1
|
Steymans I, Becker T. Monitoring α-helical membrane protein insertion into the outer mitochondrial membrane of yeast cells. Methods Enzymol 2024; 707:39-62. [PMID: 39488383 DOI: 10.1016/bs.mie.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria are surrounded by two membranes, the outer and inner membrane. The outer membrane contains a few dozen integral membrane proteins that mediate transport, fusion and fission processes, form contact sites and are involved in signaling pathways. There are two different types of outer membrane proteins. A few proteins are membrane-integrated by a transmembrane β-barrel, while other proteins are embedded by single or multiple α-helical membrane segments. All outer membrane proteins are produced on cytosolic ribosomes, but their import mechanisms differ. The translocase of the outer mitochondrial membrane (TOM complex) and the sorting and assembly machinery (SAM complex) import β-barrel proteins. Different import pathways have been reported for proteins with α-helical membrane anchors. The mitochondrial import (MIM) complex is the major insertase for this type of proteins. The in vitro import of radiolabeled precursor proteins into isolated mitochondria is a versatile technique to study protein import into the outer mitochondrial membrane. The import of these proteins does not involve proteolytic processing and is not dependent on the membrane potential. Therefore, the import assay has to be combined with blue native electrophoresis, carbonate extraction or protease accessibility assays to determine the import efficiency. These techniques allow to define import steps, assembly intermediates and study membrane integration. The in vitro import assay has been a central tool to uncover specific import routes and mechanisms.
Collapse
Affiliation(s)
- Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Petiti M, Houot L, Duché D. Cell Fractionation. Methods Mol Biol 2024; 2715:65-71. [PMID: 37930520 DOI: 10.1007/978-1-0716-3445-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein function is generally dependent on its subcellular localization. In gram-negative bacteria such as Escherichia coli, a protein can be targeted to five different compartments: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular medium. Different approaches can be used to determine the protein localization within cell such as in silico identification of protein signal sequences and motifs, electron microscopy and immunogold labeling, optical fluorescence microscopy, and biochemical technics. In this chapter, we describe a simple and efficient method to isolate the different compartments of Escherichia coli by a fractionation method and to determine the presence of the protein of interest. For inner membrane proteins, we propose a method to discriminate between integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Melissa Petiti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille, France.
| |
Collapse
|
3
|
Shim SM, Choi HR, Kwon SC, Kim HY, Sung KW, Jung EJ, Mun SR, Bae TH, Kim DH, Son YS, Jung CH, Lee J, Lee MJ, Park JW, Kwon YT. The Cys-N-degron pathway modulates pexophagy through the N-terminal oxidation and arginylation of ACAD10. Autophagy 2023; 19:1642-1661. [PMID: 36184612 PMCID: PMC10262816 DOI: 10.1080/15548627.2022.2126617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (CysO2) or sulfonic acid (CysO3) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by ATE1-encoded R-transferases, generating the RCOX N-degron. RCOX-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3+-autophagic membranes. In mice, knockout of either Ate1 responsible for Nt-arginylation or Sqstm1/p62 leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases.Abbreviations: ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.
Collapse
Affiliation(s)
- Sang Mi Shim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ha Rim Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soon Chul Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki Woon Sung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Eui Jung Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su Ran Mun
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyun Bae
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chan Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jihoon Lee
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Marwarha G, Røsand Ø, Slagsvold KH, Høydal MA. GSK3β Inhibition Is the Molecular Pivot That Underlies the Mir-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. Int J Mol Sci 2022; 23:ijms23169375. [PMID: 36012628 PMCID: PMC9409400 DOI: 10.3390/ijms23169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptotic cell death is a deleterious consequence of hypoxia-induced cellular stress. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxia stress. We have recently demonstrated that miR-210 attenuates hypoxia-induced apoptotic cell death. In this paper, we unveil that the miR-210-induced inhibition of the serine/threonine kinase Glycogen Synthase Kinase 3 beta (GSK3β) in AC-16 cardiomyocytes subjected to hypoxia stress underlies the salutary protective response of miR-210 in mitigating the hypoxia-induced apoptotic cell death. Using transient overexpression vectors to augment miR-210 expression concomitant with the ectopic expression of the constitutive active GSK3β S9A mutant (ca-GSK3β S9A), we exhaustively performed biochemical and molecular assays to determine the status of the hypoxia-induced intrinsic apoptosis cascade. Caspase-3 activity analysis coupled with DNA fragmentation assays cogently demonstrate that the inhibition of GSK3β kinase activity underlies the miR-210-induced attenuation in the hypoxia-driven apoptotic cell death. Further elucidation and delineation of the upstream cellular events unveiled an indispensable role of the inhibition of GSK3β kinase activity in mediating the miR-210-induced mitigation of the hypoxia-driven BAX and BAK insertion into the outer mitochondria membrane (OMM) and the ensuing Cytochrome C release into the cytosol. Our study is the first to unveil that the inhibition of GSK3β kinase activity is indispensable in mediating the miR-210-orchestrated protective cellular response to hypoxia-induced apoptotic cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Øystein Røsand
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence: ; Tel.: +47-48134843
| |
Collapse
|
5
|
Robinson DRL, Hock DH, Muellner-Wong L, Kugapreethan R, Reljic B, Surgenor EE, Rodrigues CHM, Caruana NJ, Stroud DA. Applying Sodium Carbonate Extraction Mass Spectrometry to Investigate Defects in the Mitochondrial Respiratory Chain. Front Cell Dev Biol 2022; 10:786268. [PMID: 35300415 PMCID: PMC8921082 DOI: 10.3389/fcell.2022.786268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are complex organelles containing 13 proteins encoded by mitochondrial DNA and over 1,000 proteins encoded on nuclear DNA. Many mitochondrial proteins are associated with the inner or outer mitochondrial membranes, either peripherally or as integral membrane proteins, while others reside in either of the two soluble mitochondrial compartments, the mitochondrial matrix and the intermembrane space. The biogenesis of the five complexes of the oxidative phosphorylation system are exemplars of this complexity. These large multi-subunit complexes are comprised of more than 80 proteins with both membrane integral and peripheral associations and require soluble, membrane integral and peripherally associated assembly factor proteins for their biogenesis. Mutations causing human mitochondrial disease can lead to defective complex assembly due to the loss or altered function of the affected protein and subsequent destabilization of its interactors. Here we couple sodium carbonate extraction with quantitative mass spectrometry (SCE-MS) to track changes in the membrane association of the mitochondrial proteome across multiple human knockout cell lines. In addition to identifying the membrane association status of over 840 human mitochondrial proteins, we show how SCE-MS can be used to understand the impacts of defective complex assembly on protein solubility, giving insights into how specific subunits and sub-complexes become destabilized.
