1
|
Jones SD, Miller JEB, Amos MM, Hernández JM, Piaszynski KM, Geyer PK. Emerin preserves stem cell survival through maintenance of centrosome and nuclear lamina structure. Development 2024; 151:dev204219. [PMID: 39465887 DOI: 10.1242/dev.204219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Drosophila female germline stem cells (GSCs) complete asymmetric mitosis in the presence of an intact, but permeable, nuclear envelope and nuclear lamina (NL). This asymmetric division requires a modified centrosome cycle, wherein mitotic centrosomes with mature pericentriolar material (PCM) embed in the NL and interphase centrosomes with reduced PCM leave the NL. This centrosome cycle requires Emerin, an NL protein required for GSC survival and germ cell differentiation. In emerin mutants, interphase GSC centrosomes retain excess PCM, remain embedded in the NL and nucleate microtubule asters at positions of NL distortion. Here, we investigate the contributions of abnormal interphase centrosomes to GSC loss. Remarkably, reducing interphase PCM in emerin mutants rescues GSC survival and partially restores germ cell differentiation. Direct tests of the effects of abnormal centrosomes were achieved by expression of constitutively active Polo kinase to drive enlargement of interphase centrosomes in wild-type GSCs. Notably, these conditions failed to alter NL structure or decrease GSC survival. However, coupling enlarged interphase centrosomes with nuclear distortion promoted GSC loss. These studies establish that Emerin maintains centrosome structure to preserve stem cell survival.
Collapse
Affiliation(s)
- Samuel D Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jack E B Miller
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madilynn M Amos
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Julianna M Hernández
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Katherine M Piaszynski
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Huang S, Fu M, Gu A, Zhao R, Liu Z, Hua W, Mao Y, Wen W. mInsc coordinates Par3 and NuMA condensates for assembly of the spindle orientation machinery in asymmetric cell division. Int J Biol Macromol 2024; 279:135126. [PMID: 39218187 DOI: 10.1016/j.ijbiomac.2024.135126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
As a fundamental process governing the self-renewal and differentiation of stem cells, asymmetric cell division is controlled by several conserved regulators, including the polarity protein Par3 and the microtubule-associated protein NuMA, which orchestrate the assembly and interplay of the Par3/Par6/mInsc/LGN complex at the apical cortex and the LGN/Gαi/NuMA/Dynein complex at the mitotic spindle to ensure asymmetric segregation of cell fate determinants. However, this model, which is well-supported by genetic studies, has been challenged by evidence of competitive interaction between NuMA and mInsc for LGN. Here, the solved crystal structure of the Par3/mInsc complex reveals that mInsc competes with Par6β for Par3, raising questions about how proteins assemble overlapping targets into functional macromolecular complexes. Unanticipatedly, we discover that Par3 can recruit both Par6β and mInsc by forming a dynamic condensate through phase separation. Similarly, the phase-separated NuMA condensate enables the coexistence of competitive NuMA and mInsc with LGN in the same compartment. Bridge by mInsc, Par3/Par6β and LGN/NuMA condensates coacervate, robustly enriching all five proteins both in vitro and within cells. These findings highlight the pivotal role of protein condensates in assembling multi-component signalosomes that incorporate competitive protein-protein interaction pairs, effectively overcoming stoichiometric constraints encountered in conventional protein complexes.
Collapse
Affiliation(s)
- Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Memar N, Sherrard R, Sethi A, Fernandez CL, Schmidt H, Lambie EJ, Poole RJ, Schnabel R, Conradt B. The replicative helicase CMG is required for the divergence of cell fates during asymmetric cell division in vivo. Nat Commun 2024; 15:9399. [PMID: 39477966 PMCID: PMC11525967 DOI: 10.1038/s41467-024-53715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
We report that the eukaryotic replicative helicase CMG (Cdc45-MCM-GINS) is required for differential gene expression in cells produced by asymmetric cell divisions in C. elegans. We found that the C. elegans CMG component, PSF-2 GINS2, is necessary for transcriptional upregulation of the pro-apoptotic gene egl-1 BH3-only that occurs in cells programmed to die after they are produced through asymmetric cell divisions. We propose that CMG's histone chaperone activity causes epigenetic changes at the egl-1 locus during replication in mother cells, and that these changes are required for egl-1 upregulation in cells programmed to die. We find that PSF-2 is also required for the divergence of other cell fates during C. elegans development, suggesting that this function is not unique to egl-1 expression. Our work uncovers an unexpected role of CMG in cell fate decisions and an intrinsic mechanism for gene expression plasticity in the context of asymmetric cell division.
Collapse
Affiliation(s)
- Nadin Memar
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, South Korea.
| | - Ryan Sherrard
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Aditya Sethi
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Carla Lloret Fernandez
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Henning Schmidt
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Eric J Lambie
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Richard J Poole
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Barbara Conradt
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
4
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Candelas A, Vianay B, Gelin M, Faivre L, Larghero J, Blanchoin L, Théry M, Brunet S. Heterotypic interaction promotes asymmetric division of human hematopoietic progenitors. Development 2024; 151:dev203088. [PMID: 39136544 DOI: 10.1242/dev.203088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.
