1
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405157. [PMID: 39499773 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Weiwei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Yuxin Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
2
|
Méndez-Albelo NM, Sandoval SO, Xu Z, Zhao X. An in-depth review of the function of RNA-binding protein FXR1 in neurodevelopment. Cell Tissue Res 2024; 398:63-77. [PMID: 39155323 DOI: 10.1007/s00441-024-03912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
FMR1 autosomal homolog 1 (FXR1) is an RNA-binding protein that belongs to the Fragile X-related protein (FXR) family. FXR1 is critical for development, as its loss of function is intolerant in humans and results in neonatal death in mice. Although FXR1 is expressed widely including the brain, functional studies on FXR1 have been mostly performed in cancer cells. Limited studies have demonstrated the importance of FXR1 in the brain. In this review, we will focus on the roles of FXR1 in brain development and pathogenesis of brain disorders. We will summarize the current knowledge in FXR1 in the context of neural biology, including structural features, isoform diversity and nomenclature, expression patterns, post-translational modifications, regulatory mechanisms, and molecular functions. Overall, FXR1 emerges as an important regulator of RNA metabolism in the brain, with strong implications in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
3
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as a signaling scaffold for actomyosin remodeling. Cell 2024; 187:5048-5063.e25. [PMID: 39106863 PMCID: PMC11380585 DOI: 10.1016/j.cell.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; UK Dementia Research Institute at King's College London, London SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
5
|
Roden CA, Gladfelter AS. Experimental Considerations for the Evaluation of Viral Biomolecular Condensates. Annu Rev Virol 2024; 11:105-124. [PMID: 39326881 DOI: 10.1146/annurev-virology-093022-010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biomolecular condensates are nonmembrane-bound assemblies of biological polymers such as protein and nucleic acids. An increasingly accepted paradigm across the viral tree of life is (a) that viruses form biomolecular condensates and (b) that the formation is required for the virus. Condensates can promote viral replication by promoting packaging, genome compaction, membrane bending, and co-opting of host translation. This review is primarily concerned with exploring methodologies for assessing virally encoded biomolecular condensates. The goal of this review is to provide an experimental framework for virologists to consider when designing experiments to (a) identify viral condensates and their components, (b) reconstitute condensation cell free from minimal components, (c) ask questions about what conditions lead to condensation, (d) map these questions back to the viral life cycle, and (e) design and test inhibitors/modulators of condensation as potential therapeutics. This experimental framework attempts to integrate virology, cell biology, and biochemistry approaches.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
6
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as signaling scaffold for actomyosin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565677. [PMID: 37961296 PMCID: PMC10635158 DOI: 10.1101/2023.11.05.565677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the FXR1 network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause Fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. These findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M. Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- UK Dementia Research Institute at King’s College London, London, SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
7
|
Gorsheneva NA, Sopova JV, Azarov VV, Grizel AV, Rubel AA. Biomolecular Condensates: Structure, Functions, Methods of Research. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S205-S223. [PMID: 38621751 DOI: 10.1134/s0006297924140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.
Collapse
Affiliation(s)
| | - Julia V Sopova
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
8
|
Wiedner HJ, Blue RE, Sadovsky M, Mills CA, Wehrens XH, Herring LE, Giudice J. RBFOX2 regulated EYA3 isoforms partner with SIX4 or ZBTB1 to control transcription during myogenesis. iScience 2023; 26:108258. [PMID: 38026174 PMCID: PMC10665822 DOI: 10.1016/j.isci.2023.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matheus Sadovsky
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Schmidt CJ, Kim DK, Pendarvis GK, Abasht B, McCarthy FM. Proteomic insight into human directed selection of the domesticated chicken Gallus gallus. PLoS One 2023; 18:e0289648. [PMID: 37549140 PMCID: PMC10406324 DOI: 10.1371/journal.pone.0289648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Chicken domestication began at least 3,500 years ago for purposes of divination, cockfighting, and food. Prior to industrial scale chicken production, domestication selected larger birds with increased egg production. In the mid-20th century companies began intensive selection with the broiler (meat) industry focusing on improved feed conversion, rapid growth, and breast muscle yield. Here we present proteomic analysis comparing the modern broiler line, Ross 708, with the UIUC legacy line which is not selected for growth traits. Breast muscle proteome analysis identifies cellular processes that have responded to human directed artificial selection. Mass spectrometry was used to identify protein level differences in the breast muscle of 6-day old chicks from Modern and Legacy lines. Our results indicate elevated levels of stress proteins, ribosomal proteins and proteins that participate in the innate immune pathway in the Modern chickens. Furthermore, the comparative analyses indicated expression differences for proteins involved in multiple biochemical pathways. In particular, the Modern line had elevated levels of proteins affecting the pentose phosphate pathway, TCA cycle and fatty acid oxidation while proteins involved in the first phase of glycolysis were reduced compared to the Legacy line. These analyses provide hypotheses linking the morphometric changes driven by human directed selection to biochemical pathways. These results also have implications for the poultry industry, specifically Wooden Breast disease which is linked to rapid breast muscle growth.