Collapse
Affiliation(s)
- David R L Robinson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Linden Muellner-Wong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.,The Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Roopasingam Kugapreethan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Boris Reljic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Elliot E Surgenor
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Carlos H M Rodrigues
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.,Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.,The Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
6
|
Carmichael RE, Schrader M. Determinants of Peroxisome Membrane Dynamics. Front Physiol 2022; 13:834411. [PMID: 35185625 PMCID: PMC8853631 DOI: 10.3389/fphys.2022.834411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organelles within the cell are highly dynamic entities, requiring dramatic morphological changes to support their function and maintenance. As a result, organelle membranes are also highly dynamic, adapting to a range of topologies as the organelle changes shape. In particular, peroxisomes—small, ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis—display a striking plasticity, for example, during the growth and division process by which they proliferate. During this process, the membrane of an existing peroxisome elongates to form a tubule, which then constricts and ultimately undergoes scission to generate new peroxisomes. Dysfunction of this plasticity leads to diseases with developmental and neurological phenotypes, highlighting the importance of peroxisome dynamics for healthy cell function. What controls the dynamics of peroxisomal membranes, and how this influences the dynamics of the peroxisomes themselves, is just beginning to be understood. In this review, we consider how the composition, biophysical properties, and protein-lipid interactions of peroxisomal membranes impacts on their dynamics, and in turn on the biogenesis and function of peroxisomes. In particular, we focus on the effect of the peroxin PEX11 on the peroxisome membrane, and its function as a major regulator of growth and division. Understanding the roles and regulation of peroxisomal membrane dynamics necessitates a multidisciplinary approach, encompassing knowledge across a range of model species and a number of fields including lipid biochemistry, biophysics and computational biology. Here, we present an integrated overview of our current understanding of the determinants of peroxisome membrane dynamics, and reflect on the outstanding questions still remaining to be solved.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Correll VL, Otto JJ, Risi CM, Main BP, Boutros PC, Kislinger T, Galkin VE, Nyalwidhe JO, Semmes OJ, Yang L. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. J Extracell Vesicles 2022; 11:e12184. [PMID: 35119778 PMCID: PMC8815402 DOI: 10.1002/jev2.12184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 01/23/2023] Open
Abstract
The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.
Collapse
Affiliation(s)
- Vanessa L. Correll
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Joseph J. Otto
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Cristina M. Risi
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Brian P. Main
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Paul C. Boutros
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of UrologyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Institute for Precision HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Thomas Kislinger
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Vitold E. Galkin
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Julius O. Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - O. John Semmes
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| |
Collapse
|
8
|
Marx C, Sonnemann J, Beyer M, Maddocks ODK, Lilla S, Hauzenberger I, Piée‐Staffa A, Siniuk K, Nunna S, Marx‐Blümel L, Westermann M, Wagner T, Meyer FB, Thierbach R, Mullins CS, Kdimati S, Linnebacher M, Neri F, Heinzel T, Wang Z, Krämer OH. Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol Oncol 2021; 15:3404-3429. [PMID: 34258881 PMCID: PMC8637561 DOI: 10.1002/1878-0261.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Cancer Research UK Beatson InstituteGlasgowUK
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | - Mandy Beyer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Oliver D. K. Maddocks
- Cancer Research UK Beatson InstituteGlasgowUK
- Wolfson Wohl Cancer Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Irene Hauzenberger
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Andrea Piée‐Staffa
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | | | - Suneetha Nunna
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Lisa Marx‐Blümel
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | | | - Tobias Wagner
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
- Cellular and Molecular MedicineHoward Hughes Medical InstituteUniversity of California, San DiegoLa JollaCAUSA
| | - Felix B. Meyer
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - René Thierbach
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - Christina S. Mullins
- Molecular Oncology and ImmunotherapyDepartment of Thoracic SurgeryUniversity of RostockGermany
| | - Said Kdimati
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Michael Linnebacher
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Francesco Neri
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Thorsten Heinzel
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University of JenaGermany
| | - Oliver H. Krämer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| |
Collapse
|
9
|
A New Paradigm in Catalase Research. Trends Cell Biol 2021; 31:148-151. [PMID: 33422360 DOI: 10.1016/j.tcb.2020.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
Recent findings provide evidence for dynamic and highly regulated dual subcellular localization of catalase, a hydrogen peroxide (H2O2)-metabolizing enzyme, in peroxisomes and the cytosol. These data suggest a number of important implications for the field of oxidative stress biology.
