1
|
Smith M, Gay L, Babst M. ER-plasma membrane contact sites deliver ER lipids and proteins for rapid cell surface expansion. J Cell Biol 2024; 223:e202308137. [PMID: 39302311 DOI: 10.1083/jcb.202308137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
As a consequence of hypoosmotic shock, yeast cells swell rapidly and increase the surface area by ∼20% in 20 s. Approximately, 35% of this surface increase is mediated by the ER-plasma membrane contact sites, specifically the tricalbins, which are required for the delivery of both lipids and the GPI-anchored protein Crh2 from the cortical ER to the plasma membrane. Therefore, we propose a new function for the tricalbins: mediating the fusion of the ER to the plasma membrane at contact sites. This proposed fusion is triggered by calcium influx via the stretch-gated channel Cch1 and is supported by the anoctamin Ist2.
Collapse
Affiliation(s)
- Madison Smith
- Henry Eyring Center for Cell and Genome Science, University of Utah , Salt Lake City, UT, USA
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah , Salt Lake City, UT, USA
| | - Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah , Salt Lake City, UT, USA
| |
Collapse
|
2
|
Primrose MT, Claypool SM. Phosphatidylethanolamine. Trends Endocrinol Metab 2024; 35:929-930. [PMID: 39426372 PMCID: PMC11490686 DOI: 10.1016/j.tem.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Mackenzie T Primrose
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Kuijpers M, Nguyen PT, Haucke V. The Endoplasmic Reticulum and Its Contacts: Emerging Roles in Axon Development, Neurotransmission, and Degeneration. Neuroscientist 2024; 30:545-559. [PMID: 36960757 PMCID: PMC11420577 DOI: 10.1177/10738584231162810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The neuronal endoplasmic reticulum (ER) consists of a dynamic, tubular network that extends all the way from the soma into dendrites, axons, and synapses. This morphology gives rise to an enormous membrane surface area that, through the presence of tethering proteins, lipid transfer proteins, and ion channels, plays critical roles in local calcium regulation, membrane dynamics, and the supply of ions and lipids to other organelles. Here, we summarize recent advances that highlight the various roles of the neuronal ER in axonal growth, repair, and presynaptic function. We review the variety of contact sites between the ER and other axonal organelles and describe their influence on neurodevelopment and neurotransmission.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Phuong T Nguyen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
4
|
Kinoshita T. Towards a thorough understanding of mammalian glycosylphosphatidylinositol-anchored protein biosynthesis. Glycobiology 2024; 34:cwae061. [PMID: 39129667 DOI: 10.1093/glycob/cwae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/13/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids found ubiquitously in eukaryotes. They consist of a glycan and an inositol phospholipid, and act as membrane anchors of many cell-surface proteins by covalently linking to their C-termini. GPIs also exist as unlinked, free glycolipids on the cell surface. In human cells, at least 160 proteins with various functions are GPI-anchored proteins. Because the attachment of GPI is required for the cell-surface expression of GPI-anchored proteins, a thorough knowledge of the molecular basis of mammalian GPI-anchored protein biosynthesis is important for understanding the basic biochemistry and biology of GPI-anchored proteins and their medical significance. In this paper, I review our previous knowledge of the biosynthesis of mammalian GPI-anchored proteins and then examine new findings made since 2020.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, Japan
| |
Collapse
|
5
|
Lan Q, Li X, Fang J, Yu X, Wu ZE, Yang C, Jian H, Li F. Comprehensive biomarker analysis of metabolomics in different syndromes in traditional Chinese medical for prediabetes mellitus. Chin Med 2024; 19:114. [PMID: 39183283 PMCID: PMC11346218 DOI: 10.1186/s13020-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prediabetes mellitus (PreDM) is a high-risk state for developing type 2 diabetes mellitus (T2DM) and often goes undiagnosed, which is closely associated with obesity and characterized by insulin resistance that urgently needs to be treated. PURPOSE To obtain a better understanding of the biological processes associated with both "spleen-dampness" syndrome individuals and those with dysglycaemic control at its earliest stages, we performed a detailed metabolomic analysis of individuals with various early impairments in glycaemic control, the results can facilitate clinicians' decision making and benefit individuals at risk. METHODS According to the diagnostic criteria of TCM patterns and PreDM, patients were divided into 4 groups with 20 cases, patients with syndrome of spleen deficiency with dampness encumbrance and PreDM (PDMPXSK group), patients with syndrome of dampness-heat in the spleen and PreDM (PDMSRYP group), patients with syndrome of spleen deficiency with dampness encumbrance and normal