattice and the activity of associated proteins direct multiple aspects of array organization, from microtubule nucleation and coalignment to specification of array dimensions and remodeling of dynamic networks. The mechanisms reviewed here highlight micron-sized features of microtubules as critical parameters to be routinely investigated in the study of microtubule self-organization.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
Wang L, Liu Y, Liu C, Ge C, Xu F, Luo M. Ectopic expression of GhIQD14 (cotton IQ67 domain-containing protein 14) causes twisted organ and modulates secondary wall formation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:276-284. [PMID: 33872832 DOI: 10.1016/j.plaphy.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 05/26/2023]
Abstract
In plants, although KNOX genes are known to regulate secondary cell wall (SCW) formation, their protein-regulating mechanisms remain largely unknown. Here, we showed that GhKNL1, which regulates SCW formation and fiber development in cotton, could interact with an IQ67 domain containing protein (GhIQD14) in yeast. Confocal observation showed that GhIQD14 was localized to the microtubules. In Arabidopsis, ectopic expression of GhIQD14 caused hypocotyls to be sensitive to microtubule depolymerization agent, organ twisting of seedlings, trichomes, rosette leaves, and capsules, as well as severely irregular xylem vessels and thicker interfascicular fiber cell walls in the inflorescence stem. Furthermore, we found that GhIQD14 interacted with AtKNAT7 in vivo, and instantaneous co-expression of GhIQD14 and AtKNAT7 in tobacco showed that GhIQD14 weakened the distribution of AtKNAT7 in the nucleus, bringing it into the microtubules, thus affecting the SCW formation related genes expression. Our results suggested that GhIQD14 might be involved in the morphological development and SCW formation in cotton.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
28
|
Li Y, Huang Y, Wen Y, Wang D, Liu H, Li Y, Zhao J, An L, Yu F, Liu X. The domain of unknown function 4005 (DUF4005) in an Arabidopsis IQD protein functions in microtubule binding. J Biol Chem 2021; 297:100849. [PMID: 34058197 PMCID: PMC8246641 DOI: 10.1016/j.jbc.2021.100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yujia Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yunze Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuanfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
29
|
Saltini M, Mulder BM. Critical threshold for microtubule amplification through templated severing. Phys Rev E 2021; 101:052405. [PMID: 32575333 DOI: 10.1103/physreve.101.052405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/17/2020] [Indexed: 11/07/2022]
Abstract
The cortical microtubule array of dark-grown hypocotyl cells of plant seedlings undergoes a striking, and developmentally significant, reorientation on exposure to light. This process is driven by the exponential amplification of a population of longitudinal microtubules, created by severing events localized at crossovers with the microtubules of the pre-existing transverse array. We present a dynamic one-dimensional model for microtubule amplification through this type of templated severing. We focus on the role of the probability of immediate stabilization-after-severing of the newly created lagging microtubule, observed to be a characteristic feature of the reorientation process. Employing stochastic simulations, we show that in the dynamic regime of unbounded microtubule growth, a finite value of this probability is not required for amplification to occur but does strongly influence the degree of amplification and hence the speed of the reorientation process. In contrast, in the regime of bounded microtubule growth, we show that amplification only occurs above a critical threshold. We construct an approximate analytical theory, based on a priori limiting the number of crossover events considered, which allows us to predict the observed critical value of the stabilization-after-severing probability with reasonable accuracy.
