1
|
Hertz H, Blancas-Velazquez AS, Rath MF. The role of homeobox gene-encoded transcription factors in regulation of phototransduction: Implementing the primary pinealocyte culture as a photoreceptor model. J Pineal Res 2021; 71:e12753. [PMID: 34129741 DOI: 10.1111/jpi.12753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Homeobox genes encode transcription factors controlling development; however, a number of homeobox genes are expressed postnatally specifically in melatonin-producing pinealocytes of the pineal gland and photoreceptors of the retina along with transcripts devoted to melatonin synthesis and phototransduction. Homeobox genes regulate melatonin synthesis in pinealocytes, but some homeobox genes also seem to be involved in regulation of retinal phototransduction. Due to the lack of photoreceptor models, we here introduce the rat pinealocyte culture as an in vitro model for studying retinal phototransduction. Systematic qPCR analyses were performed on the rat retina and pineal gland in 24 hour in vivo series and on primary cultures of rat pinealocytes: All homeobox genes and melatonin synthesis components, as well as nine out of ten phototransduction genes, were readily detectable in all three experimental settings, confirming molecular similarity between cultured pinealocytes and in vivo retinal tissue. 24 hours circadian expression was mostly confined to transcripts in the pineal gland, including a novel rhythm in arrestin (Sag). Individual knockdown of the homeobox genes orthodenticle homeobox 2 (Otx2), cone-rod homeobox (Crx) and LIM homeobox 4 (Lhx4) in pinealocyte culture using siRNA resulted in specific downregulation of transcripts representing all levels of phototransduction; thus, all phototransduction genes studied in culture were affected by one or several siRNA treatments. Histological colocalization of homeobox and phototransduction transcripts in the rat retinal photoreceptor was confirmed by RNAscope in situ hybridization, thus suggesting that homeobox gene-encoded transcription factors control postnatal expression of phototransduction genes in the retinal photoreceptor.
Collapse
Affiliation(s)
- Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Liao ML, Peng WH, Kan D, Chien CL. Distribution patterns of the zebrafish neuronal intermediate filaments inaa and inab. J Neurosci Res 2018; 97:202-214. [PMID: 30387501 DOI: 10.1002/jnr.24347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 01/27/2023]
Abstract
It has been reported that the neuronal intermediate filament (IF) α-internexin may plays a role in the formation of the neuronal cytoskeleton during mammalian development. From a phylogenetic viewpoint, zebrafish express inaa and inab as homologs of mammalian α-internexin. However, the distribution patterns of the inaa and inab proteins throughout zebrafish development have not been well-characterized. We generated antibodies specific for zebrafish inaa and inab and analyzed the distribution of these two proteins in developing zebrafish. Inaa was identified in the major subdivisions of embryonic and larval brains as early as 1 day postfertilization (dpf), including the telencephalon, optic tectum, and cerebellum, and inab was also detected in the same regions from 3 dpf to the adult stage. Moreover, we demonstrated for the first time that inaa was distinctively expressed in the photoreceptor-like cells of the pineal gland, where inab was sparsely detected. Besides, the expression of inaa in male adult fish was found to be stable under different photoperiod conditions. Thus, we suggest that inaa is one of useful markers for studies of zebrafish cone photoreceptors not only in the retina but also in the pineal gland. In conclusion, we report that the distribution patterns of inaa and inab are phylogenetically conserved in the telencephalon, optic tectum, and cerebellum. Moreover, inaa and inab had different expression patterns in the pineal gland and retina during zebrafish development. Both inaa and inab are neuronal IFs and their functional roles may be different in various aspects of zebrafish neuronal development.
Collapse
Affiliation(s)
- Meng-Lin Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hau Peng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Medicine for International Student, College of Medicine, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
| | - Daphne Kan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hartley SW, Mullikin JC, Klein DC, Park M, Coon SL. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation. PLoS One 2016; 11:e0163590. [PMID: 27684375 PMCID: PMC5042479 DOI: 10.1371/journal.pone.0163590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 01/23/2023] Open
Abstract
Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome.
Collapse
Affiliation(s)
- Stephen W. Hartley
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail:
| | - James C. Mullikin
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - David C. Klein
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Morgan Park
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - NISC Comparative Sequencing Program
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Steven L. Coon
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| |
Collapse
|
5
|
Klein DC. The 2004 Aschoff/Pittendrigh Lecture: Theory of the Origin of the Pineal Gland— A Tale of Conflict and Resolution. J Biol Rhythms 2016; 19:264-79. [PMID: 15245646 DOI: 10.1177/0748730404267340] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A theory is presented that explains the evolution of the pinealocyte from the common ancestral photoreceptor of both the pinealocyte and retinal photoreceptor. Central to the hypothesis is the previously unrecognized conflict between the two chemistries that define these cells—melatonin synthesis and retinoid recycling. At the core of the conflict is the formation of adducts composed of two molecules of retinaldehyde and one molecule of serotonin, analogous to formation in the retina of the toxic bis-retinyl ethanolamine (A2E). The hypothesis argues that early in chordate evolution, at a point before the genes required for melatonin synthesis were acquired, retinaldehyde—which is essential for photon capture—was depleted by reacting with naturally occurring arylalkylamines (tyramine, serotonin, tryptamine, phenylethylamine) and xenobiotic arylalkylamines. This generated toxic bis-retinyl arylalkylamines (A2AAs). The acquisition of arylalkylamine N-acetyltransferase (AANAT) prevented this by N-acetylating the arylalkylamines. HydroxyindoleOmethyltransferase enhanced detoxification in the primitive photoreceptor by increasing the lipid solubility of serotonin and bis-retinyl serotonin. After the serotonin. melatonin pathway was established, the next step leading toward the pinealocyte was the evolution of a daily rhythm in melatonin and the capacity to recognize it as a signal of darkness. The shift in melatonin from metabolic garbage to information developed a pressure to improve the reliability of the melatonin signal, which in turn led to higher levels of serotonin in the photodetector. This generated the conflict between serotonin and retinaldehyde, which was resolved by the cellular segregation of the two chemistries. The result, in primates, is a pineal gland that does not detect light and a retinal photodetector that does not make melatonin. High levels of AANAT in the latter tissue might serve the same function AANAT had when first acquired— prevention of A2AA formation.
Collapse
Affiliation(s)
- David C Klein
- Section on Neuroendocrinology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA.
| |
Collapse
|
6
|
Rath MF, Rohde K, Klein DC, Møller M. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 2013; 38:1100-12. [PMID: 23076630 PMCID: PMC3570627 DOI: 10.1007/s11064-012-0906-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/19/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, Panum Institute 24.2, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | | | | | | |
Collapse
|
7
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
8
|
Abstract
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a approximately 24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed.
Collapse
Affiliation(s)
- David C Klein
- Department of Health and Human Services, Section on Neuroendocrinology, Office of the Scientific Director, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20893, USA.
| |
Collapse
|
9
|
Wiechmann AF, Summers JA. Circadian rhythms in the eye: The physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res 2008; 27:137-60. [DOI: 10.1016/j.preteyeres.2007.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
The ontogenic expressions of multiple vesicular glutamate transporters during postnatal development of rat pineal gland. Neuroscience 2007; 152:407-16. [PMID: 18291592 DOI: 10.1016/j.neuroscience.2007.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 11/18/2007] [Accepted: 12/21/2007] [Indexed: 11/20/2022]
Abstract
The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.