Collapse
Affiliation(s)
- Adrian Candelas
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Benoit Vianay
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Matthieu Gelin
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Laurent Blanchoin
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Manuel Théry
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Stéphane Brunet
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| |
Collapse
|
6
|
LaFoya B, Penkert RR, Prehoda KE. The cytokinetic midbody mediates asymmetric fate specification at mitotic exit during neural stem cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609974. [PMID: 39253494 PMCID: PMC11383292 DOI: 10.1101/2024.08.27.609974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point. Here we show that the midbody, a microtubule-rich structure that forms in the intercellular bridge connecting nascent siblings, mediates fate determinant activation at mitotic exit in neural stem cells (NSCs) of the Drosophila larval brain. The fate determinants Prospero (Pros) and Brain tumor (Brat) are sequestered at the NSC membrane at metaphase but are released immediately following nuclear division when the midbody forms, well before cell division completes. The midbody isolates nascent sibling cytoplasms, allowing determinant release from the membrane via the cell cycle phosphatase String, without influencing the fate of the incorrect sibling. Our results identify the midbody as a key facilitator of ACD that allows asymmetric fate determinant activation to be initiated before division.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Rhiannon R Penkert
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
7
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyltransferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. Development 2024; 151:dev202729. [PMID: 39007366 PMCID: PMC11369688 DOI: 10.1242/dev.202729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| |
Collapse
|
8
|
Khan HA, Van Hateren N, Borycki AG. Light-Sheet Microscopy Enables Three-Dimensional Fluorescence Imaging and Live Imaging of Satellite Cells on Skeletal Muscle Fibers. Methods Mol Biol 2024. [PMID: 38997538 DOI: 10.1007/7651_2024_552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The ex vivo myofiber culture system has proven to be a useful methodology to explore the biology and behavior of satellite cells within their niche environment. However, a limitation of this system is that myofibers and their associated satellite cells are commonly examined using conventional fluorescence microscopy, which renders a three-dimensional system into two-dimensional imaging, leading to the loss of precious information or misleading interpretation of observations. Here, we report on the use of light-sheet fluorescence microscopy to generate three-dimensional and live imaging of satellite cells on myofibers. Light-sheet microscopy offers high imaging speed and good spatial resolution with minimal photo-bleaching, allowing live imaging and three-dimensional acquisition of skeletal muscle fiber specimen. The potentials of this technology are wide, ranging from the visualization of satellite cell behavior such as cell division and cell migration to imaging the sub-cellular localization of proteins or organelles.
Collapse
Affiliation(s)
- Hira Asif Khan
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nick Van Hateren
- The Wolfson Light Microscopy Facility, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Anne-Gaëlle Borycki
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
9
|
Xie Z, Chai Y, Zhu Z, Shen Z, Guo Z, Zhao Z, Xiao L, Du Z, Ou G, Li W. Vacuolar H +-ATPase determines daughter cell fates through asymmetric segregation of the nucleosome remodeling and deacetylase complex. eLife 2024; 12:RP89032. [PMID: 38994733 PMCID: PMC11245309 DOI: 10.7554/elife.89032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.
Collapse
Affiliation(s)
- Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zijie Shen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Wei Li
- School of Medicine, Tsinghua UniversityBeijingChina
| |
Collapse
|
10
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
11
|
Bener MB, Slepchenko BM, Inaba M. Asymmetric stem cell division maintains the genetic heterogeneity of tissue cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594576. [PMID: 38798517 PMCID: PMC11118488 DOI: 10.1101/2024.05.16.594576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Within a given tissue, the stem cell niche provides the microenvironment for stem cells suitable for their self-renewal. Conceptually, the niche space constrains the size of a stem-cell pool, as the cells sharing the niche compete for its space. It has been suggested that either neutral- or non-neutral-competition of stem cells changes the clone dynamics of stem cells. Theoretically, if the rate of asymmetric division is high, the stem cell competition is limited, thus suppressing clonal expansion. However, the effects of asymmetric division on clone dynamics have never been experimentally tested. Here, using the Drosophila germline stem cell (GSC) system, as a simple model of the in-vivo niche, we examine the effect of division modes (asymmetric or symmetric) on clonal dynamics by combining experimental approaches with mathematical modeling. Our experimental data and computational model both suggest that the rate of asymmetric division is proportional to the time a stem cell clone takes to expand. Taken together, our data suggests that asymmetric division is essential for maintaining the genetic variation of stem cells and thus serves as a critical mechanism for safeguarding fertility over the animal age or preventing multiple disorders caused by the clonal expansion of stem cells.