Collapse
|
10
|
Mast FD, Rachubinski RA, Aitchison JD. Peroxisome prognostications: Exploring the birth, life, and death of an organelle. J Cell Biol 2020; 219:133827. [PMID: 32211898 PMCID: PMC7054992 DOI: 10.1083/jcb.201912100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes play a central role in human health and have biochemical properties that promote their use in many biotechnology settings. With a primary role in lipid metabolism, peroxisomes share a niche with lipid droplets within the endomembrane-secretory system. Notably, factors in the ER required for the biogenesis of peroxisomes also impact the formation of lipid droplets. The dynamic interface between peroxisomes and lipid droplets, and also between these organelles and the ER and mitochondria, controls their metabolic flux and their dynamics. Here, we review our understanding of peroxisome biogenesis to propose and reframe models for understanding how peroxisomes are formed in cells. To more fully understand the roles of peroxisomes and to take advantage of their many properties that may prove useful in novel therapeutics or biotechnology applications, we recast mechanisms controlling peroxisome biogenesis in a framework that integrates inference from these models with experimental data.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA
| | | | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA.,Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K. Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 2020; 21:e50202. [PMID: 32975364 DOI: 10.15252/embr.202050202] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial quality is controlled by the selective removal of damaged mitochondria through mitophagy. Mitophagy impairment is associated with aging and many pathological conditions. An iron loss induced by iron chelator triggers mitophagy by a yet unknown mechanism. This type of mitophagy may have therapeutic potential, since iron chelators are clinically used. Here, we aimed to clarify the mechanisms by which iron loss induces mitophagy. Deferiprone, an iron chelator, treatment resulted in the increased expression of mitochondrial ferritin (FTMT) and the localization of FTMT precursor on the mitochondrial outer membrane. Specific protein 1 and its regulator hypoxia-inducible factor 1α were necessary for deferiprone-induced increase in FTMT. FTMT specifically interacted with nuclear receptor coactivator 4, an autophagic cargo receptor. Deferiprone-induced mitophagy occurred selectively for depolarized mitochondria. Additionally, deferiprone suppressed the development of hepatocellular carcinoma (HCC) in mice by inducing mitophagy. Silencing FTMT abrogated deferiprone-induced mitophagy and suppression of HCC. These results demonstrate the mechanisms by which iron loss induces mitophagy and provide a rationale for targeting mitophagic activation as a therapeutic strategy.
Collapse
Affiliation(s)
- Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Tanaka
- Research Institute of Medical Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Fumio Kishi
- Department of Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Kyo Sasaki
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
12
|
Xu R, Greening DW, Chen M, Rai A, Ji H, Takahashi N, Simpson RJ. Surfaceome of Exosomes Secreted from the Colorectal Cancer Cell Line SW480: Peripheral and Integral Membrane Proteins Analyzed by Proteolysis and TX114. Proteomics 2020; 19:e1700453. [PMID: 30865381 DOI: 10.1002/pmic.201700453] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Exosomes are important bidirectional cell-cell communicators in normal and pathological physiology. Although exosomal surface membrane proteins (surfaceome) enable target cell recognition and are an attractive source of disease marker, they are poorly understood. Here, a comprehensive surfaceome analysis of exosomes secreted by the colorectal cancer cell line SW480 is described. Sodium carbonate extraction/Triton X-114 phase separation and mild proteolysis (proteinase K, PK) of intact exosomes is used in combination with label-free quantitative mass spectrometry to identify 1025 exosomal proteins of which 208 are predicted to be integral membrane proteins (IMPs) according to TOPCONS and GRAVY scores. Interrogation of UniProt database-annotated proteins reveals 124 predicted peripherally-associated membrane proteins (PMPs). Surprisingly, 108 RNA-binding proteins (RBPs)/RNA nucleoproteins (RNPs) are found in the carbonate/Triton X-114 insoluble fraction. Mild PK treatment of SW480-GFP labeled exosomes reveal 58 proteolytically cleaved IMPs and 14 exoplasmic PMPs (e.g., CLU/GANAB/LGALS3BP). Interestingly, 18 RBPs/RNPs (e.g., EIF3L/RPL6) appear bound to the outer exosome surface since they are sensitive to PK proteolysis. The finding that outer surface-localized miRNA Let-7a-5p is RNase A-resistant, but degraded by a combination of RNase A/PK treatment suggests exosomal miRNA species also reside on the outer surface of exosomes bound to RBPs/RNPs.
Collapse
Affiliation(s)
- Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8509, Japan.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| |
Collapse
|
13
|
A Guide to Tracking Single Membrane Proteins and Their Interactions in Supported Lipid Bilayers. Methods Mol Biol 2020. [PMID: 31218627 DOI: 10.1007/978-1-4939-9512-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single proteins in planar supported biomimetic membranes. This chapter describes, in detail, the construction of a simple single molecule microscope, which includes: (1) a parts list, (2) temperature control, (3) an alignment procedure, (4) a calibration procedure, and (5) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported bilayers on hydrophilically treated borosilicate and quartz. These include (1) POPC bilayers, (2) POPC/PEG-PE cushioned bilayers, (3) POPC/PEG-PE cushioned bilayers on BSA passivated substrates, and (4) a cushioned biomimetic membrane of the endoplasmic reticulum (ER). A procedure for the detergent mediated incorporation of the transmembrane protein 5HT3A (a serotonin receptor) is also described and can be used as a starting point for other large non-self-inserting transmembrane proteins. A procedure for the detergent-free incorporation of cytochrome P450 reductase (CPR) and cytochrome P450 enzymes (P450) into an ER biomimetic is also described. The final experimental section of this chapter details different procedures for data analysis including (1) quantitative analysis of mean squared displacements from individually tracked proteins, (2) gamma distribution analysis of diffusion coefficients from a small ensemble of individually tracked proteins, (3) average mean squared displacement analysis, (4) Gaussian analysis of step-size distributions, (5) Arrhenius analysis of temperature dependent data, (6) the determination of equilibrium constants from a step-size distribution, and (7) a perspective associated with the interpretation of single particle tracking data.