Collapse
|
11
|
Muñoz EM, Bailey MJ, Rath MF, Shi Q, Morin F, Coon SL, Møller M, Klein DC. NeuroD1: developmental expression and regulated genes in the rodent pineal gland. J Neurochem 2007; 102:887-99. [PMID: 17630985 DOI: 10.1111/j.1471-4159.2007.04605.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.
Collapse
Affiliation(s)
- Estela M Muñoz
- Section on Neuroendocrinology, Office of the Scientific Director, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rath MF, Morin F, Shi Q, Klein DC, Møller M. Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat. Exp Eye Res 2007; 85:65-73. [PMID: 17467693 DOI: 10.1016/j.exer.2007.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/06/2007] [Accepted: 02/26/2007] [Indexed: 02/05/2023]
Abstract
Otx2 and Crx are vertebrate orthologs of the orthodenticle family of homeobox genes, which are involved in retinal development. In this study, the temporal expression patterns of Otx2 and Crx in the rat retina during embryonic and postnatal stages of development were analyzed in detail. This confirmed the presence of Otx2 mRNA in both the embryonic retinal pigment epithelium and the developing neural retina. During development, the expression of Otx2 persists in the pigment epithelium, whereas Otx2 expression of the neural retina becomes progressively restricted to the outer nuclear layer and the outer part of the inner nuclear layer. Immunohistochemistry revealed that Otx2 protein is also present in cell bodies of the ganglion cell layer, which does not contain the Otx2 transcript, suggesting that Otx2 protein is synthesized in cell bodies of the bipolar neurons and then transported to and taken up by cells in the ganglion cell layer. Crx is also highly expressed in the outer nuclear layer starting at E17 and postnatally in the inner nuclear layer. The onset of expression of Crx lags behind that of Otx2 consistent with evidence that Otx2 activates Crx transcription. These expression patterns are consistent with evidence that Otx2 and Crx function during retinal development and extend the period of probable functionality to the adult. In this regard, these results provide an enhanced and expanded temporal and spatial framework for understanding the multiple roles of Otx2 and Crx in the developing and mature mammalian retina.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Falcón J, Besseau L, Sauzet S, Boeuf G. Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol Metab 2007; 18:81-8. [PMID: 17267239 DOI: 10.1016/j.tem.2007.01.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/08/2007] [Accepted: 01/19/2007] [Indexed: 11/28/2022]
Abstract
Melatonin, a hormonal output signal of vertebrate circadian clocks, contributes to synchronizing behaviors and neuroendocrine regulations with the daily and annual variations of the photoperiod. Conservation and diversity characterize the melatonin system: conservation because its pattern of production and synchronizing properties are a constant among vertebrates; and diversity because regulation of both its synthesis and modes of action have been profoundly modified during vertebrate evolution. Studies of the targets and modes of action of melatonin in fish, and their parallels in mammals, are of interest to our understanding of time-related neuroendocrine regulation and its evolution from fish to mammals, as well as for aquacultural purposes.
Collapse
Affiliation(s)
- Jack Falcón
- Laboratoire Aragó, UMR 7628/GDR2821, Université Pierre et Marie Curie (UPMC) and CNRS, B.P. 44, Avenue du Fontaulé, F-66651, Banyuls-sur-Mer Cedex, France.
| | | | | | | |
Collapse
|
14
|
Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 2004; 358:1679-700. [PMID: 14561326 PMCID: PMC1693265 DOI: 10.1098/rstb.2003.1303] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.
Collapse
Affiliation(s)
- Peter Ekström
- Institute of Cell and Organism Biology, Zoology Building, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden.
| | | |
Collapse
|
15
|
Foster RG, Provencio I, Bovee-Geurts PHM, DeGrip WJ. The photoreceptive capacity of the developing pineal gland and eye of the golden hamster (Mesocricetus auratus). J Neuroendocrinol 2003; 15:355-63. [PMID: 12622834 DOI: 10.1046/j.1365-2826.2003.01004.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anatomical and physiological studies have suggested that the pineal gland of neonatal mammals has a photoreceptive capacity. Using the golden hamster (Mesocricetus auratus) as our model, we applied biochemical approaches to look for a functional photopigment within the pineal during early development. Immunocytochemistry and enzyme-linked immunosorbent assay (ELISA) were used to localize and quantify opsin, and high-performance liquid chromatography (HPLC) to identify photopigment chromophore (11-cis and all-trans retinaldehyde) in the developing eye and pineal. For HPLC analysis, retinaldehydes were converted to their corresponding retinoid oximes. Eluted retinoids were identified by comparison with standard vitamin A1 retinoid oxime isomers on the basis of relative elution sequence and characteristic absorbance spectra. Both immunocytochemistry and ELISA suggested an increase in the opsin content of the pineal during the first week of life. In the eye, 11-cis retinaldehyde was first detected between days 3 and 5 after birth. In three separate extractions, and using a considerable excess of pineal tissue, we failed to identify chromophore within the pineal during the first week of postnatal development. The appearance of 11-cis retinaldehyde within the eye between postnatal days 3-5 is consistent with the hypothesis that retinol isomerase activity is coordinated with outer segment development. The failure to identify chromophore within the neonatal pineal suggests that this gland lacks a functional opsin-based photopigment. These data contradict physiological evidence suggesting that the neonatal pineal of mammals contains photoreceptors.
Collapse
Affiliation(s)
- R G Foster
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Imperial College London, Faculty of Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK.
| | | | | | | |
Collapse
|
16
|
Tosini G, Doyle S, Geusz M, Menaker M. Induction of photosensitivity in neonatal rat pineal gland. Proc Natl Acad Sci U S A 2000; 97:11540-4. [PMID: 11005846 PMCID: PMC17236 DOI: 10.1073/pnas.210248297] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pineal glands removed from neonatal rats at 5, 7, and 9 days of age and explanted into short-term culture, synthesized melatonin when stimulated with norepinephrine (NE); their melatonin synthesis could not be suppressed with bright white light. Dispersed pineal cell cultures or pineal explants prepared from 1-day-old neonates and held in culture for 7 or 9 days also synthesized melatonin when stimulated with NE, but in these cases melatonin synthesis was significantly suppressed by light, demonstrating that the pineals had become photosensitive while in culture. The development of photosensitivity in culture could be partially or completely abolished by the continuous presence of 1 or 10 microm of NE in the culture medium. The pineals of all nonmammalian vertebrates are photoreceptive, whereas those of mammals do not normally respond to light. We hypothesize that a mechanism to suppress pineal photosensitivity by using NE released from sympathetic nerve endings evolved early in the history of mammals.