Collapse
Affiliation(s)
- Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Dong Kyun Kim
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - G Ken Pendarvis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Fiona M. McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
10
|
Guo G, Wang X, Zhang Y, Li T. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1119-1132. [PMID: 37464880 PMCID: PMC10423696 DOI: 10.3724/abbs.2023131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Phase separation (PS) is an important mechanism underlying the formation of biomolecular condensates. Physiological condensates are associated with numerous biological processes, such as transcription, immunity, signaling, and synaptic transmission. Changes in particular amino acids or segments can disturb the protein's phase behavior and interactions with other biomolecules in condensates. It is thus presumed that variations in the phase-separating-prone domains can significantly impact the properties and functions of condensates. The dysfunction of condensates contributes to a number of pathological processes. Pharmacological perturbation of these condensates is proposed as a promising way to restore physiological states. In this review, we characterize the variations observed in PS proteins that lead to aberrant biomolecular compartmentalization. We also showcase recent advancements in bioinformatics of membraneless organelles (MLOs), focusing on available databases useful for screening PS proteins and describing endogenous condensates, guiding researchers to seek the underlying pathogenic mechanisms of biomolecular condensates.
Collapse
Affiliation(s)
- Gaigai Guo
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Xinxin Wang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Yi Zhang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Tingting Li
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- Key Laboratory for NeuroscienceMinistry of Education/National Health Commission of ChinaPeking UniversityBeijing100191China
| |
Collapse
|
11
|
Fragile X-Related Protein FXR1 Controls Human Adenovirus Capsid mRNA Metabolism. J Virol 2023; 97:e0153922. [PMID: 36749074 PMCID: PMC9972981 DOI: 10.1128/jvi.01539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens causing a variety of diseases. A well-controlled expression of virus capsid mRNAs originating from the major late transcription unit (MLTU) is essential for forming the infectious virus progeny. However, regulation of the MLTU mRNA metabolism has mainly remained enigmatic. In this study, we show that the cellular RNA-binding protein FXR1 controls the stability of the HAdV-5 MLTU mRNAs, as depletion of FXR1 resulted in increased steady-state levels of MLTU mRNAs. Surprisingly, the lack of FXR1 reduced viral capsid protein accumulation and formation of the infectious virus progeny, indicating an opposing function of FXR1 in HAdV-5 infection. Further, the long FXR1 isoform interfered with MLTU mRNA translation, suggesting FXR1 isoform-specific functions in virus-infected cells. We also show that the FXR1 protein interacts with N6-methyladenosine (m6A)-modified MLTU mRNAs, thereby acting as a novel m6A reader protein in HAdV-5 infected cells. Collectively, our study identifies FXR1 as a regulator of MLTU mRNA metabolism in the lytic HAdV-5 life cycle. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, such as the common cold and conjunctivitis. Even though adenoviruses have been studied for more than 6 decades, there are still gaps in understanding how the virus interferes with the host cell to achieve efficient growth. In this study, we identified the cellular RNA-binding protein FXR1 as a factor manipulating the HAdV life cycle. We show that the FXR1 protein specifically interferes with mRNAs encoding essential viral capsid proteins. Since the lack of the FXR1 protein reduces virus growth, we propose that FXR1 can be considered a novel cellular proviral factor needed for efficient HAdV growth. Collectively, our study provides new detailed insights about the HAdV-host interactions, which might be helpful when developing countermeasures against pathogenic adenovirus infections and for improving adenovirus-based therapies.