Collapse
Affiliation(s)
- Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Boris M. Slepchenko
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
12
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
13
|
Snedeker J, Davis BEM, Ranjan R, Wooten M, Blundon J, Chen X. Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591383. [PMID: 38746451 PMCID: PMC11092439 DOI: 10.1101/2024.04.26.591383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells display asymmetric histone inheritance while non-stem progenitor cells exhibit symmetric patterns in the Drosophila male germline lineage. Here, we report that components involved in lagging strand synthesis, such as DNA polymerase α and δ (Polα and Polδ), have significantly reduced levels in stem cells compared to progenitor cells. Compromising Polα genetically induces the replication-coupled histone incorporation pattern in progenitor cells to be indistinguishable from that in stem cells, which can be recapitulated using a Polα inhibitor in a concentration-dependent manner. Furthermore, stem cell-derived chromatin fibers display a higher degree of old histone recycling by the leading strand compared to progenitor cell-derived chromatin fibers. However, upon reducing Polα levels in progenitor cells, the chromatin fibers now display asymmetric old histone recycling just like GSC-derived fibers. The old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S-phase and M-phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in non-stem cells in a manner similar to that in stem cells.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Fan K, Dong N, Fang M, Xiang Z, Zheng L, Wang M, Shi Y, Tan G, Li C, Xue Y. Ozone exposure affects corneal epithelial fate by promoting mtDNA leakage and cGAS/STING activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133219. [PMID: 38101018 DOI: 10.1016/j.jhazmat.2023.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Ozone is a common air pollutant associated with various human diseases. The human ocular surface is frequently exposed to ozone in the troposphere, but the mechanisms by which ozone affects the ocular surface health remain unclear. This study aimed to establish a mouse model to investigate the effects of ozone exposure on the ocular surface and the corneal epithelium. The findings revealed that ozone exposure disrupted corneal epithelial homeostasis and differentiation, resulting in corneal squamous metaplasia. Further, ozone exposure induced oxidative damage and cytoplasmic leakage of mitochondrial DNA (mtDNA), thereby activating the cGAS/STING signaling pathway. The activation of the cGAS/STING signaling pathway triggered the activation of downstream NF-κB and TRAF6 signaling pathways, causing corneal inflammation, thereby promoting corneal inflammation and squamous metaplasia. Finally, C-176, a selective STING inhibitor, effectively prevented and treated corneal inflammation and squamous metaplasia caused by ozone exposure. This study revealed the role of mtDNA leakage-mediated cGAS/STING activation in corneal squamous epithelial metaplasia caused by ozone exposure. It also depicted the abnormal expression pattern of corneal epithelial keratin using three-dimensional images, providing new targets and strategies for preventing and treating corneal squamous metaplasia and other ocular surface diseases.
Collapse
Affiliation(s)
- Kai Fan
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Nuo Dong
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Meichai Fang
- Ningde People's Hospital, Ningde, Fujian 352100, China
| | - Zixun Xiang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengyuan Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yukuan Shi
- The High School Affiliated to Renmin University of China, 100080, China
| | - Gang Tan
- The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, Fujian 361102, China; The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Yuhua Xue
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
15
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
Kaminskiy Y, Ganeeva I, Chasov V, Kudriaeva A, Bulatov E. Asymmetric T-cell division: insights from cutting-edge experimental techniques and implications for immunotherapy. Front Immunol 2024; 15:1301378. [PMID: 38495874 PMCID: PMC10940324 DOI: 10.3389/fimmu.2024.1301378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Asymmetric cell division is a fundamental process conserved throughout evolution, employed by both prokaryotic and eukaryotic organisms. Its significance lies in its ability to govern cell fate and facilitate the generation of diverse cell types. Therefore, attaining a detailed mechanistic understanding of asymmetric cell division becomes essential for unraveling the complexities of cell fate determination in both healthy and pathological conditions. However, the role of asymmetric division in T-cell biology has only recently been unveiled. Here, we provide an overview of the T-cell asymmetric division field with the particular emphasis on experimental methods and models with the aim to guide the researchers in the selection of appropriate in vitro/in vivo models to study asymmetric division in T cells. We present a comprehensive investigation into the mechanisms governing the asymmetric division in various T-cell subsets underscoring the importance of the asymmetry in fate-determining factor segregation and transcriptional and epigenetic regulation. Furthermore, the intricate interplay of T-cell receptor signaling and the asymmetric division geometry are explored, shedding light on the spatial organization and the impact on cellular fate.
Collapse
Affiliation(s)
- Yaroslav Kaminskiy
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Chen J, Li C, Sheng Y, Zhang J, Pang L, Dong Z, Wu Z, Lu Y, Liu Z, Zhang Q, Guan X, Chen X, Huang J. Communication between the stem cell niche and an adjacent differentiation niche through miRNA and EGFR signaling orchestrates exit from the stem cell state in the Drosophila ovary. PLoS Biol 2024; 22:e3002515. [PMID: 38512963 PMCID: PMC10986965 DOI: 10.1371/journal.pbio.3002515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/02/2024] [Accepted: 01/22/2024] [Indexed: 03/23/2024] Open
Abstract
The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.
Collapse
Affiliation(s)
- Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaosqun Li
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Mondal P, Meeran SM. The emerging role of the gut microbiome in cancer cell plasticity and therapeutic resistance. Cancer Metastasis Rev 2024; 43:135-154. [PMID: 37707749 DOI: 10.1007/s10555-023-10138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Resistance to therapeutic agents is one of the major challenges in cancer therapy. Generally, the focus is given to the genetic driver, especially the genetic mutation behind the therapeutic resistance. However, non-mutational mechanisms, such as epigenetic modifications, and TME alteration, which is mainly driven by cancer cell plasticity, are also involved in therapeutic resistance. The concept of plasticity mainly relies on the conversion of non-cancer stem cells (CSCs) to CSCs or epithelial-to-mesenchymal transition via different mechanisms and various signaling pathways. Cancer plasticity plays a crucial role in therapeutic resistance as cancer cells are able to escape from therapeutics by shifting the phenotype and thereby enhancing tumor progression. New evidence suggests that gut microbiota can change cancer cell characteristics by impacting the mechanisms involved in cancer plasticity. Interestingly, gut microbiota can also influence the therapeutic efficacy of anticancer drugs by modulating the mechanisms involved in cancer cell plasticity. The gut microbiota has been shown to reduce the toxicity of certain clinical drugs. Here, we have documented the critical role of the gut microbiota on the therapeutic efficacy of existing anticancer drugs by altering the cancer plasticity. Hence, the extended knowledge of the emerging role of gut microbiota in cancer cell plasticity can help to develop gut microbiota-based novel therapeutics to overcome the resistance or reduce the toxicity of existing drugs. Furthermore, to improve the effectiveness of therapy, it is necessary to conduct more clinical and preclinical research to fully comprehend the mechanisms of gut microbiota.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Chao S, Yan H, Bu P. Asymmetric division of stem cells and its cancer relevance. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:5. [PMID: 38411768 PMCID: PMC10897644 DOI: 10.1186/s13619-024-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Asymmetric division is a fundamental process for generating cell diversity and maintaining the stem cell population. During asymmetric division, proteins, organelles, and even RNA are distributed unequally between the two daughter cells, determining their distinct cell fates. The mechanisms orchestrating this process are extremely complex. Dysregulation of asymmetric division can potentially trigger cancer progression. Cancer stem cells, in particular, undergo asymmetric division, leading to intra-tumoral heterogeneity, which contributes to treatment refractoriness. In this review, we delve into the cellular and molecular mechanisms that govern asymmetric division and explore its relevance to tumorigenesis.