Collapse
Affiliation(s)
- G Tosini
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
17
|
Scheithauer BW. Pathobiology of the pineal gland with emphasis on parenchymal tumors. Brain Tumor Pathol 1999; 16:1-9. [PMID: 10532417 DOI: 10.1007/bf02478895] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- B W Scheithauer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Abstract
Daily rhythms are a fundamental feature of all living organisms; most are synchronized by the 24 hr light/dark (LD) cycle. In most species, these rhythms are generated by a circadian system, and free run under constant conditions with a period close to 24 hr. To function properly the system needs a pacemaker or clock, an entrainment pathway to the clock, and one or more output signals. In vertebrates, the pineal hormone melatonin is one of these signals which functions as an internal time-keeping molecule. Its production is high at night and low during day. Evidence indicates that each melatonin producing cell of the pineal constitutes a circadian system per se in non-mammalian vertebrates. In addition to the melatonin generating system, they contain the clock as well as the photoreceptive unit. This is despite the fact that these cells have been profoundly modified from fish to birds. Modifications include a regression of the photoreceptive capacities, and of the ability to transmit a nervous message to the brain. The ultimate stage of this evolutionary process leads to the definitive loss of both the direct photosensitivity and the clock, as observed in the pineal of mammals. This review focuses on the functional properties of the cellular circadian clocks of non-mammalian vertebrates. How functions the clock? How is the photoreceptive unit linked to it and how is the clock linked to its output signal? These questions are addressed in light of past and recent data obtained in vertebrates, as well as invertebrates and unicellulars.
Collapse
Affiliation(s)
- J Falcón
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France.
| |
Collapse
|
19
|
Lerchl A, Nordhoff V, Gerding H. Expression of the gene for the retinal protein peripherin in the pineal gland of humans and Djungarian hamsters (Phodopus sungorus). Neurosci Lett 1998; 258:187-9. [PMID: 9885962 DOI: 10.1016/s0304-3940(98)00891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated whether the gene for peripherin, a protein previously considered to play only a role in the retina, may also be expressed in the pineal gland of both Djungarian hamsters (Phodopus sungorus) and humans. After extraction of mRNA from pooled pineal glands of hamsters and from one human pineal gland, mRNA was transcribed into cDNA followed by PCR amplification with specific primers. Clear signals were obtained at the expected sizes of the PCR products. An additional experiment in hamsters revealed that the peripherin gene is expressed throughout the entire 24-h period. Since peripherin is an important protein in the retina stabilizing the photoreceptor discs it is speculated that this protein might also play a structural role in the pineal gland.
Collapse
Affiliation(s)
- A Lerchl
- Institute of Reproductive Medicine, University of Münster, Germany
| | | | | |
Collapse
|
20
|
Marcus DM, Brooks SE, Leff G, McCormick R, Thompson T, Anfinson S, Lasudry J, Albert DM. Trilateral retinoblastoma: insights into histogenesis and management. Surv Ophthalmol 1998; 43:59-70. [PMID: 9716194 DOI: 10.1016/s0039-6257(98)00019-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trilateral retinoblastoma (TRb) is a syndrome involving midline intracranial malignancies in children with the heritable form of retinoblastoma. All cases of TRb reported from 1971 to 1997 were reviewed. The histopathologic findings, clinical features, treatment modalities, and survival rates from 80 cases were evaluated. Histopathologic findings from intracranial malignancies demonstrated primitive neuroectodermal tumors in 61.5% of cases. Various degrees of neuronal or photoreceptor differentiation were seen in the other 38.5% of cases. Autopsy, histopathologic, and radiologic examinations did not show a more definitive site of origin of these intracranial tumors, although "pinealoblastoma" was often the diagnosis reported. These findings, together with analysis of the histopathologic similarities among human primitive neuroectodermal tumors, pinealoblastoma, retinoblastoma, and ependymoblastoma, suggest that TRb more likely arises from a germinal layer of predisposed primitive subependymal neuroblasts that are not necessarily destined for pineal or photoreceptor differentiation. Trilateral tumors have also been found in transgenic mice expressing the simian virus 40 T-antigen. Transgenic murine intracranial tumors are primitive neuroectodermal tumors arising from the subependymal layer. Transgenic mice with the murine interphotoreceptor cell binding protein promoter and simian virus 40 T-antigen also develop pineal tumors. Trilateral retinoblastoma is usually fatal, with an average survival time of 11.2 months. Therapies include radiation, systemic chemotherapy, intrathecal chemotherapy, and surgical resection/craniotomy in combination with radiation and/or chemotherapy. Survival may be prolonged with combination chemotherapy (24.6 months) and if neuroradiologic screening identifies TRb before symptoms are present (23.5 months). Recent success with platinum-based chemoreduction of intraocular retinoblastoma may indicate a similar role for platinum-based chemotherapy in the treatment of TRb. Routine central nervous system imaging should be considered in the management of TRb.
Collapse
Affiliation(s)
- D M Marcus
- Department of Ophthalmology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci 1997. [PMID: 9334383 DOI: 10.1523/jneurosci.17-21-08074.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas the pineal organs of lower vertebrates have been shown to be photosensitive, photic regulation of pineal function in adult mammals is thought be mediated entirely by retinal photoreceptors. Extraretinal regulation of pineal function has been reported in neonatal rodents, although both the site and molecular basis of extraretinal photoreception have remained obscure. In this study we examine the developmental expression pattern of all of the principal components of retinal phototransduction in rat pineal via cRNA in situ hybridization. All of the components needed to reconstitute a functional phototransduction pathway are expressed in the majority of neonatal pinealocytes, although the expression levels of many of these genes decline dramatically during development. These findings strongly support the theory that the neonatal rat pineal itself is photosensitive. In addition, we observe in neonatal pinealocytes the expression of both rod-specific and cone-specific phototransduction components, implying the existence of functionally different subtypes of pinealocytes that express varying combinations of phototransduction enzymes.
Collapse
|
22
|
Blackshaw S, Snyder SH. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci 1997; 17:8074-82. [PMID: 9334383 PMCID: PMC6573733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Whereas the pineal organs of lower vertebrates have been shown to be photosensitive, photic regulation of pineal function in adult mammals is thought be mediated entirely by retinal photoreceptors. Extraretinal regulation of pineal function has been reported in neonatal rodents, although both the site and molecular basis of extraretinal photoreception have remained obscure. In this study we examine the developmental expression pattern of all of the principal components of retinal phototransduction in rat pineal via cRNA in situ hybridization. All of the components needed to reconstitute a functional phototransduction pathway are expressed in the majority of neonatal pinealocytes, although the expression levels of many of these genes decline dramatically during development. These findings strongly support the theory that the neonatal rat pineal itself is photosensitive. In addition, we observe in neonatal pinealocytes the expression of both rod-specific and cone-specific phototransduction components, implying the existence of functionally different subtypes of pinealocytes that express varying combinations of phototransduction enzymes.
Collapse
Affiliation(s)
- S Blackshaw
- Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
23
|
Sherman PM, Sun H, Macke JP, Williams J, Smallwood PM, Nathans J. Identification and characterization of a conserved family of protein serine/threonine phosphatases homologous to Drosophila retinal degeneration C. Proc Natl Acad Sci U S A 1997; 94:11639-44. [PMID: 9326663 PMCID: PMC23563 DOI: 10.1073/pnas.94.21.11639] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.