blood glucose (NDMPXSK group), and patients with syndrome of dampness-heat in the spleen and normal blood glucose (NDMSRYP group). Plasma samples from patients were collected for clinical index assessment and untargeted metabolomics using liquid chromatography-mass spectrometry. RESULTS Among patients with the syndrome of spleen deficiency with dampness encumbrance (PXSK), those with PreDM (PDMPXSK group) had elevated levels of 2-hour post-load blood glucose (2-h PG), glycosylated hemoglobin (HbA1c), high-density lipoprotein cholesterol (HDL-C), and systolic blood pressure (SBP) than those in the normal blood glucose group (NDMPXSK group, P < 0.01). Among patients with the syndrome of dampness-heat in the spleen (SRYP), the levels of body mass index (BMI), fasting blood glucose (FBG), 2-h PG, HbA1c, and fasting insulin (FINS) were higher in the PreDM group (PDMSRYP group) than those in the normal blood glucose group (NDMSRYP group, P < 0.05). In both TCM syndromes, the plasma metabolomic profiles of PreDM patients were mainly discriminatory from the normal blood glucose controls of the same syndrome in the levels of lipid species, with the PXSK syndrome showing a more pronounced and broader spectrum of alterations than the SRYP syndrome. Changes associated with PreDM common to both syndromes included elevations in the levels of 27 metabolites which were mainly lipid species encompassing glycerophospholipids (GPs), diglycerides (DGs) and triglycerides (TGs), cholesterol and derivatives, and decreases in 5 metabolites consisting 1 DG, 1 TG, 2 N,N-dimethyl phosphatidylethanolamine (PE-NMe2) and iminoacetic acid. Correlation analysis identified significant positive correlations of 3α,7α,12α,25-Tetrahydroxy-5β-cholestane-24-one with more than one glycaemia-related indicators, whereas DG (20:4/20:5) and PC (20:3/14:0) were positively and PC (18:1/14:0) was inversely correlated with more than one lipid profile-related indicators. Based on the value of correlation coefficient, the top three correlative pairs were TG with PC (18:1/14:0) (r = - 0.528), TG with TG (14:0/22:4/22:5) (r = 0.521) and FINS with PE-NMe (15:0/22:4) (r = 0.52). CONCLUSION Our results revealed PreDM patients with different TCM syndromes were characterized by different clinical profiles. Common metabolite markers associated with PreDM shared by the two TCM syndromes were mainly lipid species encompassing GP, GL, cholesterol and derivatives. Our findings were in line with the current view that altered lipid metabolism is a conserved and early event of dysglycaemia. Our study also implied the possible involvement of perturbed bile acid homeostasis and dysregulated PE methylation during development of dysglycaemia.
Collapse
Affiliation(s)
- Qin Lan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Outpatient Department, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xue Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianhe Fang
- Medical Ancient Literature Teaching and Research Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinyu Yu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhanxuan E Wu
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caiyun Yang
- Endocrinology Department II, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hui Jian
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Fei Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Luan L, Liang D, Chiu DC, Tei R, Baskin JM. Imaging Interorganelle Phospholipid Transport by Extended Synaptotagmins Using Bioorthogonally Tagged Lipids. ACS Chem Biol 2024; 19:1683-1694. [PMID: 39023576 DOI: 10.1021/acschembio.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The proper distribution of lipids within organelle membranes requires rapid interorganelle lipid transport, much of which occurs at membrane contact sites and is mediated by lipid transfer proteins (LTPs). Our current understanding of LTP mechanism and function is based largely on structural studies and in vitro reconstitution. Existing cellular assays for LTP function use indirect readouts, and it remains an open question as to whether substrate specificity and transport kinetics established in vitro are similar in cellular settings. Here, we harness bioorthogonal chemistry to develop tools for direct visualization of interorganelle transport of phospholipids between the plasma membrane (PM) and the endoplasmic reticulum (ER). Unnatural fluorescent phospholipid analogs generated by the transphosphatidylation activity of phospholipase D (PLD) at the PM are rapidly transported to the ER dependent in part upon extended synaptotagmins (E-Syts), a family of LTPs at ER-PM contact sites. Ectopic expression of an artificial E-Syt-based tether at ER-mitochondria contact sites results in fluorescent phospholipid accumulation in mitochondria. Finally, in vitro reconstitution assays demonstrate that the fluorescent lipids are bona fide E-Syt substrates. Thus, fluorescent lipids generated in situ via PLD activity and bioorthogonal chemical tagging can enable direct visualization of the activity of LTPs that mediate bulk phospholipid transport at ER-PM contact sites.