Collapse
Affiliation(s)
- Shanshan Chao
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyl-transferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580277. [PMID: 38405894 PMCID: PMC10888844 DOI: 10.1101/2024.02.14.580277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Chen
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Chen HF, Chang CT, Hsu KW, Peng PH, Lai JCY, Hung MC, Wu KJ. Epigenetic regulation of asymmetric cell division by the LIBR-BRD4 axis. Nucleic Acids Res 2024; 52:154-165. [PMID: 37986225 PMCID: PMC10783485 DOI: 10.1093/nar/gkad1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Asymmetric cell division (ACD) is a mechanism used by stem cells to maintain the number of progeny. However, the epigenetic mechanisms regulating ACD remain elusive. Here we show that BRD4, a BET domain protein that binds to acetylated histone, is segregated in daughter cells together with H3K56Ac and regulates ACD. ITGB1 is regulated by BRD4 to regulate ACD. A long noncoding RNA (lncRNA), LIBR (LncRNA Inhibiting BRD4), decreases the percentage of stem cells going through ACD through interacting with the BRD4 mRNAs. LIBR inhibits the translation of BRD4 through recruiting a translation repressor, RCK, and inhibiting the binding of BRD4 mRNAs to polysomes. These results identify the epigenetic regulatory modules (BRD4, lncRNA LIBR) that regulate ACD. The regulation of ACD by BRD4 suggests the therapeutic limitation of using BRD4 inhibitors to treat cancer due to the ability of these inhibitors to promote symmetric cell division that may lead to tumor progression and treatment resistance.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
| | - Chia-Ting Chang
- Graduate Institute of Translational Medicine & New Drug Development, China Medical University, Taichung 406, Taiwan
- General Education Center, Feng Chia University, Taichung 407, Taiwan
| | - Kai-Wen Hsu
- Graduate Institute of Translational Medicine & New Drug Development, China Medical University, Taichung 406, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Joseph Chieh-Yu Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
- Institutes of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
22
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
23
|
Kok RNU, Tans SJ, van Zon JS. Minimizing cell number fluctuations in self-renewing tissues with a stem-cell niche. Phys Rev E 2023; 108:064403. [PMID: 38243426 DOI: 10.1103/physreve.108.064403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/02/2023] [Indexed: 01/21/2024]
Abstract
Self-renewing tissues require that a constant number of proliferating cells is maintained over time. This maintenance can be ensured at the single-cell level or the population level. Maintenance at the population level leads to fluctuations in the number of proliferating cells over time. Often, it is assumed that those fluctuations can be reduced by increasing the number of asymmetric divisions, i.e., divisions where only one of the daughter cells remains proliferative. Here, we study a model of cell proliferation that incorporates a stem-cell niche of fixed size, and explicitly model the cells inside and outside the niche. We find that in this model, fluctuations are minimized when the difference in growth rate between the niche and the rest of the tissue is maximized and all divisions are symmetric divisions, producing either two proliferating or two nonproliferating daughters. We show that this optimal state leaves visible signatures in clone size distributions and could thus be detected experimentally.
Collapse
Affiliation(s)
- Rutger N U Kok
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sander J Tans
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Jeroen S van Zon
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
24
|
Nelson JO, Kumon T, Yamashita YM. rDNA magnification is a unique feature of germline stem cells. Proc Natl Acad Sci U S A 2023; 120:e2314440120. [PMID: 37967216 PMCID: PMC10666004 DOI: 10.1073/pnas.2314440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
Ribosomal DNA (rDNA) encodes ribosomal RNA and exists as tandem repeats of hundreds of copies in the eukaryotic genome to meet the high demand of ribosome biogenesis. Tandemly repeated DNA elements are inherently unstable; thus, mechanisms must exist to maintain rDNA copy number (CN), in particular in the germline that continues through generations. A phenomenon called rDNA magnification was discovered over 50 y ago in Drosophila as a process that recovers the rDNA CN on chromosomes that harbor minimal CN. Our recent studies indicated that rDNA magnification is the mechanism to maintain rDNA CN under physiological conditions to counteract spontaneous CN loss that occurs during aging. Our previous studies that explored the mechanism of rDNA magnification implied that asymmetric division of germline stem cells (GSCs) may be particularly suited to achieve rDNA magnification. However, it remains elusive whether GSCs are the unique cell type that undergoes rDNA magnification or differentiating germ cells are also capable of magnification. In this study, we provide empirical evidence that suggests that rDNA magnification operates uniquely in GSCs, but not in differentiating germ cells. We further provide computer simulation that suggests that rDNA magnification is only achievable through asymmetric GSC divisions. We propose that despite known plasticity and transcriptomic similarity between GSCs and differentiating germ cells, GSCs' unique ability to divide asymmetrically serves a critical role of maintaining rDNA CN through generations, supporting germline immortality.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- HHMI, Chevy Chase, MD 20815
| | - Tomohiro Kumon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- HHMI, Chevy Chase, MD 20815
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- HHMI, Chevy Chase, MD 20815
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
25
|
Jones KA, Drummond ML, Penkert RR, Prehoda KE. Cooperative regulation of C1-domain membrane recruitment polarizes atypical protein kinase C. J Cell Biol 2023; 222:e202112143. [PMID: 37589718 PMCID: PMC10435729 DOI: 10.1083/jcb.202112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Recruitment of the Par complex protein atypical protein kinase C (aPKC) to a specific membrane domain is a key step in the polarization of animal cells. While numerous proteins and phospholipids interact with aPKC, how these interactions cooperate to control its membrane recruitment has been unknown. Here, we identify aPKC's C1 domain as a phospholipid interaction module that targets aPKC to the membrane of Drosophila neural stem cells (NSCs). The isolated C1 binds the NSC membrane in an unpolarized manner during interphase and mitosis and is uniquely sufficient among aPKC domains for targeting. Other domains, including the catalytic module and those that bind the upstream regulators Par-6 and Bazooka, restrict C1's membrane targeting activity-spatially and temporally-to the apical NSC membrane during mitosis. Our results suggest that aPKC polarity results from cooperative activation of autoinhibited C1-mediated membrane binding activity.