Collapse
|
14
|
Insights into ubiquitin chain architecture using Ub-clipping. Nature 2019; 572:533-537. [PMID: 31413367 DOI: 10.1038/s41586-019-1482-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
Abstract
Protein ubiquitination is a multi-functional post-translational modification that affects all cellular processes. Its versatility arises from architecturally complex polyubiquitin chains, in which individual ubiquitin moieties may be ubiquitinated on one or multiple residues, and/or modified by phosphorylation and acetylation1-3. Advances in mass spectrometry have enabled the mapping of individual ubiquitin modifications that generate the ubiquitin code; however, the architecture of polyubiquitin signals has remained largely inaccessible. Here we introduce Ub-clipping as a methodology by which to understand polyubiquitin signals and architectures. Ub-clipping uses an engineered viral protease, Lbpro∗, to incompletely remove ubiquitin from substrates and leave the signature C-terminal GlyGly dipeptide attached to the modified residue; this simplifies the direct assessment of protein ubiquitination on substrates and within polyubiquitin. Monoubiquitin generated by Lbpro∗ retains GlyGly-modified residues, enabling the quantification of multiply GlyGly-modified branch-point ubiquitin. Notably, we find that a large amount (10-20%) of ubiquitin in polymers seems to exist as branched chains. Moreover, Ub-clipping enables the assessment of co-existing ubiquitin modifications. The analysis of depolarized mitochondria reveals that PINK1/parkin-mediated mitophagy predominantly exploits mono- and short-chain polyubiquitin, in which phosphorylated ubiquitin moieties are not further modified. Ub-clipping can therefore provide insight into the combinatorial complexity and architecture of the ubiquitin code.
Collapse
|
15
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
16
|
Barnaba C, Taylor E, Brozik JA. Dissociation Constants of Cytochrome P450 2C9/Cytochrome P450 Reductase Complexes in a Lipid Bilayer Membrane Depend on NADPH: A Single-Protein Tracking Study. J Am Chem Soc 2017; 139:17923-17934. [PMID: 29148818 DOI: 10.1021/jacs.7b08750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models. Described here are results from a single-protein tracking study of fluorescently labeled CPR and cytochrome P450 2C9 (CYP2C9) molecules in which stochastic analysis was used to determine the dissociation constants of CPR/CYP2C9 complexes in a lipid bilayer membrane for the first time. Single-protein trajectories demonstrate the transient nature of these CPR-CYP2C9 interactions, and the measured Kd values are highly dependent on the redox state of CPR. It is shown that CPRox/CYP2C9 complexes have a much higher dissociation constant than CPR2-/CYP2C9 or CPR4-/CYP2C9 complexes, and a model is presented to account for these results. An Arrhenius analysis of diffusion constants was also carried out, demonstrating that the reduced forms of CPR and CYP2C9 interact differently with the biomimetic ER and may, in addition to protein conformational changes, contribute to the observed NADPH-dependent shift in Kd. Finally, it is also shown that the CPRox/CYP2C9 affinity depends on the nature of the ligand, being higher when a substrate is bound, compared to an inhibitor.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
17
|
Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MCF, Jogler M, Rast P, Borchert D, Devos DP, Kucklick M, Schaffer M, Kolter R, van Niftrik L, Engelmann S, Amann R, Rohde M, Engelhardt H, Jogler C. Determining the bacterial cell biology of Planctomycetes. Nat Commun 2017; 8:14853. [PMID: 28393831 PMCID: PMC5394234 DOI: 10.1038/ncomms14853] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.
Collapse
Affiliation(s)
| | - Margarete Schüler
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Greta Reintjes
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Muriel C. F. van Teeseling
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
- Department of Cellular Microbiology, Philipps-University Marburg, Faculty of Biology, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Patrick Rast
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Daniela Borchert
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Damien P. Devos
- Department of Cell biology and Biotechnology, CABD, Pablo de Olavide University-CSIC, Carretera de Utrera km1, 41013 Sevilla, Spain
| | - Martin Kucklick
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Microbial Proteomics, Technical University Braunschweig, Institute for Microbiology, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Laura van Niftrik
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Microbial Proteomics, Technical University Braunschweig, Institute for Microbiology, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Manfred Rohde
- Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
- Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
| |
Collapse
|
18
|
Barnaba C, Martinez MJ, Taylor E, Barden AO, Brozik JA. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum. J Am Chem Soc 2017; 139:5420-5430. [PMID: 28347139 DOI: 10.1021/jacs.7b00663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Michael J Martinez
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Adam O Barden
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
19
|
Abstract
Protein function is generally dependent on its subcellular localisation. In Gram-negative bacteria such as Escherichia coli, a protein can be targeted to five different compartments: the cytoplasm, the inner membrane, the periplasm, the outer membrane and the extracellular medium. Different approaches can be used to determine the protein localisation within a cell such as in silico identification of protein signal sequences and motifs, electron microscopy and immunogold labelling, optical fluorescence microscopy, and biochemical technics. In this chapter, we describe a simple and efficient method to isolate the different compartments of Escherichia coli by a fractionation method and to determine the presence of the protein of interest. For inner membrane proteins we propose a method to discriminate between integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Melissa Petiti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université-Centre National de la Recherche Scientifique (CNRS), 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université-Centre National de la Recherche Scientifique (CNRS), 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université-Centre National de la Recherche Scientifique (CNRS), 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
20
|
Kawałek A, Jagadeesan C, van der Klei IJ. Impaired biosynthesis of the non-bilayer lipids phosphatidylethanolamine or cardiolipin does not affect peroxisome biogenesis and proliferation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2016; 480:228-233. [DOI: 10.1016/j.bbrc.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
21
|
Richter U, Lahtinen T, Marttinen P, Suomi F, Battersby BJ. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J Cell Biol 2016; 211:373-89. [PMID: 26504172 PMCID: PMC4621829 DOI: 10.1083/jcb.201504062] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Impaired turnover of newly synthesized mitochondrial proteins of the oxidative phosphorylation complexes leads to protein over-accumulation in the inner mitochondrial membrane, thereby generating a stress that dissipates the mitochondrial membrane potential and therefore compromises organelle and cellular fitness. Mitochondrial ribosomes synthesize a subset of hydrophobic proteins required for assembly of the oxidative phosphorylation complexes. This process requires temporal and spatial coordination and regulation, so quality control of mitochondrial protein synthesis is paramount to maintain proteostasis. We show how impaired turnover of de novo mitochondrial proteins leads to aberrant protein accumulation in the mitochondrial inner membrane. This creates a stress in the inner membrane that progressively dissipates the mitochondrial membrane potential, which in turn stalls mitochondrial protein synthesis and fragments the mitochondrial network. The mitochondrial m-AAA protease subunit AFG3L2 is critical to this surveillance mechanism that we propose acts as a sensor to couple the synthesis of mitochondrial proteins with organelle fitness, thus ensuring coordinated assembly of the oxidative phosphorylation complexes from two sets of ribosomes.