Collapse
Affiliation(s)
- Marco Saltini
- AMOLF, Science Park 104, 1098XG Amsterdam, Netherlands
| | - Bela M Mulder
- AMOLF, Science Park 104, 1098XG Amsterdam, Netherlands
| |
Collapse
|
30
|
Bao Z, Xu Z, Zang J, Bürstenbinder K, Wang P. The Morphological Diversity of Plant Organs: Manipulating the Organization of Microtubules May Do the Trick. Front Cell Dev Biol 2021; 9:649626. [PMID: 33842476 PMCID: PMC8033015 DOI: 10.3389/fcell.2021.649626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Zhiru Bao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Roeder AHK. Arabidopsis sepals: A model system for the emergent process of morphogenesis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e14. [PMID: 36798428 PMCID: PMC9931181 DOI: 10.1017/qpb.2021.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Author for correspondence: Adrienne H. K. Roeder, E-mail:
| |
Collapse
|
32
|
Saltini M, Mulder BM. A plausible mechanism for longitudinal lock-in of the plant cortical microtubule array after light-induced reorientation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e9. [PMID: 37077209 PMCID: PMC10095967 DOI: 10.1017/qpb.2021.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 05/03/2023]
Abstract
The light-induced reorientation of the cortical microtubule array in dark-grown Arabidopsis thaliana hypocotyl cells is a striking example of the dynamical plasticity of the microtubule cytoskeleton. A consensus model, based on katanin-mediated severing at microtubule crossovers, has been developed that successfully describes the onset of the observed switch between a transverse and longitudinal array orientation. However, we currently lack an understanding of why the newly populated longitudinal array direction remains stable for longer times and re-equilibration effects would tend to drive the system back to a mixed orientation state. Using both simulations and analytical calculations, we show that the assumption of a small orientation-dependent shift in microtubule dynamics is sufficient to explain the long-term lock-in of the longitudinal array orientation. Furthermore, we show that the natural alternative hypothesis that there is a selective advantage in severing longitudinal microtubules, is neither necessary nor sufficient to achieve cortical array reorientation, but is able to accelerate this process significantly.
Collapse
Affiliation(s)
- Marco Saltini
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Author for correspondence: M. Saltini, E-mail:
| | - Bela M. Mulder
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
The latent left–right asymmetry (chirality) of vascular plants is best witnessed as a helical elongation of cylindrical organs in climbing plants. Interestingly, helical handedness is usually fixed in given species, suggesting genetic control of chirality. Arabidopsis thaliana, a small mustard plant, normally does not twist but can be mutated to exhibit helical growth in elongating organs. Genetic, molecular and cell biological analyses of these twisting mutants are providing mechanistic insights into the left–right handedness as well as how potential organ skewing is suppressed in most plants. Growth direction of elongating plant cells is determined by alignment of cellulose microfibrils in cell walls, which is guided by cortical microtubules localized just beneath the plasma membrane. Mutations in tubulins and regulators of microtubule assembly or organization give rise to helical arrangements of cortical microtubule arrays in Arabidopsis cells and cause helical growth of fixed handedness in axial organs such as roots and stems. Whether tubulins are assembled into a microtubule composed of straight or tilted protofilaments might determine straight or twisting growth. Mechanistic understanding of helical plant growth will provide a paradigm for connecting protein filament structure to cellular organization.
Collapse
|
34
|
Kuo YW, Howard J. Cutting, Amplifying, and Aligning Microtubules with Severing Enzymes. Trends Cell Biol 2020; 31:50-61. [PMID: 33183955 PMCID: PMC7749064 DOI: 10.1016/j.tcb.2020.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Microtubule-severing enzymes - katanin, spastin, fidgetin - are related AAA-ATPases that cut microtubules into shorter filaments. These proteins, also called severases, are involved in a wide range of cellular processes including cell division, neuronal development, and tissue morphogenesis. Paradoxically, severases can amplify the microtubule cytoskeleton and not just destroy it. Recent work on spastin and katanin has partially resolved this paradox by showing that these enzymes are strong promoters of microtubule growth. Here, we review recent structural and biophysical advances in understanding the molecular mechanisms of severing and growth promotion that provide insight into how severing enzymes shape microtubule networks.
Collapse
Affiliation(s)
- Yin-Wei Kuo
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
35
|
Sampathkumar A. Mechanical feedback-loop regulation of morphogenesis in plants. Development 2020; 147:147/16/dev177964. [PMID: 32817056 DOI: 10.1242/dev.177964] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Morphogenesis is a highly controlled biological process that is crucial for organisms to develop cells and organs of a particular shape. Plants have the remarkable ability to adapt to changing environmental conditions, despite being sessile organisms with their cells affixed to each other by their cell wall. It is therefore evident that morphogenesis in plants requires the existence of robust sensing machineries at different scales. In this Review, I provide an overview on how mechanical forces are generated, sensed and transduced in plant cells. I then focus on how such forces regulate growth and form of plant cells and tissues.