Collapse
Affiliation(s)
- P M Sherman
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhao X, Haeseleer F, Fariss RN, Huang J, Baehr W, Milam AH, Palczewski K. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci 1997; 14:225-32. [PMID: 9147475 DOI: 10.1017/s0952523800011366] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several retinal photoreceptor proteins involved in phototransduction have also been found in the mammalian pineal. This study demonstrates that rat and human pineals express protein kinases that are identical to the corresponding rod photoreceptor rhodopsin kinases. The deduced amino acid sequence of rat and human rhodopsin kinases have 84% sequence similarity to the earlier reported sequence of the bovine retinal enzyme, with complete conservation of the topological regions containing the position of the catalytic domain and sites of posttranslational modifications. Rat pineal also expresses rod opsin and putative blue cone opsin. Using immunocytochemistry, rod opsin and rhodopsin kinase were found to be co-localized in pinealocytes in the human tissue. These data demonstrate that the mammalian pineal contains light-sensitive opsins and a kinase involved in their inactivation. These findings correlate with an earlier report that neonatal rats show extraretinal light sensitivity, and suggest that a functional photoreceptive system may be present in the adult mammalian pineal.
Collapse
Affiliation(s)
- X Zhao
- Department of Ophthalmology, University of Washington, Seattle 98195-6485, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Gonz�lez MMDC, Affanni JM. Cells of the photoreceptor line in the pineal organ of an adult marsupial, Didelphis albiventris. Cell Tissue Res 1995. [DOI: 10.1007/bf00319126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Jouvet A, Fèvre-Montange M, Besançon R, Derrington E, Saint-Pierre G, Belin MF, Pialat J, Lapras C. Structural and ultrastructural characteristics of human pineal gland, and pineal parenchymal tumors. Acta Neuropathol 1994; 88:334-48. [PMID: 7839826 DOI: 10.1007/bf00310377] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied 20 pineal parenchymal tumors (PPT) and 4 normal or cystic pineal glands both by light and electron microscopy and immunohistochemistry with antibodies against glial markers [glial fibrillary acidic protein (GFAP) and protein S-100] or neural/neuroendocrine markers [neurofilaments (NF), synaptophysin and chromogranin A]. Light microscopy revealed the cellular organization of pinealocytes in the normal gland and in different morphological types of pineal tumors (typical pineocytomas, PPT with intermediate differentiation, mixed PPT exhibiting elements of both pineocytoma and pineoblastoma and pineoblastomas). Immunohistochemistry showed the presence of GFAP and protein S-100 in interstitial cells in non-neoplastic pineal gland. Cell processes were labeled with anti-synaptophysin and anti-NF antibodies. No immunoreactivity was found for chromogranin A in non-neoplastic pineal gland. In pineocytomas, GFAP and protein S-100 were observed in interstitial cells. Synaptophysin and NF were present in the large rosettes of pineocytomas. Synaptophysin, NF and chromogranin A were present in pineocytomas with a lobular arrangement of cells. Anti-chromogranin A immunoreactivity was also seen in lobular areas of some PPT with intermediate differentiation. Analysis of normal human pineal gland by electron microscopy showed the presence of vesicle-crowned rodlets (VCR or synaptic ribbons), fibrous filaments (F), paired twisted filaments but few dense-core vesicles (DCV) in normal pinealocytes. Tumoral pineal cells appeared to differentiate either towards a neurosensory pathway characterized by the presence of sensory cells elements (VCR and F), or towards a neuroendocrine pathway, with the occurrence of many DCV. Immunogold labeling demonstrated the presence of chromogranin A in neurosecretory granules.
Collapse
Affiliation(s)
- A Jouvet
- Hôpital Neurologique, BP Lyon Montchat, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Roseboom PH, Weller JL, Babila T, Aitken A, Sellers LA, Moffett JR, Namboodiri MA, Klein DC. Cloning and characterization of the epsilon and zeta isoforms of the 14-3-3 proteins. DNA Cell Biol 1994; 13:629-40. [PMID: 8024705 DOI: 10.1089/dna.1994.13.629] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two prominent proteins (30 and 33 kD) in a purified preparation of the sheep pineal gland were studied. Amino acid analysis of tryptic peptides indicated that the 33-kD protein was the epsilon isoform of the 14-3-3 family of proteins, and that the 30-kD protein was the zeta isoform. The sheep pineal gland was found to have six other 14-3-3 isoforms in addition to the epsilon and zeta, suggesting that copurification of the epsilon and zeta forms may reflect the existence of homo- or heterodimers comprised of these isoforms. To characterize 14-3-3 proteins further in the pineal gland, the full sequence of the epsilon isoform and a partial sequence of the zeta isoform were cloned from a rat pineal cDNA library and are reported here. Tissue distribution studies using Western blot analysis revealed that rat pineal and retina have levels of 14-3-3 protein similar to those found in brain, and that relatively low levels occur in other tissues. This investigation also revealed the epsilon isoform was present at high levels in the rat pineal gland early in development and decreased steadily thereafter and that 30-kD isoforms exhibited the inverse developmental pattern.
Collapse
Affiliation(s)
- P H Roseboom
- Section on Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Berthoud VM, Sáez JC. Changes in connexin43, the gap junction protein of astrocytes, during development of the rat pineal gland. J Pineal Res 1993; 14:67-72. [PMID: 8391576 DOI: 10.1111/j.1600-079x.1993.tb00487.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The abundance of gap junctions between rat pineal astrocytes formed by connexin43 (Cx43) was studied during development. Levels and distribution of Cx43 were measured by immunoblotting and indirect immunofluorescence, respectively. The amount of Cx43 in cells located within the gland was low until about the 7th postnatal day and increased to adult values between the 14th and 21st days postpartum. Although astrocytes, recognized by their vimentin immunoreactivity, were scarce before birth, they were abundant by the 7th postnatal day suggesting that the low levels of Cx43 found at this age corresponded to a low expression of this protein. Localization of the immunoreactivity to Cx43 and vimentin showed a close correlation, indicating that mature or immature pineal astrocytes form gap junctions made of Cx43. Since Cx43 levels attained their adult values at about the time the innervation and the functional state of the gland reached maturity (2-3 weeks after birth), it is proposed that astrocyte gap junctions are involved in the function of the adult rat pineal gland.