Collapse
Affiliation(s)
- Kimberly A. Jones
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Michael L. Drummond
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Rhiannon R. Penkert
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Kenneth E. Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
26
|
Gao Y, Ma B, Li Y, Wu X, Zhao S, Guo H, Wang Y, Sun L, Xie J. Haspin balances the ratio of asymmetric cell division through Wnt5a and regulates cell fate decisions in mouse embryonic stem cells. Cell Death Discov 2023; 9:307. [PMID: 37612272 PMCID: PMC10447528 DOI: 10.1038/s41420-023-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Many different types of stem cells utilize asymmetric cell division (ACD) to produce two daughter cells with distinct fates. Haspin-catalyzed phosphorylation of histone H3 at Thr3 (H3T3ph) plays important roles during mitosis, including ACD in stem cells. However, whether and how Haspin functions in ACD regulation remains unclear. Here, we report that Haspin knockout (Haspin-KO) mouse embryonic stem cells (mESCs) had increased ratio of ACD, which cumulatively regulates cell fate decisions. Furthermore, Wnt5a is significantly downregulated due to decreased Pax2 in Haspin-KO mESCs. Wnt5a knockdown mESCs phenocopied Haspin-KO cells while overexpression of Wnt5a in Haspin-KO cells rescued disproportionated ACD. Collectively, Haspin is indispensable for mESCs to maintain a balanced ratio of ACD, which is essential for normal development and homeostasis.
Collapse
Affiliation(s)
- Yingying Gao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bin Ma
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yifan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyu Wu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shifeng Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huiping Guo
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiwei Wang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lihua Sun
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Xie
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Wang F, Li R, Zhang L, Nie X, Wang L, Chen L. Cell Transdifferentiation: A Challenging Strategy with Great Potential. Cell Reprogram 2023; 25:154-161. [PMID: 37471050 DOI: 10.1089/cell.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
With the discovery and development of somatic cell nuclear transfer, cell fusion, and induced pluripotent stem cells, cell transdifferentiation research has presented unique advantages and stimulated a heated discussion worldwide. Cell transdifferentiation is a phenomenon by which a cell changes its lineage and acquires the phenotype of other cell types when exposed to certain conditions. Indeed, many adult stem cells and differentiated cells were reported to change their phenotype and transform into other lineages. This article reviews the differentiation of stem cells and classification of transdifferentiation, as well as the advantages, challenges, and prospects of cell transdifferentiation. This review discusses new research directions and the main challenges in the use of transdifferentiation in human cells and molecular replacement therapy. Overall, such knowledge is expected to provide a deep understanding of cell fate and regulation, which can change through differentiation, dedifferentiation, and transdifferentiation, with multiple applications.