Collapse
Affiliation(s)
- Uwe Richter
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Taina Lahtinen
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Marttinen
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Fumi Suomi
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Brendan J Battersby
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
22
|
Radin I, Mansilla N, Rödel G, Steinebrunner I. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity. FRONTIERS IN PLANT SCIENCE 2015; 6:1091. [PMID: 26734017 PMCID: PMC4683207 DOI: 10.3389/fpls.2015.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/20/2015] [Indexed: 05/19/2023]
Abstract
Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.
Collapse
Affiliation(s)
- Ivan Radin
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del LitoralSanta Fe, Argentina
| | - Gerhard Rödel
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | | |
Collapse
|
23
|
Kim H, Botelho SC, Park K, Kim H. Use of carbonate extraction in analyzing moderately hydrophobic transmembrane proteins in the mitochondrial inner membrane. Protein Sci 2015; 24:2063-9. [PMID: 26435163 DOI: 10.1002/pro.2817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022]
Abstract
Resistance to sodium carbonate extraction is regarded as a canonical way to distinguish integral membrane proteins (MPs) from other membrane-associated proteins. However, it has been observed that carbonate extraction releases some mitochondrial integral MPs. Here, by analyzing both artificially designed and native mitochondrial inner MPs containing transmembrane domains (TMDs) of different hydrophobicities, we show that carbonate treatment can release moderately hydrophobic TMDs from the mitochondrial inner membrane. These results suggest that resistance and sensitivity to carbonate extraction may be interpreted with caution when analyzing the nature of mitochondrial inner MPs.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Salomé Calado Botelho
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kwangjin Park
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
24
|
Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes - An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:971-83. [PMID: 26409486 DOI: 10.1016/j.bbamcr.2015.09.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK; Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Luis F Godinho
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Afsoon S Azadi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
25
|
Yuan W, Veenhuis M, van der Klei IJ. The birth of yeast peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:902-10. [PMID: 26367802 DOI: 10.1016/j.bbamcr.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed.
Collapse
Affiliation(s)
- Wei Yuan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
26
|
Revisiting the intraperoxisomal pathway of mammalian PEX7. Sci Rep 2015; 5:11806. [PMID: 26138649 PMCID: PMC4490337 DOI: 10.1038/srep11806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Newly synthesized peroxisomal proteins containing a cleavable type 2 targeting signal (PTS2) are transported to the peroxisome by a cytosolic PEX5-PEX7 complex. There, the trimeric complex becomes inserted into the peroxisomal membrane docking/translocation machinery (DTM), a step that leads to the translocation of the cargo into the organelle matrix. Previous work suggests that PEX5 is retained at the DTM during all the steps occurring at the peroxisome but whether the same applies to PEX7 was unknown. By subjecting different pre-assembled trimeric PEX5-PEX7-PTS2 complexes to in vitro co-import/export assays we found that the export competence of peroxisomal PEX7 is largely determined by the PEX5 molecule that transported it to the peroxisome. This finding suggests that PEX7 is also retained at the DTM during the peroxisomal steps and implies that cargo proteins are released into the organelle matrix by DTM-embedded PEX7. The release step does not depend on PTS2 cleavage. Rather, our data suggest that insertion of the trimeric PEX5-PEX7-PTS2 protein complex into the DTM is probably accompanied by conformational alterations in PEX5 to allow release of the PTS2 protein into the organelle matrix.
Collapse
|
27
|
Abstract
ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against α-synuclein, Mn(2+), and Zn(2+) toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders.