Collapse
Affiliation(s)
- Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Zhou R, Liu H, Ju T, Dixit R. Quantifying the polymerization dynamics of plant cortical microtubules using kymograph analysis. Methods Cell Biol 2020; 160:281-293. [PMID: 32896322 DOI: 10.1016/bs.mcb.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant cortical microtubule array is a dynamic structure that confers cell shape and enables plants to alter their growth and development in response to internal and external cues. Cells use a variety of microtubule regulatory proteins to spatially and temporally modulate the intrinsic polymerization dynamics of cortical microtubules to arrange them into specific configurations and to reshape arrays to adapt to changing conditions. To obtain mechanistic insight into how particular microtubule regulatory proteins mediate the dynamic (re)structuring of cortical microtubule arrays, we need to measure their effect on the dynamics of cortical microtubules. In this chapter, we describe new ImageJ plugins to generate kymographs from time-lapse images and to analyze them to measure the parameters that quantitatively describe cortical microtubule dynamics.
Collapse
Affiliation(s)
- Rudy Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States; Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Han Liu
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States; Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States.
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
37
|
Yang B, Wendrich JR, De Rybel B, Weijers D, Xue H. Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1141-1152. [PMID: 31622529 PMCID: PMC7152617 DOI: 10.1111/pbi.13279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 05/07/2023]
Abstract
Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever-changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin-inducible and MT-localized protein OsIQ67-DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14-mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.
Collapse
Affiliation(s)
- BaoJun Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jos R. Wendrich
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
38
|
Yan H, Chaumont N, Gilles JF, Bolte S, Hamant O, Bailly C. Microtubule self-organisation during seed germination in Arabidopsis. BMC Biol 2020; 18:44. [PMID: 32354334 PMCID: PMC7191766 DOI: 10.1186/s12915-020-00774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Upon water uptake and release of seed dormancy, embryonic plant cells expand, while being mechanically constrained by the seed coat. Cortical microtubules (CMTs) are key players of cell elongation in plants: their anisotropic orientation channels the axis of cell elongation through the guidance of oriented deposition of load-bearing cellulose microfibrils in the cell wall. Interestingly, CMTs align with tensile stress, and consistently, they reorient upon compressive stress in growing hypocotyls. How CMTs first organise in germinating embryos is unknown, and their relation with mechanical stress has not been investigated at such an early developing stage. RESULTS Here, we analysed CMT dynamics in dormant and non-dormant Arabidopsis seeds by microscopy of fluorescently tagged microtubule markers at different developmental time points and in response to abscisic acid and gibberellins. We found that CMTs first appear as very few thick bundles in dormant seeds. Consistently, analysis of available transcriptome and translatome datasets show that limiting amounts of tubulin and microtubule regulators initially hinder microtubule self-organisation. Seeds imbibed in the presence of gibberellic acid or abscisic acid displayed altered microtubule organisation and transcriptional regulation. Upon the release of dormancy, CMTs then self-organise into multiple parallel transverse arrays. Such behaviour matches the tensile stress patterns in such mechanically constrained embryos. This suggests that, as CMTs first self-organise, they also align with shape-derived tensile stress patterns. CONCLUSIONS Our results provide a scenario in which dormancy release in the embryo triggers microtubule self-organisation and alignment with tensile stress prior to germination and anisotropic growth.
Collapse
Affiliation(s)
- Huifang Yan
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
| | - Jean François Gilles
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Susanne Bolte
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69000, Lyon, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France.