Collapse
Affiliation(s)
- Fuping Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Limeng Zhang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Xiaoning Nie
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Linqing Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Longxin Chen
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| |
Collapse
|
28
|
Muroyama A, Gong Y, Hartman KS, Bergmann D. Cortical polarity ensures its own asymmetric inheritance in the stomatal lineage to pattern the leaf surface. Science 2023; 381:54-59. [PMID: 37410832 PMCID: PMC10328556 DOI: 10.1126/science.add6162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/11/2023] [Indexed: 07/08/2023]
Abstract
Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Current Address: Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kensington S. Hartman
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Dominique Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
30
|
LaFoya B, Prehoda KE. Consumption of a polarized membrane reservoir drives asymmetric membrane expansion during the unequal divisions of neural stem cells. Dev Cell 2023; 58:993-1003.e3. [PMID: 37116487 PMCID: PMC10247545 DOI: 10.1016/j.devcel.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/23/2022] [Accepted: 04/05/2023] [Indexed: 04/30/2023]
Abstract
The asymmetric divisions of Drosophila neural stem cells (NSCs) produce unequally sized siblings, with most volume directed into the sibling that retains the NSC fate. Sibling size asymmetry results from the preferential expansion of the NSC sibling surface during division. Here, we show that a polarized membrane reservoir constructed by the NSC in early mitosis provides the source for expansion. The reservoir is formed from membrane domains that contain folds and microvilli that become polarized by apically directed cortical flows of actomyosin early in mitosis. When furrow ingression begins and internal pressure increases, the stores of membrane within the apical reservoir are rapidly consumed. Expansion is substantially diminished in NSCs that lack a reservoir, and membrane expansion equalizes when the reservoir is not polarized. Our results suggest that the cortical flows that remodel the plasma membrane during asymmetric cell division function to satisfy the dynamic surface area requirements of unequally dividing cells.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
31
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Chandrasekhara C, Ranjan R, Urban JA, Davis BEM, Ku WL, Snedeker J, Zhao K, Chen X. A single N-terminal amino acid determines the distinct roles of histones H3 and H3.3 in the Drosophila male germline stem cell lineage. PLoS Biol 2023; 21:e3002098. [PMID: 37126497 PMCID: PMC10174566 DOI: 10.1371/journal.pbio.3002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/11/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Adult stem cells undergo asymmetric cell divisions to produce 2 daughter cells with distinct cell fates: one capable of self-renewal and the other committed for differentiation. Misregulation of this delicate balance can lead to cancer and tissue degeneration. During asymmetric division of Drosophila male germline stem cells (GSCs), preexisting (old) and newly synthesized histone H3 are differentially segregated, whereas old and new histone variant H3.3 are more equally inherited. However, what underlies these distinct inheritance patterns remains unknown. Here, we report that the N-terminal tails of H3 and H3.3 are critical for their inheritance patterns, as well as GSC maintenance and proper differentiation. H3 and H3.3 differ at the 31st position in their N-termini with Alanine for H3 and Serine for H3.3. By swapping these 2 amino acids, we generated 2 mutant histones (i.e., H3A31S and H3.3S31A). Upon expressing them in the early-stage germline, we identified opposing phenotypes: overpopulation of early-stage germ cells in the H3A31S-expressing testes and significant germ cell loss in testes expressing the H3.3S31A. Asymmetric H3 inheritance is disrupted in the H3A31S-expressing GSCs, due to misincorporation of old histones between sister chromatids during DNA replication. Furthermore, H3.3S31A mutation accelerates old histone turnover in the GSCs. Finally, using a modified Chromatin Immunocleavage assay on early-stage germ cells, we found that H3A31S has enhanced occupancy at promoters and transcription starting sites compared with H3, while H3.3S31A is more enriched at transcriptionally silent intergenic regions compared to H3.3. Overall, these results suggest that the 31st amino acids for both H3 and H3.3 are critical for their proper genomic occupancy and function. Together, our findings indicate a critical role for the different amino acid composition of the N-terminal tails between H3 and H3.3 in an endogenous stem cell lineage and provide insights into the importance of proper histone inheritance in specifying cell fates and regulating cellular differentiation.
Collapse
Affiliation(s)
- Chinmayi Chandrasekhara
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer A. Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
Tkemaladze J. Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells? Mol Biol Rep 2023; 50:2751-2761. [PMID: 36583780 DOI: 10.1007/s11033-022-08203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND All molecules, structures, cells in organisms are subjected to destruction during the process of vital activities. In the organisms of most multicellular animals and humans, the regeneration process always takes place: destruction of old cells and their replacement with the new. The replacement of cells happens even if the cells are in perfect condition. The sooner the organism destroys the cells that emerged a certain time ago and replaces them with the new (i.e., the higher is the regeneration tempo), the younger the organism is. DISCUSSION Stem cells are progenitor cells of the substituting young cells. Asymmetric division of a mother stem cell gives rise to one, analogous to the mother, daughter cell, and to a second daughter cell that takes the path of further differentiation. Despite such asymmetric divisions, the pool of stem cells diminishes in its quantity over time. Moreover, intervals between stem cell divisions increase. The combination of these two processes causes the decline of regeneration tempo and aging of the organism. CONCLUSION During asymmetric stem cell divisions daughter cells, with preserved potency of the stem cell, selectively conserve mother (old) centrioles. In contrast with molecules of nuclear DNA, reparations do not take place in centrioles. Hypothetically, old centrioles are more subjected to destruction than other structures of a cell-which makes centrioles potentially the main structure of aging.
Collapse
Affiliation(s)
- Jaba Tkemaladze
- Free University of Tbilisi, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia.
| |
Collapse
|
34
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Xiao Y, Chen J, Yang S, Sun H, Xie L, Li J, Jing N, Zhu X. Maternal mRNA deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO J 2023; 42:e111364. [PMID: 36477743 PMCID: PMC9890236 DOI: 10.15252/embj.2022111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xueliang Zhu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
36
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
37
|
Buss JH, Lenz LS, Pereira LC, Torgo D, Marcolin J, Begnini KR, Lenz G. The role of mitosis in generating fitness heterogeneity. J Cell Sci 2023; 136:286224. [PMID: 36594556 DOI: 10.1242/jcs.260103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer cells have heterogeneous fitness, and this heterogeneity stems from genetic and epigenetic sources. Here, we sought to assess the contribution of asymmetric mitosis (AM) and time on the variability of fitness in sister cells. Around one quarter of sisters had differences in fitness, assessed as the intermitotic time (IMT), from 330 to 510 min. Phenotypes related to fitness, such as ERK activity (herein referring to ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively), DNA damage and nuclear morphological phenotypes were also asymmetric at mitosis or turned asymmetric over the course of the cell cycle. The ERK activity of mother cell was found to influence the ERK activity and the IMT of the daughter cells, and cells with ERK asymmetry at mitosis produced more offspring with AMs, suggesting heritability of the AM phenotype for ERK activity. Our findings demonstrate how variabilities in sister cells can be generated, contributing to the phenotype heterogeneities in tumor cells.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Luana Suéling Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Luiza Cherobini Pereira
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Daphne Torgo
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Júlia Marcolin
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Karine Rech Begnini
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| |
Collapse
|
38
|
Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M, Sakk V, Mularoni L, Mallm JP, Plass M, Zheng Y, Geiger H, Florian MC. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. NPJ Regen Med 2022; 7:78. [PMID: 36581635 PMCID: PMC9800381 DOI: 10.1038/s41536-022-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.