Collapse
Affiliation(s)
- V M Berthoud
- Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY 10461
| | | |
Collapse
|
29
|
Abstract
The repertoire of differentiating potency of mammalian and avian pineal cells has been examined utilizing cell culture technique. Skeletal muscle fibers are differentiated from pineal cells of the rat under the usual culture condition and from those of quail under hypertonic conditions. Myogenesis of pineal cells may be explained from the ontogeny of the pineal body. Anlagen of a pineal body are situated in bilateral cephalic neural folds, which also supply multipotent neural crest cells. In some conditions, almost all quail pineal cells are able to differentiate into pigmented epithelial cells and/or lens cells. Opsin containing cells found in culture of rat pineal cells may be in a similar category reflecting the "third eye": the phylogenetic ancestor of the pineal body of avian and mammalian species. Neuron-like cells have also been reported and neuronal morphology has been intensified under the effect of testicular hyaluronidase. The cytodifferentiation described above is suggested to be different expressions of a single type of progenitor cells in the pineal body. In relation to multipotentiality of pineal cells, the original differentiating state of pineal cells is interesting; it has been found that tyrosinase is expressed from the beginning of pineal formation and that its expression is stage-specific (during embryonic period) and site-specific (predominance in the dorsal half of the pineal body and in the apical cytoplasm of the pineal cell). In the 8 day quail embryo used for culture studies, three differentiating states as to tyrosinase are noticed. However, the distinction may be apparent, as even the cells negative in tyrosinase in this stage are still ready to express tyrosinase in the suitable culture condition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Watanabe
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
30
|
Vigh-Teichmann I, Vigh B. Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ: A comparison with retina and submammalian pineal organs. Microsc Res Tech 1992; 21:227-41. [PMID: 1351408 DOI: 10.1002/jemt.1070210306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Morphologically the mammalian pineal organ is a part of the diencephalon. It represents a neural tissue histologically ("pineal nervous tissue") and is dissimilar to endocrine glands. Submammalian pinealocytes resemble the photoreceptor cells of the retina, and some of their cytologic characteristics are preserved in the mammalian pinealocytes together with compounds demonstrable by cyto- and immunocytochemistry and participating in photochemical transduction. In our opinion, the main trend of today's literature on pineal functions--only considering the organ as a common endocrine gland--deviates from this structural and histochemical basis. In mammals, similar to the lower vertebrates, the pinealocytes have a sensory cilium developed to a different extent. The axonic processes of pinealocytes form ribbon-containing synapses on secondary pineal neurons, and/or neurohormonal terminals on the basal lamina of the surface of the pineal nervous tissue facing the perivascular spaces. Ribbon-containing axo-dendritic synapses were found in the rat, cat, guinea pig, ferret, and hedgehog. In the cat, we found GABA-immunoreactive interneurons, while the secondary nerve cells, whose axons enter the habenular commissure, were GABA-immunonegative. GABA-immunogold-labeled axons run between pinealocytes and form axo-dendritic synapses on intrapineal neurons. There is a similarity between the light and electron microscopic localization of Ca ions in the mammalian and submammalian pineal organs and retina of various vertebrates. Calcium pyroantimonate deposits--showing the presence of Ca ions--were found in the outer segments of the pineal and retinal photoreceptors of the frog. In the rat and human pineal organ, calcium accumulated on the plasmalemma of pinealocytes and intercellularly among pinealocytes. The formation of pineal concrements in mammals may be connected to the high need for Ca exchange of the pinealocytes for their supposed receptor and effector functions.
Collapse
Affiliation(s)
- I Vigh-Teichmann
- Neuroendocrine Section, Hungarian Academy of Sciences, Semmelweis University Medical School, Budapest
| | | |
Collapse
|
31
|
Araki M. Cellular mechanism for norepinephrine suppression of pineal photoreceptor-like cell differentiation in rat pineal cultures. Dev Biol 1992; 149:440-7. [PMID: 1730393 DOI: 10.1016/0012-1606(92)90298-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the rat pineal is an endocrine organ and has no photoreceptor activity, pineals from neonatal rats contain cells that can differentiate into rod-like cells with rhodopsin immunoreactivity (Rho-I), when cultured in vitro. Norepinephrine (NE) reduces the number of Rho-I cells in a dose-dependent manner and has a considerable effect even at 20 nM. When cultured in vitro, pineals removed up to Postnatal Day 4 differentiated into Rho-I cells to the same extent as did those removed at Day 1 (neonatal), but those removed at Day 5 showed a sharp reduction in the number of differentiated Rho-I cells. This suggests that either pineal cells in situ lose their potential to differentiate by Day 5 or the subpopulation of cells involved normally disappears in pineals older than Day 5. The effect of NE was examined in cultures of neonatal pineals by administering it for 1 or 2 days at different stages during a 9-day culture period. NE was most effective when present in the culture medium at an early culture phase and was not efficacious if present only later than Culture Day 7. This indicates that presumptive pineal photoreceptors may become sensitive to NE only for a limited period and that once they are exposed to NE within this period they are irreversibly affected, possibly to degenerate. These cells are similarly and severely affected by potassium ion concentrations as low as 15 mM, suggesting that NE may act at the adrenoreceptor to modify the membrane properties. Serotonin-immunoreactive cells, another cell type (endocrine) found in the cultures, appeared to be regulated by NE by a separate mechanism. NE suppresses process extension by serotonin cells in a reversible manner, and KCl does not have this effect. These findings further evidence that neurotransmitters may have essential roles, other than the transmission of signals, in modulating the developing nervous system.
Collapse
Affiliation(s)
- M Araki
- Department of Anatomy, Jichi Medical School, Tochigi, Japan
| |
Collapse
|
32
|
Korf HW, Wicht H. Receptor and effector mechanisms in the pineal organ. PROGRESS IN BRAIN RESEARCH 1992; 91:285-97. [PMID: 1410411 DOI: 10.1016/s0079-6123(08)62345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- H W Korf
- Department of Neurobiology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | |
Collapse
|
33
|
Kleinert R. Immunohistochemical characterization of primitive neuroectodermal tumors and their possible relationship to the stepwise ontogenetic development of the central nervous system. 2. Tumor studies. Acta Neuropathol 1991; 82:508-15. [PMID: 1664631 DOI: 10.1007/bf00293386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thirty-five selected intracranial tumors qualifying as primitive neuroectodermal tumors (PNETs) were investigated; these included medulloblastomas, cerebral neuroblastomas, pinealoblastomas, retinoblastomas, polar spongioblastomas, ependymoblastomas. For control purposes 11 tumors, including glioblastomas (small cell, spongioblastic variants), one anaplastic astrocytoma (astroblastic component), anaplastic oligo-astrocytomas, gangliogliomas, one primary melanoblastoma, and one pineal germinoma, were also studied. Six neuronal markers, i.e., synaptophysin, chromogranin A, neuron-specific enolase (NSE), neurofilament protein (NFP) (160 kDa, 200 kDa, 70 and 200 kDa), and six other markers (glial fibrillary acidic protein, S-100 protein, vimentin, myoglobin, desmin, cytokeratin) were investigated immunohistochemically. A certain recapitulation of the ontogenetic development of neuronal differentiation in PNETs is given by the fact that chromogranin A immunoreactivity can regularly be seen already in poorly differentiated neurons and synaptophysin in well-differentiated ones. Immunostaining for NFPs showed different results depending on the subunit investigated. NSE reaction gave different results even within the single tumor groups. This study is, to the best of our knowledge, the first attempt to evaluate and compare, by combined morphological and immunohistochemical methods, PNETs without and with different stages of cellular differentiation with the stepwise differentiation of the human embryonic neuroectoderm.
Collapse
Affiliation(s)
- R Kleinert
- Laboratory of Neuropathology, University of Graz, School of Medicine, Austria
| |
Collapse
|
34
|
Hurwitz RL, Bogenmann E, Font RL, Holcombe V, Clark D. Expression of the functional cone phototransduction cascade in retinoblastoma. J Clin Invest 1990; 85:1872-8. [PMID: 2161431 PMCID: PMC296653 DOI: 10.1172/jci114648] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinoblastoma is a malignant intraocular tumor that primarily affects small children. These tumors are primitive neuroectodermal malignancies, however some of them show morphologic evidence of differentiation into photoreceptors. Phototransduction cascades are a series of biochemical reactions that convert a photon of light into a neural impulse in rods and cones. The components of these cascades are uniquely expressed in photoreceptors and, although functionally similar, distinct components of these cascades are expressed in rods and cones. Using HPLC anion exchange chromatography, Western blot analysis, and specific monoclonal and polyclonal antibodies, we found that the cone but not the rod cGMP phosphodiesterase is functionally expressed in all six primary retinoblastomas examined and in three continuous retinoblastoma cell lines. Morphologic evidence of differentiation did not correlate with the expression of the enzyme. Furthermore, GTP analogues could activate the phosphodiesterase activity suggesting that an intact phototransduction cascade is present in the tumors. The presence of the cone phototransduction cascade in retinoblastoma confirms that this tumor has biochemically differentiated along the cone cell lineage.