Collapse
|
12
|
Shi X, Won M, Tang C, Ding Q, Sharma A, Wang F, Kim JS. RNA splicing based on reporter genes system: Detection, imaging and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
14
|
Mroczek M, Longman C, Farrugia ME, Kapetanovic Garcia S, Ardicli D, Topaloglu H, Hernández-Laín A, Orhan D, Alikasifoglu M, Duff J, Specht S, Nowak K, Ravenscroft G, Chao K, Valivullah Z, Donkervoort S, Saade D, Bönnemann C, Straub V, Yoon G. FXR1-related congenital myopathy: expansion of the clinical and genetic spectrum. J Med Genet 2022; 59:1069-1074. [PMID: 35393337 PMCID: PMC9537361 DOI: 10.1136/jmedgenet-2021-108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Biallelic pathogenic variants in FXR1 have recently been associated with two congenital myopathy phenotypes: a severe form associated with hypotonia, long bone fractures, respiratory insufficiency and infantile death, and a milder form characterised by proximal muscle weakness with survival into adulthood. OBJECTIVE We report eight patients from four unrelated families with biallelic pathogenic variants in exon 15 of FXR1. METHODS Whole exome sequencing was used to detect variants in FXR1. RESULTS Common clinical features were noted for all patients, which included proximal myopathy, normal serum creatine kinase levels and diffuse muscle atrophy with relative preservation of the quadriceps femoris muscle on muscle imaging. Additionally, some patients with FXR1-related myopathy had respiratory involvement and required bilevel positive airway pressure support. Muscle biopsy showed multi-minicores and type I fibre predominance with internalised nuclei. CONCLUSION FXR1-related congenital myopathy is an emerging entity that is clinically recognisable. Phenotypic variability associated with variants in FXR1 can result from differences in variant location and type and is also observed between patients homozygous for the same variant, rendering specific genotype-phenotype correlations difficult. Our work broadens the phenotypic spectrum of FXR1-related congenital myopathy.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Didem Ardicli
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
- Department of Pediatric Neurology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
- Department of Pediatrics, Yeditepe University, İstanbul, Turkey
| | - Aurelio Hernández-Laín
- Department of Pathology (Neuropathology), Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Diclehan Orhan
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Jennifer Duff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sabine Specht
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kristen Nowak
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Gianina Ravenscroft
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Katherine Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grace Yoon
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Divison of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
RNA m 6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet 2022; 54:1427-1437. [PMID: 36071173 DOI: 10.1038/s41588-022-01173-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/26/2022] [Indexed: 12/12/2022]
Abstract
Transcriptional regulation, which integrates chromatin accessibility, transcription factors and epigenetic modifications, is crucial for establishing and maintaining cell identity. The interplay between different epigenetic modifications and its contribution to transcriptional regulation remains elusive. Here, we show that METTL3-mediated RNA N6-methyladenosine (m6A) formation leads to DNA demethylation in nearby genomic loci in normal and cancer cells, which is mediated by the interaction between m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1. Upon recognizing RNA m6A, FXR1 recruits TET1 to genomic loci to demethylate DNA, leading to reprogrammed chromatin accessibility and gene transcription. Therefore, we have characterized a regulatory mechanism of chromatin accessibility and gene transcription mediated by RNA m6A formation coupled with DNA demethylation, highlighting the importance of the crosstalk between RNA m6A and DNA modification in physiologic and pathogenic process.
Collapse
|
16
|
Kang JY, Wen Z, Pan D, Zhang Y, Li Q, Zhong A, Yu X, Wu YC, Chen Y, Zhang X, Kou PC, Geng J, Wang YY, Hua MM, Zong R, Li B, Shi HJ, Li D, Fu XD, Li J, Nelson DL, Guo X, Zhou Y, Gou LT, Huang Y, Liu MF. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science 2022; 377:eabj6647. [PMID: 35951695 DOI: 10.1126/science.abj6647] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific Fxr1 ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1L351P mutation in Fxr1 knock-in mice produced the same developmental defect. These findings uncover a mechanism for translational reprogramming with LLPS as a key driver in spermiogenesis.