| |
Collapse
|
39
|
Abstract
CLIP-associating proteins (CLASPs) form an evolutionarily conserved family of regulatory factors that control microtubule dynamics and the organization of microtubule networks. The importance of CLASP activity has been appreciated for some time, but until recently our understanding of the underlying molecular mechanisms remained basic. Over the past few years, studies of, for example, migrating cells, neuronal development, and microtubule reorganization in plants, along with in vitro reconstitutions, have provided new insights into the cellular roles and molecular basis of CLASP activity. In this Cell Science at a Glance article and the accompanying poster, we will summarize some of these recent advances, emphasizing how they impact our current understanding of CLASP-mediated microtubule regulation.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, and Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Luke M Rice
- Department of Biophysics and Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
40
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
41
|
Buschmann H, Borchers A. Handedness in plant cell expansion: a mutant perspective on helical growth. THE NEW PHYTOLOGIST 2020; 225:53-69. [PMID: 31254400 DOI: 10.1111/nph.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Many plant mutants are known that exhibit some degree of helical growth. This 'twisted' phenotype has arisen frequently in mutant screens of model organisms, but it is also found in cultivars of ornamental plants, including trees. The phenomenon, in many cases, is based on defects in cell expansion symmetry. Any complete model which explains the anisotropy of plant cell growth must ultimately explain how helical cell expansion comes into existence - and how it is normally avoided. While the mutations observed in model plants mainly point to the microtubule system, additional affected components involve cell wall functions, auxin transport and more. Evaluation of published data suggests a two-way mechanism underlying the helical growth phenomenon: there is, apparently, a microtubular component that determines handedness, but there is also an influence arising in the cell wall that feeds back into the cytoplasm and affects cellular handedness. This idea is supported by recent reports demonstrating the involvement of the cell wall integrity pathway. In addition, there is mounting evidence that calcium is an important relayer of signals relating to the symmetry of cell expansion. These concepts suggest experimental approaches to untangle the phenomenon of helical cell expansion in plant mutants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| | - Agnes Borchers
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| |
Collapse
|
42
|
Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:693. [PMID: 32582243 PMCID: PMC7290007 DOI: 10.3389/fpls.2020.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.
Collapse
|
43
|
Abstract
Microtubules are cytoskeletal filaments essential for numerous aspects of cell physiology. They are polarized polymeric tubes with a fast growing plus end and a slow growing minus end. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the dynamics and organization of microtubule minus ends. Several factors, including the γ-tubulin ring complex, CAMSAP/Patronin, ASPM/Asp, SPIRAL2 (in plants) and the KANSL complex recognize microtubule minus ends and regulate their nucleation, stability and interactions with partners, such as microtubule severing enzymes, microtubule depolymerases and protein scaffolds. Together with minus-end-directed motors, these microtubule minus-end targeting proteins (-TIPs) also control the formation of microtubule-organizing centers, such as centrosomes and spindle poles, and mediate microtubule attachment to cellular membrane structures, including the cell cortex, Golgi complex and the cell nucleus. Structural and functional studies are starting to reveal the molecular mechanisms by which dynamic -TIP networks control microtubule minus ends.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland .,University of Basel, Biozentrum, CH-4056 Basel, Switzerland
| |
Collapse
|
44
|
Lee YRJ, Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. THE NEW PHYTOLOGIST 2019; 222:1705-1718. [PMID: 30681146 DOI: 10.1111/nph.15705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 05/15/2023]
Abstract
Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
45
|
Abstract
Mechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction. Here we propose a parsimonious mechanism for the perception of the principal stress direction. In vitro experiments show that microtubules are stabilized under tension. Based on these results, we explore the possibility that such microtubule stabilization operates in vivo, most notably in plant cells where turgor-driven tensile stresses exceed greatly those observed in animal cells. Cellular mechanical stress is a key determinant of cell shape and function, but how the cell senses stress direction is unclear. In this Perspective the authors propose that microtubules autonomously sense stress directions in plant cells, where tensile stresses are higher than in animal cells.