Collapse
Affiliation(s)
- R L Hurwitz
- Department of Pediatrics, College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
35
|
Torres G, Lytle LD. Light affects neonatal rat pineal gland N-acetyltransferase activity by an extra-retinal mechanism. J Neural Transm (Vienna) 1990; 80:67-77. [PMID: 2306342 DOI: 10.1007/bf01245023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To determine whether extra-retinal mechanisms mediate photoperiodic changes in neonatal rat pineal gland N-acetyltransferase activity, 4-day-old intact or bilateral orbital enucleated rats were killed during the dark phase of the lighting cycle, either in darkness or following 4 hr exposure to fluorescent light. Light suppressed the high nighttime N-acetyltransferase activity equally in intact and enucleated pups. Subsequent studies showed that at least 0.5 hr exposure and nocturnal illuminances of 109 microW/cm2 or greater were required to cause statistically significant reductions in the activity of the enzyme in 4-day-old rats. Taken together, these data indicate that relatively intense environmental light can affect neonatal rat pineal gland biochemistry via extraretinal mechanisms.
Collapse
Affiliation(s)
- G Torres
- Department of Psychology, University of California, Santa Barbara
| | | |
Collapse
|
36
|
Calvo J, Boya J, García-Mauriño JE, Lopez-Carbonell A. Postnatal development of the dog pineal gland: electron microscopy. J Pineal Res 1990; 8:245-54. [PMID: 2380907 DOI: 10.1111/j.1600-079x.1990.tb00684.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ultrastructure of the dog pineal gland from the first postnatal day to the seventh month is described. In the first postnatal stages, pineal parenchyma only shows immature proliferative cells with abundant cytoplasmic glycogen. Nerve fibers are seen in the pineal connective tissue spaces. The differentiation of the dog pineal cell types begins in the first postnatal week. Both pinealocytes and pigmented cells are first seen on the fourth postnatal day. The pineal astrocytes are observed on the tenth day. Immature cells are still found in the pineal gland of 1 mo-old dogs. The differentiation of the dog pineal cell types is completed by the second postnatal month.
Collapse
Affiliation(s)
- J Calvo
- Department of Histology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Palczewski K, Carruth ME, Adamus G, McDowell JH, Hargrave PA. Molecular, enzymatic and functional properties of rhodopsin kinase from rat pineal gland. Vision Res 1990; 30:1129-37. [PMID: 2402884 DOI: 10.1016/0042-6989(90)90170-p] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhodopsin kinase activity from rat pineal gland and from rat retina are indistinguishable, based upon determination of a variety of enzymatic and molecular properties. Both activities are independent of calcium, cyclic nucleotides, and calmodulin. Both are activated by spermine and inhibited by adenosine and some rhodopsin kinase specific adenosine derivatives such as sangivamycin. The Km's for rhodopsin, ATP, and GTP are indistinguishable for the protein kinase in extracts from the retina and from the pineal gland. The apparent molecular weight of the kinase from both sources, as determined by gel filtration and autoradiography of the 32P-labeled autophosphorylated kinase, is about 70 kDa. Rhodopsin kinase activity from pineal binds in a light-dependent manner to rhodopsin in rod outer segments as does the enzyme from retina. Monoclonal antibodies against bovine rhodopsin were used in an immunochemical study that identified a rhodopsin-immunoreactive protein in rat pineal gland and retina. Using an ELISA we demonstrated the presence of a rhodopsin-immunoreactive protein in rat pineal gland equivalent to 0.075 pmol rhodopsin per gland. Frog pineal organ (Rana catesbiana) contains 33 times more of this rhodopsin-like protein than does rat pineal gland.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, University of Florida, Gainesville 32610-0284
| | | | | | | | | |
Collapse
|
38
|
Foster RG, Timmers AM, Schalken JJ, De Grip WJ. A comparison of some photoreceptor characteristics in the pineal and retina. II. The Djungarian hamster (Phodopus sungorus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1989; 165:565-72. [PMID: 2527978 DOI: 10.1007/bf00611242] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rod-specific antiserum was used to immunolabel elements within the retina and pineal of the adult Djungarian hamster and Welsh Mountain sheep. In the retina immunostaining was localized to the outer segments and perikarya of photoreceptor cells, while in the pineal limited numbers of labelled pinealocytes were scattered throughout the gland. An enzyme-linked immunosorbent assay (ELISA) was then used to obtain a quantitative measure of rod opsin in total eye and pineal extracts from the Djungarian hamster. Total rod opsin (+/- SEM) in the eye was measured by absorbance spectroscopy (1.88 +/- 0.10 nmoles opsin/eye) and by using the ELISA (1.75 +/- 0.02 nmoles opsin/eye). The opsin content from a total of 56 pineals gave a mean value of 0.34 +/- 0.01 pmoles opsin/pineal. Since a functional photopigment should be coupled in a 1:1 ratio to a chromophore, we investigated whether we could identify 11-cis and/or all-trans retinaldehydes in the pineal extracts by quantitative extraction and HPLC analysis as the oximes. No evidence of 11-cis or all-trans retinaloxime could be found, the chromatograms were indistinguishable from those produced by extracts of cortical brain tissue. We conclude that the opsin present within the adult hamster pineal is not coupled to the common vertebrate retinaldehyde chromophore, and as a result, is unlikely to be part of a functional photopigment.
Collapse
Affiliation(s)
- R G Foster
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | | | |
Collapse
|
39
|
Donoso LA, Shields CL, Lee EY. Immunohistochemistry of retinoblastoma. A review. OPHTHALMIC PAEDIATRICS AND GENETICS 1989; 10:3-32. [PMID: 2662094 DOI: 10.3109/13816818909083770] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Various studies which relate to the immunohistochemical identification of neuronal, glial, carbohydrate and nucleic acid associated antigens in retinoblastoma will be reviewed. The majority of these studies appear to support the concept that retinoblastomas arise, in situ, from neuron committed cells and in some cases specifically into photoreceptor-like cells. In selected cases, however, glial cell differentiation may be a feature of the tumor. In addition, the molecular biology of the retinoblastoma gene and the immunohistochemical characterization of its gene product will be discussed.