Collapse
Affiliation(s)
- Sara Montserrat-Vazquez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Noelle J. Ali
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Francesca Matteini
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Lozano
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Tu Zhaowei
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Eva Mejia-Ramirez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gina Marka
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karin Soller
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Loris Mularoni
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Mireya Plass
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain ,grid.417656.7Gene Regulation of Cell Identity Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Yi Zheng
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hartmut Geiger
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M. Carolina Florian
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
39
|
Yasmeen R, Pham Q, Fukagawa NK, Wang TTY. Individual Variabilities in Adipose Stem Cell Proliferation, Gene Expression and Responses to Lipopolysaccharide Stimulation. Int J Mol Sci 2022; 23:12534. [PMID: 36293398 PMCID: PMC9604277 DOI: 10.3390/ijms232012534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose stem cells (ASCs) are reported to play a role in normal physiology as well as in inflammation and disease. The objective of this work was to elucidate inter-individual differences in growth, gene expression and response to inflammatory stimuli in ASCs from different donors. Human ASC1 (male donor) and ASC2 (female donor) were purchased from Lonza (Walkersville, MD). Cell proliferation was determined by the sulforhodamine B assay. After time-dependent treatment of ASCs with or without bacterial lipopolysaccharide (LPS), marker gene mRNAs for proliferation, steroid hormones, and xenobiotic and immune pathways were determined using RT-PCR, and secreted cytokine levels in media were measured using the Bio-Plex cytokine assay kit. ASCs from both donors expressed androgen receptors but not estrogen receptors. ASC2 had a 2-fold higher proliferation rate and a 6-fold higher level of proliferation marker Ki67 mRNA than ASC1. ASC2 exhibited significantly greater fold induction of TNF-α and CCL2 by LPS compared to ASC1. TNF-α and GM-CSF protein levels were also significantly higher in the LPS-induced ASC2 media, but IL-6 secretion was higher in the LPS-induced ASC1 media. Our findings suggest that inter-individual variability and/or possible sex differences exist in ASCs, which may serve as a key determinant to inflammatory responses of ASCs.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Division of Food Labeling & Standards, Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Naomi K. Fukagawa
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Thomas T. Y. Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
40
|
Poliwoda S, Noor N, Downs E, Schaaf A, Cantwell A, Ganti L, Kaye AD, Mosel LI, Carroll CB, Viswanath O, Urits I. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia) 2022; 14:37498. [PMID: 36034728 PMCID: PMC9404248 DOI: 10.52965/001c.37498] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Stem cells are types of cells that have unique ability to self-renew and to differentiate into more than one cell lineage. They are considered building blocks of tissues and organs. Over recent decades, they have been studied and utilized for repair and regenerative medicine. One way to classify these cells is based on their differentiation capacity. Totipotent stem cells can give rise to any cell of an embryo but also to extra-embryonic tissue as well. Pluripotent stem cells are limited to any of the three embryonic germ layers; however, they cannot differentiate into extra-embryonic tissue. Multipotent stem cells can only differentiate into one germ line tissue. Oligopotent and unipotent stem cells are seen in adult organ tissues that have committed to a cell lineage. Another way to differentiate these cells is based on their origins. Stem cells can be extracted from different sources, including bone marrow, amniotic cells, adipose tissue, umbilical cord, and placental tissue. Stem cells began their role in modern regenerative medicine in the 1950's with the first bone marrow transplantation occurring in 1956. Stem cell therapies are at present indicated for a range of clinical conditions beyond traditional origins to treat genetic blood diseases and have seen substantial success. In this regard, emerging use for stem cells is their potential to treat pain states and neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Stem cells offer hope in neurodegeneration to replace neurons damaged during certain disease states. This review compares stem cells arising from these different sources of origin and include clinical roles for stem cells in modern medical practice.
Collapse
Affiliation(s)
| | - Nazir Noor
- Department of Anesthesiology, Mount Sinai Medical Center
| | - Evan Downs
- LSU Health Science Center Shreveport School of Medicine, Shreveport, LA
| | - Amanda Schaaf
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | | | - Latha Ganti
- Department of Emergency Medicine, University of Central Florida
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Luke I Mosel
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Caroline B Carroll
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Innovative Pain and Wellness, Creighton University School of Medicine
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| |
Collapse
|
41
|
Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions. Sci Rep 2022; 12:14147. [PMID: 35986054 PMCID: PMC9391418 DOI: 10.1038/s41598-022-18400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Embryoid cells and induced pluripotent stem cells (iPSCs) are pluripotent stem cells (PSCs). They retain differentiation and self-renewal potential. However, the differentiation potential of PSCs can be changed by the culture medium. PSCs retain their differentiation potential when cultured with medium that supports the glycolytic pathway, showing high expression of chromodomain-helicase-DNA-binding protein 7 (CHD7), but lose their differentiation potential with medium that supports mitochondrial function, showing reduced levels of CHD7. Labeling cells by their copy number variant profile revealed that genetically different PSC populations can be cultured by medium selection. Another factor that defines the self-renewal potential of PSCs is culture condition. PSCs form colonies as they grow, and spontaneous differentiation inevitably occurs along the rim of these colonies in areas that lack cell-to-cell contact; because of this, undifferentiated cell populations would diminish if differentiated cells are not removed properly. Seeding cells on a less potent cell-binding material may minimize the inclusion of differentiated cells, exploiting the reduced adhesive properties of differentiated cells. Culturing cells with medium that supports the glycolytic pathway, using CHD7 as a biomarker for differentiation potential, and culturing cells on less sticky material can improve the differentiation potential of already established PSC clones.