Collapse
Affiliation(s)
- Lin Luan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Dongjun Liang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Din-Chi Chiu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Kang Y, Lehmann KS, Vanegas J, Long H, Jefferson A, Freeman M, Clark S. Structural basis of bulk lipid transfer by bridge-like lipid transfer protein LPD-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600134. [PMID: 38948693 PMCID: PMC11213131 DOI: 10.1101/2024.06.21.600134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bridge-like lipid transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum (ER), to an acceptor membrane, such as a that of the cell or an organelle 1 . Despite the fundamental importance of BLTPs for cellular function, the architecture, composition, and lipid transfer mechanisms remain poorly characterized. Here, we present the subunit composition and the cryo-electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic C. elegans . LPD-3 folds into an elongated, rod-shaped tunnel whose interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, here named "Intake" and "Spigot", both of which interact with the N-terminal end of LPD-3 where lipids enter the tunnel. Intake has three transmembrane helices, one of which borders the entrance to the tunnel; Spigot has one transmembrane helix and extends 80 Å along the cytosolic surface of LPD-3. Experiments in multiple model systems indicate that Spigot plays a conserved role in ER-PM contact site formation. Our LPD-3 complex structural data, together with molecular dynamics simulations of the transmembrane region in a lipid bilayer, reveal protein-lipid interactions that suggest a model for how the native LPD-3-complex mediates bulk lipid transport and provide a foundation for mechanistic studies of BLTPs.
Collapse
|
8
|
Parolek J, Burd CG. Bridge-like lipid transfer protein family member 2 suppresses ciliogenesis. Mol Biol Cell 2024; 35:br11. [PMID: 38536441 PMCID: PMC11151097 DOI: 10.1091/mbc.e24-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Bridge-like lipid transfer protein family member 2 (BLTP2) is an evolutionary conserved protein with unknown function(s). The absence of BLTP2 in Drosophila melanogaster results in impaired cellular secretion and larval death, while in mice (Mus musculus), it causes preweaning lethality. Structural predictions propose that BLTP2 belongs to the repeating β-groove domain-containing (also called the VPS13) protein family, forming a long tube with a hydrophobic core, suggesting that it operates as a lipid transfer protein (LTP). We establish BLTP2 as a negative regulator of ciliogenesis in RPE-1 cells based on a strong genetic interaction with WDR44, a gene that also suppresses ciliogenesis. Like WDR44, BLTP2 localizes to membrane contact sites involving the endoplasmic reticulum and the tubular endosome network in HeLa cells and that BLTP2 depletion enhanced ciliogenesis in RPE-1 cells grown in serum-containing medium, a condition where ciliogenesis is normally suppressed. This study establishes human BLTP2 as a putative LTP acting between tubular endosomes and ER that regulates primary cilium biogenesis.