Collapse
Affiliation(s)
- Jun-Yan Kang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Wen
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Duo Pan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuhan Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ai Zhong
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yi-Chen Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng-Cheng Kou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junlan Geng
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying-Yi Wang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Ruiting Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
17
|
Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Genetic variation associated with condensate dysregulation in disease. Dev Cell 2022; 57:1776-1788.e8. [PMID: 35809564 PMCID: PMC9339523 DOI: 10.1016/j.devcel.2022.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 03/11/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.
Collapse
Affiliation(s)
- Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susana W Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Victoria E Clark
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ido Sagi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 2022; 25:104811. [PMID: 35982794 PMCID: PMC9379569 DOI: 10.1016/j.isci.2022.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. RNA–protein interactions drive recruitment of both RNA and protein to L-bodies RNA is non-dynamic in both L-bodies and in vitro condensates Multivalent interactions with RNA tune protein dynamics both in vivo and in vitro RNA, but not protein, is required for maintenance of the in vitro condensates
Collapse
|
19
|
Edwards M, Huang M, Joseph S. The Fragile X Protein Disordered Regions Bind a Novel RNA Target. Biochemistry 2022; 61:1199-1212. [PMID: 35653700 DOI: 10.1021/acs.biochem.2c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fragile X proteins (FXPs) are a family of RNA-binding proteins that regulate mRNA translation to promote proper neural development and cognition in mammals. Of particular interest to researchers is the fragile X mental retardation protein (FMRP), as its absence leads to a neurodevelopmental disorder: fragile X syndrome (FXS), the leading monogenetic cause of autism spectrum disorders. A primary focus of research has been to determine mRNA targets of the FXPs in vivo through pull-down techniques, and to validate them through in vitro binding studies; another approach has been to perform in vitro selection experiments to identify RNA sequence and structural targets. These mRNA targets can be further investigated as potential targets for FXS therapeutics. The most established RNA structural target of this family of proteins is the G-quadruplex. In this article, we report a 99 nucleotide RNA target that is bound by all three FXPs with nanomolar equilibrium constants. Furthermore, we determined that the last 102 amino acids of FMRP, which includes the RGG motif, were necessary and sufficient to bind this RNA target. To the best of our knowledge, this is one of only a few examples of non-G-quadruplex, non-homopolymer RNAs bound by the RGG motif/C-termini of FMRP.
Collapse
Affiliation(s)
- Madison Edwards
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| | - Molly Huang
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| |
Collapse
|
20
|
Khamoui AV, Tokmina-Roszyk D, Feresin RG, Fields GB, Visavadiya NP. Skeletal muscle proteome expression differentiates severity of cancer cachexia in mice and identifies loss of fragile X mental retardation syndrome-related protein 1. Proteomics 2022; 22:e2100157. [PMID: 35289490 DOI: 10.1002/pmic.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
TMT-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/MAPK signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia, however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including Serpina3n, Sypl2, Idh3a, Acox1, Col6a1, Myoz3, Ugp2, and Slc41a3. Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in FXR1, an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
21
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Chen X, Mayr C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA (NEW YORK, N.Y.) 2022; 28:76-87. [PMID: 34706978 PMCID: PMC8675283 DOI: 10.1261/rna.078995.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
23
|
Roden CA, Gladfelter AS. Design considerations for analyzing protein translation regulation by condensates. RNA (NEW YORK, N.Y.) 2022; 28:88-96. [PMID: 34670845 PMCID: PMC8675288 DOI: 10.1261/rna.079002.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One proposed role for biomolecular condensates that contain RNA is translation regulation. In several specific contexts, translation has been shown to be modulated by the presence of a phase-separating protein and under conditions which promote phase separation, and likely many more await discovery. A powerful tool for determining the rules for condensate-dependent translation is the use of engineered RNA sequences, which can serve as reporters for translation efficiency. This Perspective will discuss design features to consider in engineering RNA reporters to determine the role of phase separation in translational regulation. Specifically, we will cover (i) how to engineer RNA sequence to recapitulate native protein/RNA interactions, (ii) the advantages and disadvantages for commonly used reporter RNA sequences, and (iii) important control experiments to distinguish between binding- and condensation-dependent translational repression. The goal of this review is to promote the design and application of faithful translation reporters to demonstrate a physiological role of biomolecular condensates in translation.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