Collapse
Affiliation(s)
- L A Donoso
- Retina Service, Wills Eye Hospital, Philadelphia
| | | | | |
Collapse
|
40
|
Torres G, Lytle LD. Extraretinal mechanisms mediate light-induced changes in neonatal rat pineal gland N-acetyltransferase activity. J Pineal Res 1989; 7:211-20. [PMID: 2810019 DOI: 10.1111/j.1600-079x.1989.tb00445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nocturnal light-induced changes in pineal gland N-acetyltransferase activity were investigated in intact or enucleated 4-, 6-, or 8-day-old maternally isolated rats maintained at different ambient temperatures. Nighttime enzyme activity was increased markedly in rats maintained in 23 degrees C compared to 35 degrees C environments. Four hours of nocturnal light significantly reduced N-acetyltransferase activity in intact rats at all ages studied when the animals were maintained at 35 degrees C. Shorter duration (1 min) nocturnal light reduced N-acetyltransferase activity in intact rats 6 days of age. However, the enzyme activity suppression observed after the 4 hr of nocturnal light was still present in 4-day-old rats (but not older animals) even when the younger animals had been made blind by bilateral orbital enucleation. Taken together, these data suggest that an extraretinal mechanism may mediate light-induced changes in some aspects of pineal gland indoleamine biochemistry in newborn rats.
Collapse
Affiliation(s)
- G Torres
- Department of Psychology, University of California, Santa Barbara
| | | |
Collapse
|
41
|
Abstract
Changes in immunoreactivity in rat pineal gland were investigated in S-antigen (S-Ag)-induced pinealitis. Anti-S antibodies were used to study the accessibility of pathogenic epitopes in the organ, and phosphatidylinositol 4,5-bisphospate (PI[4,5]P2) antibodies were chosen to study changes in functional phospholipid in membranes. Control pineal gland (without inflammation) did not show much reactivity toward these antibodies. Immunoreactivity toward both antibodies was markedly increased throughout the organ at the peak of inflammation and decreased almost to control level in the postinflammatory stage. The rise and fall of immunoreactivity were attributed to changes in the accessibility of antigenic sites rather than changes in the amounts of S-Ag and P(4,5)P2. The transient enhancement in immunoreactivity, probably consequential to tissue damage, suggests that the pineal gland, unlike the retinal photoreceptors, is capable of quick repair of tissue.
Collapse
Affiliation(s)
- N D Das
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | | | | |
Collapse
|
42
|
Araki M, Watanabe K, Tokunaga F, Nonaka T. Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat. CELL DIFFERENTIATION AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DEVELOPMENTAL BIOLOGISTS 1988; 25:155-63. [PMID: 2974750 DOI: 10.1016/0922-3371(88)90008-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pineal glands of newborn rats were dissociated and maintained under cell culture conditions. The phenotypic expression of both photoreceptor and endocrine cell properties was investigated using immunohistochemical techniques (specific antibodies against opsin or serotonin). After one week in culture, a number of small round cells appeared on top of a sheet of flat epithelium. Among those cells, opsin-like immunoreactive cells were observed. These cells showed a neuron-like morphology with neuritic processes and often formed rosettes. Immunoreactivity was found on the plasma membrane of both the soma and cell processes. Serotonin-like immunoreactive cells were also differentiated in culture with two different morphological types of cells being found. One type resembled cultured serotonin-containing amacrine cells of the retina, and the other type had a flat, polygonal shape similar to that of pinealocytes. Both types of immunoreactive cells possessed fine neuritic processes. These results indicated that cell culture of rat pineal gland cells allowed expression of some properties, such as opsin synthesis and neuron-like morphology with long neuritic processes, that were not expressed in the intact rat pineal gland.
Collapse
Affiliation(s)
- M Araki
- Department of Anatomy, Jichi Medical School, Tochigi, Japan
| | | | | | | |
Collapse
|
43
|
Mochizuki M, Kuwabara T, Gery I. Effects of continuous light exposure on the rat retina and pineal gland. Graefes Arch Clin Exp Ophthalmol 1988; 226:346-52. [PMID: 3262557 DOI: 10.1007/bf02172965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We examined the effects of intense continuous light (400 ftc for 10 days) on the morphology and immunoreactivity of the rat retina and pineal gland. The light treatment caused severe degeneration in the retina, with loss of most photoreceptor cells, and produced a marked decrease in S-antigen immunoreactivity in this organ. Unlike the retina, the light treatment had minimal effects on the histological structure of the pineal gland. However, pineal glands of light-treated rats exhibited a substantial reduction in their S-antigen immunoactivity, as demonstrated immunohistochemically and quantitatively verified by the rocket immunoelectrophoresis technique: pineal glands of light exposed rats had approximately two-thirds of the S-antigen immunoactivity of the untreated controls. Light treatment was also found to reduce both uveoretinitis and pinealitis in rats immunized with S-antigen. Yet pinealitis was not affected by light exposure in rats, as they were enucleated before treatment. This study thus provides new information to support the notion that the mammalian pineal gland is directly associated with light detection by the retina.
Collapse
Affiliation(s)
- M Mochizuki
- Department of Ophthalmology, Tokyo University Branch Hospital, Japan
| | | | | |
Collapse
|
44
|
Abstract
The development of photoreceptors and two putative neurotransmitter systems in the pineal organ and retina was studied during embryogenesis in the three-spined stickleback Gasterosteus aculeatus L. The investigation was performed by aid of immunocytochemistry using well characterized antisera to the retinal proteins alpha-transducin (TD alpha) and S-antigen (SA) (photoreceptor-markers), antisera against L-glutamic acid decarboxylase (GAD), gamma-aminobutyric acid (GABA), choline-O-acetyltransferase (ChAT) and with acetylcholinesterase (AChE) histochemistry (neurotransmitter-markers). It was possible to set up the following developmental time-table concerning the first appearance of positive immuno- and enzyme-reactive cells in the pineal organ and retina: I AChE-activity and TD alpha- and SA-immunoreactive cells in the pineal organ; II GAD- and GABA-immunoreactive cells in the pineal organ and retina; ChAT immunoreactivity and AChE activity in the retina; III hatching; IV SA-immunoreactive cells in the retina. The obtained results provide good evidence that while photoreceptor cells develop much earlier in the pineal organ than in the retina, neurons develop simultaneously in the pineal organ and retina.
Collapse
Affiliation(s)
- T Ostholm
- Department of Zoology, University of Lund, Sweden
| | | | | | | |
Collapse
|
45
|
Bhatnagar KP. Ultrastructure of the pineal body of the common vampire bat, Desmodus rotundus. THE AMERICAN JOURNAL OF ANATOMY 1988; 181:163-78. [PMID: 3369358 DOI: 10.1002/aja.1001810206] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The type AB pineal body of the common vampire bat, Desmodus rotundus, was recessed and lobulated, was extensively vascularized and intimately related to great veins, and was unassociated with the epithalamic region. The habenular and the posterior commissures coursed anteriorly and were unassociated with the pineal. The saccular suprapineal recess of the third ventricle extended dorsally juxtaposed to the pineal body. These anatomical features are likely to make pinealectomies in the vampire more difficult to manage. The pineal parenchyma consisted of light pinealocytes surrounded by canaliculi of various sizes, often transmitting unmyelinated nerve fibers and glial processes. Desmosomes were common. The pinealocyte nuclei were large and highly infolded; characteristic cytoplasmic constituents included abundant dilated Golgi complexes associated with clear vesicles, numerous polyribosomes, few single cisternae of ribosome-studded rough endoplasmic reticulum, mitochondria, and occasional multivesicular bodies and lysosomes. Almost all pinealocytes exhibited centrioles and some, in addition, displayed basal bodies but rarely ciliary shafts. A conspicuous feature of the pinealocyte cytoplasm was the presence of branched bundles of intermediate filaments, especially in the perinuclear zone. Siderotic macrophages, lipofuscin-pigment-containing phagocytic cells, mast cells, myelin bodies, and both fenestrated and continuous capillaries were present. The perivascular compartment was densely packed with unmyelinated nerve bundles containing small to large fibers exhibiting axoaxonic densities. Other constituents of the perivascular compartment were club-shaped pinealocyte processes filled with clear vesicles, microtubules, an occasional mitochondrion, glial processes, and collagen fibers. "Synapselike" contacts were observed between the axons and pinealocyte processes. Abundant pinocytotic vesicles in the capillary endothelium indicated active pinocytosis. Myelinated nerve fibers were lacking. The pineal ultrastructure of Desmodus is in part unlike that reported for other mammals, including bats.