Collapse
Affiliation(s)
- Jan Parolek
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
9
|
Wang J, Xiong J, Zhang S, Li D, Chu Q, Chang W, Deng L, Ji WK. Biogenesis of Rab14-positive endosome buds at Golgi-endosome contacts by the RhoBTB3-SHIP164-Vps26B complex. Cell Discov 2024; 10:38. [PMID: 38565878 PMCID: PMC10987540 DOI: 10.1038/s41421-024-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Early endosomes (EEs) are crucial in cargo sorting within vesicular trafficking. While cargoes destined for degradation are retained in EEs and eventually transported to lysosomes, recycled cargoes for the plasma membrane (PM) or the Golgi undergo segregation into specialized membrane structures known as EE buds during cargo sorting. Despite this significance, the molecular basis of the membrane expansion during EE bud formation has been poorly understood. In this study, we identify a protein complex comprising SHIP164, an ATPase RhoBTB3, and a retromer subunit Vps26B, which promotes the formation of EE buds at Golgi-EE contacts. Our findings reveal that Vps26B acts as a novel Rab14 effector, and Rab14 activity regulates the association of SHIP164 with EEs. Depletion of SHIP164 leads to enlarged Rab14+ EEs without buds, a phenotype rescued by wild-type SHIP164 but not the lipid transfer-defective mutants. Suppression of RhoBTB3 or Vps26B mirrors the effects of SHIP164 depletion. Together, we propose a lipid transport-dependent pathway mediated by the RhoBTB3-SHIP164-Vps26B complex at Golgi-EE contacts, which is essential for EE budding.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Xiong
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qingzhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Suzuki SW, West M, Zhang Y, Fan JS, Roberts RT, Odorizzi G, Emr SD. A role for Vps13-mediated lipid transfer at the ER-endosome contact site in ESCRT-mediated sorting. J Cell Biol 2024; 223:e202307094. [PMID: 38319250 PMCID: PMC10847051 DOI: 10.1083/jcb.202307094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endosomes are specialized organelles that function in the secretory and endocytic protein sorting pathways. Endocytosed cell surface receptors and transporters destined for lysosomal degradation are sorted into intraluminal vesicles (ILVs) at endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. The endosomes (multivesicular bodies, MVBs) then fuse with the lysosome. During endosomal maturation, the number of ILVs increases, but the size of endosomes does not decrease despite the consumption of the limiting membrane during ILV formation. Vesicle-mediated trafficking is thought to provide lipids to support MVB biogenesis. However, we have uncovered an unexpected contribution of a large bridge-like lipid transfer protein, Vps13, in this process. Here, we reveal that Vps13-mediated lipid transfer at ER-endosome contact sites is required for the ESCRT pathway. We propose that Vps13 may play a critical role in supplying lipids to the endosome, ensuring continuous ESCRT-mediated sorting during MVB biogenesis.
Collapse
Affiliation(s)
- Sho W. Suzuki
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthew West
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Yichen Zhang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jenny S. Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Rachel T. Roberts
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Greg Odorizzi
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Scott D. Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Banerjee S, Daetwyler S, Bai X, Michaud M, Jouhet J, Madhugiri S, Johnson E, Wang CW, Fiolka R, Toulmay A, Prinz WA. The Vps13-like protein BLTP2 is pro-survival and regulates phosphatidylethanolamine levels in the plasma membrane to maintain its fluidity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578804. [PMID: 38370643 PMCID: PMC10871178 DOI: 10.1101/2024.02.04.578804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lipid transport proteins (LTPs) facilitate nonvesicular lipid exchange between cellular compartments and have critical roles in lipid homeostasis1. A new family of bridge-like LTPs (BLTPs) is thought to form lipid-transporting conduits between organelles2. One, BLTP2, is conserved across species but its function is not known. Here, we show that BLTP2 and its homolog directly regulate plasma membrane (PM) fluidity by increasing the phosphatidylethanolamine (PE) level in the PM. BLTP2 localizes to endoplasmic reticulum (ER)-PM contact sites34, 5, suggesting it transports PE from the ER to the PM. We find BLTP2 works in parallel with another pathway that regulates intracellular PE distribution and PM fluidity6, 7. BLTP2 expression correlates with breast cancer aggressiveness8-10. We found BLTP2 facilitates growth of a human cancer cell line and sustains its aggressiveness in an in vivo model of metastasis, suggesting maintenance of PM fluidity by BLTP2 may be critical for tumorigenesis in humans.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Shruthi Madhugiri
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emma Johnson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Toulmay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William A Prinz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Wang Y, Kinoshita T. The role of lipid scramblases in regulating lipid distributions at cellular membranes. Biochem Soc Trans 2023; 51:1857-1869. [PMID: 37767549 DOI: 10.1042/bst20221455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol 2023; 39:409-434. [PMID: 37406299 DOI: 10.1146/annurev-cellbio-120420-014634] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
14
|
Du Q, Wang X, Chen J, Wang Y, Liu W, Wang L, Liu H, Jiang L, Nie Z. Machine learning encodes urine and serum metabolic patterns for autoimmune disease discrimination, classification and metabolic dysregulation analysis. Analyst 2023; 148:4318-4330. [PMID: 37547947 DOI: 10.1039/d3an01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
There is a wide variety of autoimmune diseases (ADs) with complex pathogenesis and their accurate diagnosis is difficult to achieve because of their vague symptoms. Metabolomics has been proven to be an efficient tool in the analysis of metabolic disorders to provide clues about the mechanism and diagnosis of diseases. Previous studies of the metabolomics analysis of ADs were not competent in their discrimination. Herein, a liquid chromatography tandem mass spectrometry (LC-MS) strategy combined with machine learning is proposed for the discrimination and classification of ADs. Urine and serum samples were collected from 267 subjects consisting of 127 healthy controls (HC) and 140 AD patients, including those with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), sicca syndrome (SS), ankylosing spondylitis (AS), systemic scleroderma (SSc) and connective tissue disease (CTD). Machine learning algorithms were encoded for the discrimination and classification of ADs with metabolomic patterns obtained by LC-MS, and satisfactory results were achieved. Notably, urine samples exhibited higher accuracy for disease differentiation and triage than serum samples. Apart from that, differential metabolites were selected and metabolite panels were evaluated to demonstrate their representativeness. Metabolic dysregulations were also investigated to gain more knowledge about the pathogenesis of ADs. This research provides a promising method for the application of metabolomics combined with machine learning in precision medicine.