Collapse
|
28
|
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Ibrahim M, Tozawa Y, Nozaki T. A novel Mitosomal β-barrel Outer Membrane Protein in Entamoeba. Sci Rep 2015; 5:8545. [PMID: 25711150 PMCID: PMC4339806 DOI: 10.1038/srep08545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
Entamoeba possesses a highly divergent mitochondrion-related organelle known as the mitosome. Here, we report the discovery of a novel protein in Entamoeba, which we name Mitosomal β-barrel Outer Membrane Protein of 30 kDa (MBOMP30). Initially identified through in silico analysis, we experimentally confirmed that MBOMP30 is indeed a β-barrel protein. Circular dichroism analysis showed MBOMP30 has a predominant β-sheet structure. Localization to Entamoeba histolytica mitosomes was observed through Percoll-gradient fractionation and immunofluorescence assay. Mitosomal membrane integration was demonstrated by carbonate fractionation, proteinase K digestion, and immunoelectron microscopy. Interestingly, the deletion of the putative β-signal, a sequence believed to guide β-barrel outer membrane protein (BOMP) assembly, did not affect membrane integration, but abolished the formation of a ~240 kDa complex. MBOMP30 represents only the seventh subclass of eukaryotic BOMPs discovered to date and lacks detectable homologs outside Entamoeba, suggesting that it may be unique to Entamoeba mitosomes.
Collapse
Affiliation(s)
- Herbert J Santos
- 1] Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan [3] Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Kenichiro Imai
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kentaro Tomii
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Paul Horton
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Mohamed Ibrahim
- Botany Department, Faculty of Science, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, 11566, Egypt
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Tomoyoshi Nozaki
- 1] Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan [2] Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
29
|
Macdonald PJ, Stepanyants N, Mehrotra N, Mears JA, Qi X, Sesaki H, Ramachandran R. A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol Biol Cell 2014; 25:1905-15. [PMID: 24790094 PMCID: PMC4055269 DOI: 10.1091/mbc.e14-02-0728] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drp1 catalyzes mitochondrial division, but the mechanisms remain elusive. The mitochondrial lipid cardiolipin stimulates Drp1 activity and supports membrane constriction. In addition, Drp1 populates two polymeric states that equilibrate via a dimeric intermediate. Dimers nucleate Drp1 reassembly on mitochondria for fission. The GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial division, but the mechanisms remain poorly understood. Much of what is attributed to Drp1’s mechanism of action in mitochondrial membrane fission parallels that of prototypical dynamin in endocytic vesicle scission. Unlike the case for dynamin, however, no lipid target for Drp1 activation at the mitochondria has been identified. In addition, the oligomerization properties of Drp1 have not been well established. We show that the mitochondria-specific lipid cardiolipin is a potent stimulator of Drp1 GTPase activity, as well as of membrane tubulation. We establish further that under physiological conditions, Drp1 coexists as two morphologically distinct polymeric species, one nucleotide bound in solution and the other membrane associated, which equilibrate via a dimeric assembly intermediate. With two mutations, C300A and C505A, that shift Drp1 polymerization equilibria in opposite directions, we demonstrate that dimers, and not multimers, potentiate the reassembly and reorganization of Drp1 for mitochondrial membrane remodeling both in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick J Macdonald
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Natalia Stepanyants
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Niharika Mehrotra
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
30
|
Abstract
The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte's, could be relevant also for other cell types.
Collapse
Affiliation(s)
- Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Pavia , Italy
| | | | | |
Collapse
|
31
|
Vázquez-Acevedo M, Rubalcava-Gracia D, González-Halphen D. In vitro import and assembly of the nucleus-encoded mitochondrial subunit III of cytochrome c oxidase (Cox3). Mitochondrion 2014; 19 Pt B:314-22. [PMID: 24561572 DOI: 10.1016/j.mito.2014.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 11/17/2022]
Abstract
The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico.
| |
Collapse
|
32
|
Magnowska Z, Hartmann I, Jänsch L, Jahn D. Membrane proteomics of Pseudomonas aeruginosa. Methods Mol Biol 2014; 1149:213-24. [PMID: 24818908 DOI: 10.1007/978-1-4939-0473-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years gel-free proteomics approaches have been increasingly used for global quantitative proteome analyses of multiple prokaryotic organisms, including Pseudomonas aeruginosa. A major advantage of this method is its suitability for the investigation of membrane proteomes. In this chapter, we present a protocol for preparation of proteins from the inner and outer membrane of P. aeruginosa PAO1 grown as a biofilm culture. Parameters for quantitative protein measurements by 2D-LC-MS/MS are described.
Collapse
Affiliation(s)
- Zofia Magnowska
- Microbial Proteomics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | | | | | | |
Collapse
|
33
|
Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep 2013; 3:1129. [PMID: 23350036 PMCID: PMC3553487 DOI: 10.1038/srep01129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022] Open
Abstract
Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.
Collapse
|
34
|
Povelones ML, Tiengwe C, Gluenz E, Gull K, Englund PT, Jensen RE. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1. Mol Microbiol 2013; 87:713-29. [PMID: 23336702 DOI: 10.1111/mmi.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/01/2023]
Abstract
In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.
Collapse
Affiliation(s)
- Megan L Povelones
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
35
|
Otera H, Fujiki Y. Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 2012; 13:1364-77. [PMID: 22747494 DOI: 10.1111/j.1600-0854.2012.01391.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
36
|
Michanek A, Yanez M, Wacklin H, Hughes A, Nylander T, Sparr E. RNA and DNA association to zwitterionic and charged monolayers at the air-liquid interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9621-9633. [PMID: 22624628 DOI: 10.1021/la204431q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The objective of this work is to establish under which conditions short RNA molecules (similar to miRNA) associate with zwitterionic phospholipids and how this differs from the association with cationic surfactants. We study how the base pairing (i.e., single stranded versus double stranded nucleic acids) and the length of the nucleic acid and the charge of the lipid/surfactant monolayer affect the association behavior. For this purpose, we study the adsorption of nucleic acids to monolayers composed of dipalmitoyl phosphatidylcholine (DPPC) or dioctadecyl-dimethyl-ammoniumbromide (DODAB) using the surface film balance, neutron reflectometry, and fluorescence microscopy. The monolayer studies with the surface film balance suggested that short single-stranded ssRNA associates with liquid expanded zwitterionic phospholipid monolayers, whereas less or no association is detected for double-stranded dsRNA and dsDNA. In order to quantify the interaction and to determine the location of the nucleic acid in the lipid/surfactant monolayer we performed neutron reflectometry measurements. It was shown that ssRNA adsorbs to and penetrates the liquid expanded monolayers, whereas there is no penetration of nucleic acids into the liquid condensed monolayer. No adsorption was detected for dsDNA to zwitterionic monolayers. On the basis of these results, we propose that the association is driven by the hydrophobic interactions between the exposed hydrophobic bases of the ssRNA and the hydrocarbon chains of the phospholipids. The addition of ssRNA also influences domain formation in the DPPC monolayer, leading to fractal-like interconnected domains. The experimental results are discussed in terms of the implication for biological processes and new leads for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Agnes Michanek
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Tan YF, Millar AH, Taylor NL. Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses. J Proteome Res 2012; 11:3860-79. [PMID: 22574745 DOI: 10.1021/pr3003535] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport.