Collapse
Affiliation(s)
- K P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Kentucky 40292
| |
Collapse
|
46
|
Abstract
The adult dog pineal gland was studied with the electron microscope. Pineal connective tissue spaces were poorly developed and showed capillaries with nonfenestrated endothelial cells. Two cell types, pinealocytes and astrocytes, could be identified in pineal parenchyma. Dog pinealocytes showed microtubules, centrioles, occasional cilia, and well-developed Golgi complexes. These cells showed thin processes with bulbous endings packed with vesicles. Astrocytes were characterized by the presence of numerous filaments. Their processes finished forming a glial layer bordering connective tissue spaces. The presence of myelinated and unmyelinated nerve fibers was also described.
Collapse
Affiliation(s)
- J Calvo
- Department of Histology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | |
Collapse
|
47
|
Ostholm T, Brännäs E, van Veen T. The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Cell Tissue Res 1987; 249:641-6. [PMID: 2959366 DOI: 10.1007/bf00217336] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The initial appearance of S-antigen, alpha-transducin, opsin and 5-HT during embryogenesis of the pineal organ and retina was studied by means of immunocytochemistry in the Atlantic salmon, Salmo salar L. The presence of these substances may be taken as a good indication of photoreceptor differentiation; alpha-transducin and S-antigen are involved in the phototransduction process, opsin is the proteinaceous component of the photopigment rhodopsin, and 5-HT is a neurotransmitter or neurohormone produced by pineal photoreceptors. Two days after the retinal pigment layer became visible in the eggs, the outer segments of a few pineal photosensory cells showed immunoreactivity to opsin and alpha-transducin. At the same time S-antigen and serotonin were present in pineal cells of the photoreceptor type. The number of immunoreactive cells in the pineal organ increased up to hatching. In the differentiating retina of the salmon, no immunoreactivity to antibodies raised against the mentioned substances were detectable until after hatching. These results indicate that in ontogeny the developing pineal organ of the salmon embryo has the ability to perceive light information much earlier than the retina.
Collapse
Affiliation(s)
- T Ostholm
- Department of Zoology, University of Lund, Sweden
| | | | | |
Collapse
|
48
|
Rodrigues MM, Bardenstein DS, Donoso LA, Rajagopalan S, Brownstein S. An immunohistopathologic study of trilateral retinoblastoma. Am J Ophthalmol 1987; 103:776-81. [PMID: 3591877 DOI: 10.1016/s0002-9394(14)74393-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined retinal and midline pineal tumors from four patients with trilateral retinoblastoma who had antibodies against neural-associated antigens including neuron-specific enolase, photoreceptor cell proteins (S-antigen and rhodopsin), and glial fibrillary acidic protein. Expression of neuron-specific enolase was observed in all four patients. S-antigen immunoreactivity was present in three of four ocular tumors and two of four pineal tumors examined, whereas results of labeling with rhodopsin and glial fibrillary acidic protein were negative in each of the ocular and pineal tumors.
Collapse
|
49
|
Bridges CD, Foster RG, Landers RA, Fong SL. Interstitial retinol-binding protein and cellular retinal-binding protein in the mammalian pineal. Vision Res 1987; 27:2049-60. [PMID: 3447356 DOI: 10.1016/0042-6989(87)90119-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibodies against bovine interstitial retinol-binding protein (IRBP) and cellular retinal-binding protein (CRA1BP) were used in immunochemical and immunocytochemical studies of the pineal glands of cattle, hamsters and rats (RCS and RCS-rdy+). On immunoblots, IRBP (Mr 144,000) was identified in cattle, hamster and rat pineal extracts. The abundance of IRBP in bovine pineals was 33 +/- 6 ng.mg-1 (mean +/- SD, n = 12) soluble protein. RCS (Royal College of Surgeons) rat pineals gave a strong IRBP reaction on immunoblots, even when virtually no IRBP could be found in the eye due to photoreceptor degeneration. In the hamster retina IRBP immunostaining was distributed throughout the entire interphotoreceptor matrix and the outer segment layer. The pineal also showed strong IRBP-like immunostaining scattered uniformly throughout the gland. Other hamster brain regions showed no specific immunostaining; however, an immunoreactive protein with the same Mr as IRBP was detected on Western blots of bovine cerebral cortex, spinal cord and brainstem soluble proteins. Immunoreactive proteins at lower Mr were also detected in these tissues. CRA1BP immunoreactivity (Mr about 32,000) was observed in immunoblots of bovine, hamster and rat pineal proteins. These findings suggest that some mammalian pinealocytes are related to the retinal cells that contain CRA1BP (i.e. pigment epithelium, Muller cells) while others are related to the photoreceptors, which synthesize IRBP.
Collapse
Affiliation(s)
- C D Bridges
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
50
|
Rubinstein LJ. The correlation of neoplastic vulnerability with central neuroepithelial cytogeny and glioma differentiation. J Neurooncol 1987; 5:11-27. [PMID: 3037035 DOI: 10.1007/bf00162761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The vulnerability of neuroepithelial cells in the central nervous system (CNS) to neoplastic transformation results from the interaction of several factors: the existence of a reserve population of stem cells, the capability of differentiated cells to reenter the kinetic cycle, the number of replicating cells at risk at a particular time, the length of time during which a particular cell population remains in the cycle, the state of differentiation and the further differentiation potential of that population, and the steps of differentiation that are achieved in successive cell generations. This concept explains many aspects of CNS tumor incidence and the relationship of central neuroepithelial embryonal tumors to tumors of adult cell type. The incidence of different types of central neuroepithelial tumors can be correlated with the width of the window of neoplastic vulnerability. Examples illustrating the existence of only a narrow window include such rare tumors as medulloepitheliomas, cerebral neuroblastomas, gangliogliomas and ependymoblastomas. By contrast, cerebellar medulloblastomas, astrocytomas, mixed astrocytomas and oligodendrogliomas, and glioblastomas exemplify instances in which a relatively wider window of vulnerability exists in the light of cellular neuro-ontogeny and of the capacity of glial cells for postnatal replication. The relationship that may occasionally be established between the development of a glioma and the production of cellular gliosis such as may follow brain injury or accompany multiple sclerosis can also be viewed in the light of that concept. Increasing awareness is needed concerning the development of postradiation gliomas, in particular after the apparently successful treatment of acute lymphocytic leukemia.
Collapse
|