Collapse
Affiliation(s)
- Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlan Liu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Liping Wang
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341000, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Henne WM. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr Opin Cell Biol 2023; 82:102178. [PMID: 37295067 PMCID: PMC10782554 DOI: 10.1016/j.ceb.2023.102178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are major lipid storage organelles, sequestering energy-rich triglycerides and serving as nutrient sinks for cellular homeostasis. Observed for over a century but generally ignored, LDs are now appreciated to play key roles in organismal physiology and disease. They also form numerous functional contacts with other organelles. Here, we highlight recent studies examining LDs from distinct perspectives of their life cycle: their biogenesis, "social" life as they interact with other organelles, and deaths via lipolysis or lipophagy. We also discuss recent work showing how changes in LD lipid content alter the biophysical phases of LD lipids, and how this may fine-tune the LD protein landscape and ultimately LD function.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Dall'Armellina F, Stagi M, Swan LE. In silico modeling human VPS13 proteins associated with donor and target membranes suggests lipid transfer mechanisms. Proteins 2023; 91:439-455. [PMID: 36404287 PMCID: PMC10953354 DOI: 10.1002/prot.26446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
The VPS13 protein family constitutes a novel class of bridge-like lipid transferases. Autosomal recessive inheritance of mutations in VPS13 genes is associated with the development of neurodegenerative diseases in humans. Bioinformatic approaches previously recognized the domain architecture of these proteins. In this study, we model the first ever full-length structures of the four human homologs VPS13A, VPS13B, VPS13C, and VPS13D in association with model membranes, to investigate their lipid transfer ability and potential structural association with membrane leaflets. We analyze the evolutionary conservation and physicochemical properties of these proteins, focusing on conserved C-terminal amphipathic helices that disturb organelle surfaces and that, adjoined, resemble a traditional Venetian gondola. The gondola domains share significant structural homology with lipid droplet surface-binding proteins. We introduce in silico protein-membrane models displaying the mode of association of VPS13A, VPS13B, VPS13C, and VPS13D to donor and target membranes, and present potential models of action for protein-mediated lipid transfer.
Collapse
Affiliation(s)
- Filippo Dall'Armellina
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Massimiliano Stagi
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Laura E. Swan
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
17
|
Feng X, Cai Z, Gu Y, Mu T, Yu B, Ma R, Liu J, Wang C, Zhang J. Excavation and characterization of key circRNAs for milk fat percentage in Holstein cattle. J Anim Sci 2023; 101:skad157. [PMID: 37209411 PMCID: PMC10290504 DOI: 10.1093/jas/skad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/22/2023] Open
Abstract
Milk fat percentage is one of the significant indicators governing the price and quality of milk and is regulated by a variety of non-coding RNAs. We used RNA sequencing (RNA-seq) techniques and bioinformatics approaches to explore potential candidate circular RNAs (circRNAs) regulating milk fat metabolism. After analysis, compared with low milk fat percentage (LMF) cows, 309 circRNAs were significantly differentially expressed in high milk fat percentage (HMF) cows. Functional enrichment and pathway analysis revealed that the main functions of the parental genes of differentially expressed circRNAs (DE-circRNAs) were related to lipid metabolism. We selected four circRNAs (Novel_circ_0000856, Novel_circ_0011157, novel_circ_0011944, and Novel_circ_0018279) derived from parental genes related to lipid metabolism as key candidate DE-circRNAs. Their head-to-tail splicing was demonstrated by linear RNase R digestion experiments and Sanger sequencing. However, the tissue expression profiles showed that only Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 were expressed with high abundance in breast tissue. Based on the subcellular localization found that Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 mainly function as competitive endogenous RNAs (ceRNAs) in the cytoplasm. Therefore, we constructed their ceRNA regulatory networks, and the five hub target genes (CSF1, TET2, VDR, CD34, and MECP2) in ceRNAs were obtained by CytoHubba and MCODE plugins in Cytoscape, as well as tissue expression profiles analysis of target genes. These genes play a key role as important target genes in lipid metabolism, energy metabolism, and cellular autophagy. The Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 regulate the expression of hub target genes through interaction with miRNAs and constitute key regulatory networks that may be involved in milk fat metabolism. The circRNAs obtained in this study may act as miRNA sponges and thus influence mammary gland development and lipid metabolism in cows, which improves our understanding of the role of circRNAs in cow lactation.