Collapse
Affiliation(s)
- Yew-Foon Tan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | | | | |
Collapse
|
38
|
In Polytomella sp. mitochondria, biogenesis of the heterodimeric COX2 subunit of cytochrome c oxidase requires two different import pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:819-27. [DOI: 10.1016/j.bbabio.2012.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
|
39
|
TMT labelling for the quantitative analysis of adaptive responses in the meningococcal proteome. Methods Mol Biol 2012. [PMID: 21993643 DOI: 10.1007/978-1-61779-346-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2023]
Abstract
In addition to standard gel-based proteomic approaches, gel-free approaches using isobaric label reagents, such as Tandem Mass Tags (TMT), provide a straightforward method for studying adaptations in microbial proteomes to changing environmental conditions. This approach does not have the known difficulties of 2-D gel electrophoresis with proteins of extreme biochemical properties. The workflow described here was designed to study adaptive responses in bacteria and has been applied to study the response of meningococci to iron limitation. The supplemental use of western blotting allows the confirmation of certain changes in protein abundance identified within the TMT study.
Collapse
|
40
|
Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1374-86. [PMID: 22206997 DOI: 10.1016/j.bbadis.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023]
Abstract
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
41
|
Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP, Carvalho AF, Fransen M, Sá-Miranda C, Azevedo JE. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 2011; 286:40509-19. [PMID: 21976670 DOI: 10.1074/jbc.m111.287201] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.
Collapse
Affiliation(s)
- Marta O Freitas
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mast FD, Fagarasanu A, Knoblach B, Rachubinski RA. Peroxisome biogenesis: something old, something new, something borrowed. Physiology (Bethesda) 2011; 25:347-56. [PMID: 21186279 DOI: 10.1152/physiol.00025.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells are characterized by their varied complement of organelles. One set of membrane-bound, usually spherical compartments are commonly grouped together under the term peroxisomes. Peroxisomes function in regulating the synthesis and availability of many diverse lipids by harnessing the power of oxidative reactions and contribute to a number of metabolic processes essential for cellular differentiation and organismal development.
Collapse
Affiliation(s)
- Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
43
|
Peng L, Kapp EA, Fenyö D, Kwon MS, Jiang P, Wu S, Jiang Y, Aguilar MI, Ahmed N, Baker MS, Cai Z, Chen YJ, Van Chi P, Chung MCM, He F, Len ACL, Liao PC, Nakamura K, Ngai SM, Paik YK, Pan TL, Poon TCW, Salekdeh GH, Simpson RJ, Sirdeshmukh R, Srisomsap C, Svasti J, Tyan YC, Dreyer FS, McLauchlan D, Rawson P, Jordan TW. The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard. Proteomics 2011; 10:4142-8. [PMID: 20486120 DOI: 10.1002/pmic.201000126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Asia Oceania Human Proteome Organisation (AOHUPO) has embarked on a Membrane Proteomics Initiative with goals of systematic comparison of strategies for analysis of membrane proteomes and discovery of membrane proteins. This multilaboratory project is based on the analysis of a subcellular fraction from mouse liver that contains endoplasmic reticulum and other organelles. In this study, we present the strategy used for the preparation and initial characterization of the membrane sample, including validation that the carbonate-washing step enriches for integral and lipid-anchored membrane proteins. Analysis of 17 independent data sets from five types of proteomic workflows is in progress.
Collapse
Affiliation(s)
- Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
White MY, Brown DA, Sheng S, Cole RN, O'Rourke B, Van Eyk JE. Parallel proteomics to improve coverage and confidence in the partially annotated Oryctolagus cuniculus mitochondrial proteome. Mol Cell Proteomics 2011; 10:M110.004291. [PMID: 21036924 PMCID: PMC3033681 DOI: 10.1074/mcp.m110.004291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 02/06/2023] Open
Abstract
The ability to decipher the dynamic protein component of any system is determined by the inherent limitations of the technologies used, the complexity of the sample, and the existence of an annotated genome. In the absence of an annotated genome, large-scale proteomic investigations can be technically difficult. Yet the functional and biological species differences across animal models can lead to selection of partially or nonannotated organisms over those with an annotated genome. The outweighing of biology over technology leads us to investigate the degree to which a parallel approach can facilitate proteome coverage in the absence of complete genome annotation. When studying species without complete genome annotation, a particular challenge is how to ensure high proteome coverage while meeting the bioinformatic stringencies of high-throughput proteomics. A protein inventory of Oryctolagus cuniculus mitochondria was created by overlapping "protein-centric" and "peptide-centric" one-dimensional and two-dimensional liquid chromatography strategies; with additional partitioning into membrane-enriched and soluble fractions. With the use of these five parallel approaches, 2934 unique peptides were identified, corresponding to 558 nonredundant protein groups. 230 of these proteins (41%) were identified by only a single technical approach, confirming the need for parallel techniques to improve annotation. To determine the extent of coverage, a side-by-side comparison with human and mouse cardiomyocyte mitochondrial studies was performed. A nonredundant list of 995 discrete proteins was compiled, of which 244 (25%) were common across species. The current investigation identified 142 unique protein groups, the majority of which were detected here by only one technical approach, in particular peptide- and protein-centric two-dimensional liquid chromatography. Although no single approach achieved more than 40% coverage, the combination of three approaches (protein- and peptide-centric two-dimensional liquid chromatography and subfractionation) contributed 96% of all identifications. Parallel techniques ensured minimal false discovery, and reduced single peptide-based identifications while maximizing sequence coverage in the absence of the annotated rabbit proteome.