24
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
25
|
Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021; 28:465-473. [PMID: 34099940 PMCID: PMC8787349 DOI: 10.1038/s41594-021-00601-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
Collapse
Affiliation(s)
- Hannah J Wiedner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
27
|
Garcia-Cabau C, Salvatella X. Regulation of biomolecular condensate dynamics by signaling. Curr Opin Cell Biol 2021; 69:111-119. [PMID: 33578289 DOI: 10.1016/j.ceb.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Biomolecular condensates are mesoscopic biomolecular assemblies devoid of long range order that contribute to important cellular functions. They form reversibly, are stabilized by numerous but relatively weak intermolecular interactions, and their formation can be regulated by various cellular signals including changes in local concentration, post-translational modifications, energy-consuming processes, and biomolecular interactions. Condensates formed by liquid-liquid phase separation are initially liquid but are metastable relative to hydrogels or irreversible solids that have been associated with protein aggregation diseases and are stabilized by stronger, more permanent interactions. As a consequence of this, a series of cellular mechanisms are available to regulate not only biomolecular condensation but also the physical properties of the condensates.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
28
|
Ma W, Zhen G, Xie W, Mayr C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. eLife 2021; 10:64252. [PMID: 33650968 PMCID: PMC7968931 DOI: 10.7554/elife.64252] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
Liquid-like condensates have been thought to be sphere-like. Recently, various condensates with filamentous morphology have been observed in cells. One such condensate is the TIS granule network that shares a large surface area with the rough endoplasmic reticulum and is important for membrane protein trafficking. It has been unclear how condensates with mesh-like shapes but dynamic protein components are formed. In vitro and in vivo reconstitution experiments revealed that the minimal components are a multivalent RNA-binding protein that concentrates RNAs that are able to form extensive intermolecular mRNA-mRNA interactions. mRNAs with large unstructured regions have a high propensity to form a pervasive intermolecular interaction network that acts as condensate skeleton. The underlying RNA matrix prevents full fusion of spherical liquid-like condensates, thus driving the formation of irregularly shaped membraneless organelles. The resulting large surface area may promote interactions at the condensate surface and at the interface with other organelles.
Collapse
Affiliation(s)
- Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Gang Zhen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
29
|
Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020; 183:1742-1756. [DOI: 10.1016/j.cell.2020.11.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
|
30
|
Liquid-Liquid Phase Separation in Crowded Environments. Int J Mol Sci 2020; 21:ijms21165908. [PMID: 32824618 PMCID: PMC7460619 DOI: 10.3390/ijms21165908] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Biomolecular condensates play a key role in organizing cellular fluids such as the cytoplasm and nucleoplasm. Most of these non-membranous organelles show liquid-like properties both in cells and when studied in vitro through liquid–liquid phase separation (LLPS) of purified proteins. In general, LLPS of proteins is known to be sensitive to variations in pH, temperature and ionic strength, but the role of crowding remains underappreciated. Several decades of research have shown that macromolecular crowding can have profound effects on protein interactions, folding and aggregation, and it must, by extension, also impact LLPS. However, the precise role of crowding in LLPS is far from trivial, as most condensate components have a disordered nature and exhibit multiple weak attractive interactions. Here, we discuss which factors determine the scope of LLPS in crowded environments, and we review the evidence for the impact of macromolecular crowding on phase boundaries, partitioning behavior and condensate properties. Based on a comparison of both in vivo and in vitro LLPS studies, we propose that phase separation in cells does not solely rely on attractive interactions, but shows important similarities to segregative phase separation.
Collapse
|