Collapse
Affiliation(s)
- Xiaofang Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Tong Mu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Baojun Yu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiaming Liu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Chuanchuan Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
18
|
Pandey T, Zhang J, Wang B, Ma DK. Bridge-Like Lipid Transfer Proteins (BLTPs) in C. elegans: From Genetics to Structures and Functions. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231186489. [PMID: 37455813 PMCID: PMC10345909 DOI: 10.1177/25152564231186489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotic cells, lipid transfer can occur at membrane contact sites (MCS) to facilitate the exchange of various lipids between two adjacent cellular organelle membranes. Lipid transfer proteins (LTPs), including shuttle LTP or bridge-like LTP (BLTP), transport lipids at MCS and are critical for diverse cellular processes, including lipid metabolism, membrane trafficking, and cell signaling. BLTPs (BLTP1-5, including the ATG2 and VPS13 family proteins) contain lipid-accommodating hydrophobic repeating β-groove (RBG) domains that allow the bulk transfer of lipids through MCS. Compared with vesicular lipid transfer and shuttle LTP, BLTPs have been only recently identified. Their functions and regulatory mechanisms are currently being unraveled in various model organisms and by diverse approaches. In this review, we summarize the genetics, structural features, and biological functions of BLTP in the genetically tractable model organism C. elegans. We discuss our recent studies and findings on C. elegans LPD-3, a prototypical megaprotein ortholog of BLTP1, with identified lipid transfer functions that are evolutionarily conserved in multicellular organisms and in human cells. We also highlight areas for future research of BLTP using C. elegans and complementary model systems and approaches. Given the emerging links of BLTP to several human diseases, including Parkinson's disease and Alkuraya-Kučinskas syndrome, discovering evolutionarily conserved roles of BLTPs and their mechanisms of regulation and action should contribute to new advances in basic cell biology and potential therapeutic development for related human disorders.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| |
Collapse
|
19
|
Braschi B, Bruford EA, Cavanagh AT, Neuman SD, Bashirullah A. The bridge-like lipid transfer protein (BLTP) gene group: introducing new nomenclature based on structural homology indicating shared function. Hum Genomics 2022; 16:66. [PMID: 36461115 PMCID: PMC9719229 DOI: 10.1186/s40246-022-00439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
The HUGO Gene Nomenclature Committee assigns unique symbols and names to human genes. The use of approved nomenclature enables effective communication between researchers, and there are multiple examples of how the usage of unapproved alias symbols can lead to confusion. We discuss here a recent nomenclature update (May 2022) for a set of genes that encode proteins with a shared repeating β-groove domain. Some of the proteins encoded by genes in this group have already been shown to function as lipid transporters. By working with researchers in the field, we have been able to introduce a new root symbol (BLTP, which stands for "bridge-like lipid transfer protein") for this domain-based gene group. This new nomenclature not only reflects the shared domain in these proteins, but also takes into consideration the mounting evidence of a shared lipid transport function.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, Cambridgeshire, CB2 0AW, UK
| | - Amy T Cavanagh
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| |
Collapse
|
20
|
Castro IG, Shortill SP, Dziurdzik SK, Cadou A, Ganesan S, Valenti R, David Y, Davey M, Mattes C, Thomas FB, Avraham RE, Meyer H, Fadel A, Fenech EJ, Ernst R, Zaremberg V, Levine TP, Stefan C, Conibear E, Schuldiner M. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution. eLife 2022; 11:74602. [DOI: 10.7554/elife.74602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.