Collapse
|
42
|
Mueller JL, Stavely R, Hotta R, Goldstein AM. Peripheral nervous system: A promising source of neuronal progenitors for central nervous system repair. Front Neurosci 2022; 16:970350. [PMID: 35968387 PMCID: PMC9374275 DOI: 10.3389/fnins.2022.970350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
With a steadily aging population there is an increasing prevalence of neurological disorders. Given the lack of effective treatment strategies and a limited ability for the central nervous system (CNS) to regenerate endogenously, there is a critical need to better understand exogenous strategies for nervous system repair. Stem cell therapy offers a promising approach to promote the repair of neurologic tissue and function, however studies to date have been limited by various factors including challenges in harvesting donor cells from the CNS, ethical concerns regarding use of embryonic or fetal tissue, tumorigenic potential of induced pluripotent stem cells, and immune-mediated rejection of non-autologous cell sources. Here we review and propose two alternative sources of autologous cells derived from the peripheral nervous system (PNS) for CNS repair: enteric neuronal stem cells (ENSCs) and neural crest-derived Schwann cells found in subcutaneous adipose tissue (termed SAT-NSCs). ENSCs can be successfully isolated from the postnatal enteric nervous system, propagated in vitro, and transplanted successfully into models of CNS injury via both direct intracerebral injection and systemic tail vein injection. Similarly, SAT-NSCs can be readily isolated from both human and mouse adipose tissue and, although not yet utilized in models of CNS injury, have successfully been transplanted and restored function in models of colonic aganglionosis and gastroparesis. These unique sources of PNS-derived autologous cells offer an exciting option for stem cell therapies for the CNS as they have proven neurogenic potential and eliminate concerns around tumorigenic risk, ethical considerations, and immune-mediated rejection.
Collapse
|
43
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
44
|
Antel M, Raj R, Masoud MYG, Pan Z, Li S, Mellone BG, Inaba M. Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation. Nat Commun 2022; 13:3981. [PMID: 35810185 PMCID: PMC9271046 DOI: 10.1038/s41467-022-31737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/30/2022] [Indexed: 01/24/2023] Open
Abstract
Pairing of homologous chromosomes in somatic cells provides the opportunity of interchromosomal interaction between homologous gene regions. In the Drosophila male germline, the Stat92E gene is highly expressed in a germline stem cell (GSC) and gradually downregulated during the differentiation. Here we show that the pairing of Stat92E is always tight in GSCs and immediately loosened in differentiating daughter cells, gonialblasts (GBs). Disturbance of Stat92E pairing by relocation of one locus to another chromosome or by knockdown of global pairing/anti-pairing factors both result in a failure of Stat92E downregulation, suggesting that the pairing is required for the decline in transcription. Furthermore, the Stat92E enhancer, but not its transcription, is required for the change in pairing state, indicating that pairing is not a consequence of transcriptional changes. Finally, we show that the change in Stat92E pairing is dependent on asymmetric histone inheritance during the asymmetric division of GSCs. Taken together, we propose that the changes in Stat92E pairing status is an intrinsically programmed mechanism for enabling prompt cell fate switch during the differentiation of stem cells. Asymmetric inheritance of organelles, proteins and RNAs occurs during stem cell division. Here the authors show the strength of pairing of homologous Stat92E loci, a stem cell-specific gene, changes immediately after the asymmetric division due to asymmetric inheritance of new histones to one of the daughter cells and is important for turning off gene expression in this cell as it differentiates.
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Romir Raj
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Madona Y G Masoud
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziwei Pan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
45
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
46
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:ijms23115945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
48
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
49
|
Mitotic drive in asymmetric epigenetic inheritance. Biochem Soc Trans 2022; 50:675-688. [PMID: 35437581 PMCID: PMC9162470 DOI: 10.1042/bst20200267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023]
Abstract
Asymmetric cell division (ACD) produces two daughter cells with distinct cell fates. This division mode is widely used during development and by adult stem cells during tissue homeostasis and regeneration, which can be regulated by both extrinsic cues such as signaling molecules and intrinsic factors such as epigenetic information. While the DNA replication process ensures that the sequences of sister chromatids are identical, how epigenetic information is re-distributed during ACD has remained largely unclear in multicellular organisms. Studies of Drosophila male germline stem cells (GSCs) have revealed that sister chromatids incorporate pre-existing and newly synthesized histones differentially and segregate asymmetrically during ACD. To understand the underlying molecular mechanisms of this phenomenon, two key questions must be answered: first, how and when asymmetric histone information is established; and second, how epigenetically distinct sister chromatids are distinguished and segregated. Here, we discuss recent advances which help our understanding of this interesting and important cell division mode.
Collapse
|
50
|
Nelson CM. Mechanical Control of Cell Differentiation: Insights from the Early Embryo. Annu Rev Biomed Eng 2022; 24:307-322. [PMID: 35385680 DOI: 10.1146/annurev-bioeng-060418-052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|