Collapse
Affiliation(s)
- Melanie Y White
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Watts T, Khalimonchuk O, Wolf RZ, Turk EM, Mohr G, Winge DR. Mne1 is a novel component of the mitochondrial splicing apparatus responsible for processing of a COX1 group I intron in yeast. J Biol Chem 2011; 286:10137-46. [PMID: 21257754 DOI: 10.1074/jbc.m110.205625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking Mne1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but contain wild-type levels of the bc(1) complex. Thus, Mne1 has no role in splicing of COB introns or expression of the COB gene. Northern experiments suggest that splicing of the COX1 aI5β intron is dependent on Mne1 in addition to the previously known Mrs1, Mss116, Pet54, and Suv3 factors. Processing of the aI5β intron is similarly impaired in mne1Δ and mrs1Δ cells and overexpression of Mrs1 partially restores the respiratory function of mne1Δ cells. Mrs1 is known to function in the initial transesterification reaction of splicing. Mne1 is a mitochondrial matrix protein loosely associated with the inner membrane and is found in a high mass ribonucleoprotein complex specifically associated with the COX1 mRNA even within an intronless strain. Mne1 does not appear to have a secondary function in COX1 processing or translation, because disruption of MNE1 in cells containing intronless mtDNA does not lead to a respiratory growth defect. Thus, the primary defect in mne1Δ cells is splicing of the aI5β intron in COX1.
Collapse
Affiliation(s)
- Talina Watts
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
46
|
Poulsen JB, Andersen KR, Kjær KH, Durand F, Faou P, Vestergaard AL, Talbo GH, Hoogenraad N, Brodersen DE, Justesen J, Martensen PM. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucleic Acids Res 2011; 39:3754-70. [PMID: 21245038 PMCID: PMC3089451 DOI: 10.1093/nar/gkq1282] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5'-triphosphorylated, 2'-5'-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2'-5'-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral and cellular RNA breakdown. Subsequently, the 2-5As are removed by a 2'-phosphodiesterase (2'-PDE), an enzyme that apart from breaking 2'-5' bonds also degrades regular, 3'-5'-linked oligoadenylates. Interestingly, 2'-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease-endonuclease-phosphatase family of deadenylases. Here we show that 2'-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3'-5' exoribonuclease exhibiting a preference for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2'-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2'-PDE, apart from playing a role in the cellular immune system, may also function in mitochondrial RNA turnover.
Collapse
|
47
|
Michanek A, Kristen N, Höök F, Nylander T, Sparr E. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:829-38. [PMID: 20036213 DOI: 10.1016/j.bbamem.2009.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/12/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na(+)) or divalent (Ca(2+)) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do not influence the melting transition in these system. The results in this study on tRNA-phospholipid interactions can have implications for understanding its biological function in, e.g., the cell nuclei, as well as in applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Agnes Michanek
- Physical Chemistry 1, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2522-31. [PMID: 19332674 DOI: 10.1128/aac.00035-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria.
Collapse
|
49
|
Overexpression and purification of rat peroxisomal membrane protein 22, PMP22, in Pichia pastoris. Protein Expr Purif 2009; 64:47-54. [DOI: 10.1016/j.pep.2008.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022]
|
50
|
Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8+ T cells. J Virol 2009; 83:4354-64. [PMID: 19193788 DOI: 10.1128/jvi.02629-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CD8(+) T cells display a noncytotoxic activity that suppresses transcription of human immunodeficiency virus type 1 (HIV-1) in an antigen-independent and major histocompatibility complex-unrestricted manner. To date, the precise cellular and molecular factors mediating this CD8(+) T-cell effector function remain unsolved. Despite evidence indicating the dependence of the activity on cell-cell contact, the possibility of a membrane-mediated activity that represses transcription from the viral promoter remains unexplored. We therefore investigated whether this inhibition of HIV-1 transcription might be elicited by a membrane-bound determinant. Using a CD8(+) T-cell line displaying potent noncytotoxic HIV-1 suppression activity, we have identified a membrane-localized HIV-1-suppressing activity that is concomitantly secreted as 30- to 100-nm endosome-derived tetraspanin-rich vesicles known as exosomes. Purified exosomes from CD8(+) T-cell culture supernatant noncytotoxically suppressed CCR5-tropic (R5) and CXCR4-tropic (X4) replication of HIV-1 in vitro through a protein moiety. Similar antiviral activity was also found in exosomes isolated from two HIV-1-infected subjects. The antiviral exosomes specifically inhibited HIV-1 transcription in both acute and chronic models of infection. Our results, for the first time, indicate the existence of an antiviral membrane-bound factor consistent with the hallmarks defining noncytotoxic CD8(+) T-cell suppression of HIV-1.
Collapse
|