Collapse
Affiliation(s)
| | - Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Samantha Katarzyna Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Angela Cadou
- Laboratory for Molecular Cell Biology, University College London
| | | | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | - Ffion B Thomas
- Laboratory for Molecular Cell Biology, University College London
| | | | - Hadar Meyer
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | | | - Tim P Levine
- UCL Institute of Ophthalmology, University College London
| | | | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
21
|
Wang C, Wang B, Pandey T, Long Y, Zhang J, Oh F, Sima J, Guo R, Liu Y, Zhang C, Mukherjee S, Bassik M, Lin W, Deng H, Vale G, McDonald JG, Shen K, Ma DK. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat Commun 2022; 13:6805. [PMID: 36357390 PMCID: PMC9649747 DOI: 10.1038/s41467-022-34450-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.
Collapse
Affiliation(s)
- Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Sima
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Ruyin Guo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Neuman SD, Levine TP, Bashirullah A. A novel superfamily of bridge-like lipid transfer proteins. Trends Cell Biol 2022; 32:962-974. [PMID: 35491307 PMCID: PMC9588498 DOI: 10.1016/j.tcb.2022.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023]
Abstract
Lipid transfer proteins mediate nonvesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Recently, a new type of bridge-like lipid transfer protein has emerged; these proteins contain a long hydrophobic groove and can mediate bulk transport of lipids between organelles. Here, we review recent insights into the structure of these proteins and identify a repeating modular unit that we propose to name the repeating β-groove (RBG) domain. This new structural understanding conceptually unifies all the RBG domain-containing lipid transfer proteins as members of an RBG protein superfamily. We also examine the biological functions of these lipid transporters in normal physiology and disease and speculate on the evolutionary origins of RBG proteins in bacteria.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.
| |
Collapse
|
23
|
New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants (Basel) 2022; 11:antiox11091807. [PMID: 36139881 PMCID: PMC9495848 DOI: 10.3390/antiox11091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Selective regional iron accumulation is a hallmark of several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. The underlying mechanisms of neuronal iron dyshomeostasis have been studied, mainly in a gene-by-gene approach. However, recent high-content phenotypic screens using CRISPR/Cas9-based gene perturbations allow for the identification of new pathways that contribute to iron accumulation in neuronal cells. Herein, we perform a bioinformatic analysis of a CRISPR-based screening of lysosomal iron accumulation and the functional genomics of human neurons derived from induced pluripotent stem cells (iPSCs). Consistent with previous studies, we identified mitochondrial electron transport chain dysfunction as one of the main mechanisms triggering iron accumulation, although we substantially expanded the gene set causing this phenomenon, encompassing mitochondrial complexes I to IV, several associated assembly factors, and coenzyme Q biosynthetic enzymes. Similarly, the loss of numerous genes participating through the complete macroautophagic process elicit iron accumulation. As a novelty, we found that the impaired synthesis of glycophosphatidylinositol (GPI) and GPI-anchored protein trafficking also trigger iron accumulation in a cell-autonomous manner. Finally, the loss of critical components of the iron transporters trafficking machinery, including MON2 and PD-associated gene VPS35, also contribute to increased neuronal levels. Our analysis suggests that neuronal iron accumulation can arise from the dysfunction of an expanded, previously uncharacterized array of molecular pathways.
Collapse
|
24
|
Adlakha J, Hong Z, Li P, Reinisch KM. Structural and biochemical insights into lipid transport by VPS13 proteins. J Cell Biol 2022; 221:e202202030. [PMID: 35357422 PMCID: PMC8978259 DOI: 10.1083/jcb.202202030] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
VPS13 proteins are proposed to function at contact sites between organelles as bridges for lipids to move directionally and in bulk between organellar membranes. VPS13s are anchored between membranes via interactions with receptors, including both peripheral and integral membrane proteins. Here we present the crystal structure of VPS13s adaptor binding domain (VAB) complexed with a Pro-X-Pro peptide recognition motif present in one such receptor, the integral membrane protein Mcp1p, and show biochemically that other Pro-X-Pro motifs bind the VAB in the same site. We further demonstrate that Mcp1p and another integral membrane protein that interacts directly with human VPS13A, XK, are scramblases. This finding supports an emerging paradigm of a partnership between bulk lipid transport proteins and scramblases. Scramblases can re-equilibrate lipids between membrane leaflets as lipids are removed from or inserted into the cytosolic leaflet of donor and acceptor organelles, respectively, in the course of protein-mediated transport.