Collapse
|
46
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
47
|
Verger S, Liu M, Hamant O. Mechanical Conflicts in Twisting Growth Revealed by Cell-Cell Adhesion Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:173. [PMID: 30858857 PMCID: PMC6397936 DOI: 10.3389/fpls.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/01/2019] [Indexed: 05/31/2023]
Abstract
Many plants grow organs and tissues with twisted shapes. Arabidopsis mutants with impaired microtubule dynamics exhibit such a phenotype constitutively. Although the activity of the corresponding microtubule regulators is better understood at the molecular level, how large-scale twisting can emerge in the mutants remains largely unknown. Classically, oblique cortical microtubules would constrain the deposition of cellulose microfibrils in cells, and such conflicts at the cell level would be relaxed at the tissue scale by supracellular torsion. This model implicitly assumes that cell-cell adhesion is a key step to transpose local mechanical conflicts into a macroscopic twisting phenotype. Here we tested this prediction using the quasimodo1 mutant, which displays cell-cell adhesion defects. Using the spriral2/tortifolia1 mutant with hypocotyl helical growth, we found that qua1-induced cell-cell adhesion defects restore straight growth in qua1-1 spr2-2. Detached cells in qua1-1 spr2-2 displayed helical growth, confirming that straight growth results from the lack of mechanical coupling between cells rather than a restoration of SPR2 activity in the qua1 mutant. Because adhesion defects in qua1 depend on tension in the outer wall, we also showed that hypocotyl twisting in qua1-1 spr2-2 could be restored when decreasing the matrix potential of the growth medium, i.e., by reducing the magnitude of the pulling force between adjacent cells, in the double mutant. Interestingly, the induction of straight growth in qua1-1 spr2-2 could be achieved beyond hypocotyls, as leaves also displayed a flat phenotype in the double mutant. Altogether, these results provide formal experimental support for a scenario in which twisted growth in spr2 mutant would result from the relaxation of local mechanical conflicts between adjacent cells via global organ torsion.
Collapse
|
48
|
Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:387-396. [PMID: 30590729 DOI: 10.1093/jxb/ery397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 05/09/2023]
Abstract
Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall-plasma membrane-cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Malte Kölling
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Pratibha Kumari
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | | |
Collapse
|
49
|
Lindeboom JJ, Nakamura M, Saltini M, Hibbel A, Walia A, Ketelaar T, Emons AMC, Sedbrook JC, Kirik V, Mulder BM, Ehrhardt DW. CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation. J Cell Biol 2019; 218:190-205. [PMID: 30377221 PMCID: PMC6314540 DOI: 10.1083/jcb.201805047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/04/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Central to the building and reorganizing cytoskeletal arrays is creation of new polymers. Although nucleation has been the major focus of study for microtubule generation, severing has been proposed as an alternative mechanism to create new polymers, a mechanism recently shown to drive the reorientation of cortical arrays of higher plants in response to blue light perception. Severing produces new plus ends behind the stabilizing GTP-cap. An important and unanswered question is how these ends are stabilized in vivo to promote net microtubule generation. Here we identify the conserved protein CLASP as a potent stabilizer of new plus ends created by katanin severing in plant cells. Clasp mutants are defective in cortical array reorientation. In these mutants, both rescue of shrinking plus ends and the stabilization of plus ends immediately after severing are reduced. Computational modeling reveals that it is the specific stabilization of severed ends that best explains CLASP's function in promoting microtubule amplification by severing and array reorientation.
Collapse
Affiliation(s)
- Jelmer J Lindeboom
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Masayoshi Nakamura
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | | | - Anneke Hibbel
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Ankit Walia
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Anne Mie C Emons
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
- Institute AMOLF, Amsterdam, Netherlands
| | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Bela M Mulder
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
- Institute AMOLF, Amsterdam, Netherlands
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
- Department of Biology, Stanford University, Stanford, CA
| |
Collapse
|
50
|
Benoit B, Poüs C. Microtubule reorientation in the blue spotlight: Cutting and CLASPing at dynamic hot spots. J Cell Biol 2019; 218:8-9. [PMID: 30573524 PMCID: PMC6314537 DOI: 10.1083/jcb.201812063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubule reorientation into a longitudinal network during the phototropic response in Arabidopsis thaliana depends on their severing by katanin at crossovers. Lindeboom et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201805047) show that at newly generated plus ends, the anti-catastrophe activity of CLASP is essential for further growth.
Collapse
Affiliation(s)
- Béatrice Benoit
- Institut National de la Santé et de la Recherche Médicale UMR-S 1193, Faculty of Pharmacy, Université Paris-Sud and Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Poüs
- Institut National de la Santé et de la Recherche Médicale UMR-S 1193, Faculty of Pharmacy, Université Paris-Sud and Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|