Collapse
Affiliation(s)
- Jyoti Adlakha
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD
| | - Zhouping Hong
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD
| | - PeiQi Li
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Karin M Reinisch
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
25
|
Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2115083119. [PMID: 35344438 PMCID: PMC9169118 DOI: 10.1073/pnas.2115083119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
Collapse
|
26
|
Melia TJ, Reinisch KM. A possible role for VPS13-family proteins in bulk lipid transfer, membrane expansion and organelle biogenesis. J Cell Sci 2022; 135:jcs259357. [PMID: 35267021 PMCID: PMC8976877 DOI: 10.1242/jcs.259357] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At organelle-organelle contact sites, proteins have long been known to facilitate the rapid movement of lipids. Classically, this lipid transport involves the extraction of single lipids into a hydrophobic pocket on a lipid transport protein. Recently, a new class of lipid transporter has been described with physical characteristics that suggest these proteins are likely to function differently. They possess long hydrophobic tracts that can bind many lipids at once and physically span the entire gulf between membranes at contact sites, suggesting that they may act as bridges to facilitate bulk lipid flow. Here, we review what has been learned regarding the structure and function of this class of lipid transporters, whose best characterized members are VPS13 and ATG2 proteins, and their apparent coordination with other lipid-mobilizing proteins on organelle membranes. We also discuss the prevailing hypothesis in the field, that this type of lipid transport may facilitate membrane expansion through the bulk delivery of lipids, as well as other emerging hypotheses and questions surrounding these novel lipid transport proteins.
Collapse
Affiliation(s)
- Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
27
|
Levine TP. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:251525642211343. [PMID: 36571082 PMCID: PMC7613979 DOI: 10.1177/25152564221134328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipid transfer between organelles requires proteins that shield the hydrophobic portions of lipids as they cross the cytoplasm. In the last decade a new structural form of lipid transfer protein (LTP) has been found: long hydrophobic grooves made of beta-sheet that bridge between organelles at membrane contact sites. Eukaryotes have five families of bridge-like LTPs: VPS13, ATG2, SHIP164, Hobbit and Tweek. These are unified into a single superfamily through their bridges being composed of just one domain, called the repeating beta groove (RBG) domain, which builds into rod shaped multimers with a hydrophobic-lined groove and hydrophilic exterior. Here, sequences and predicted structures of the RBG superfamily were analyzed in depth. Phylogenetics showed that the last eukaryotic common ancestor contained all five RBG proteins, with duplicated VPS13s. The current set of long RBG protein appears to have arisen in even earlier ancestors from shorter forms with 4 RBG domains. The extreme ends of most RBG proteins have amphipathic helices that might be an adaptation for direct or indirect bilayer interaction, although this has yet to be tested. The one exception to this is the C-terminus of SHIP164, which instead has a coiled-coil. Finally, the exterior surfaces of the RBG bridges are shown to have conserved residues along most of their length, indicating sites for partner interactions almost all of which are unknown. These findings can inform future cell biological and biochemical experiments.
Collapse
|
28
|
John Peter AT, Cheung NJ, Kornmann B. Csf1: A Putative Lipid Transport Protein Required for Homeoviscous Adaptation of the Lipidome. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221101974. [PMID: 37366504 PMCID: PMC10243558 DOI: 10.1177/25152564221101974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/28/2023]
Abstract
The non-vesicular transport of lipids between organelles mediated by lipid transport proteins (LTPs) is a key determinant of organelle biogenesis and function. Despite performing a vital function in organelle homeostasis, none of the LTP-encoding genes identified so far are truly essential, even in the simple genome of yeast, suggesting widespread redundancy. In line with this fact, it has been found that a number of LTPs have overlapping functions, making it challenging to assign unique roles for an individual LTP in lipid distribution. In our genetic screens under stringent conditions in which the distinct function of an LTP might become essential, we stumbled upon Csf1, a highly conserved protein with a Chorein-N motif found in other lipid transporters and unraveled a new function for Csf1 in lipid remodeling and homeoviscous adaptation of the lipidome. Here, we further speculate on the potential mechanisms of how the putative function of Csf1 in lipid transport could be intimately connected to its role in lipid remodeling across organelles.
Collapse
|