1
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
2
|
Kuhlmann C, Schenck TL, Aszodi A, Giunta RE, Wiggenhauser PS. Zone-Dependent Architecture and Biochemical Composition of Decellularized Porcine Nasal Cartilage Modulate the Activity of Adipose Tissue-Derived Stem Cells in Cartilage Regeneration. Int J Mol Sci 2021; 22:ijms22189917. [PMID: 34576079 PMCID: PMC8470846 DOI: 10.3390/ijms22189917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Previous anatomical studies have shown different functional zones in human nasal septal cartilage (NC). These zones differ in respect to histological architecture and biochemical composition. The aim of this study was to investigate the influence of these zones on the fate of stem cells from a regenerative perspective. Therefore, decellularized porcine septal cartilage was prepared and subjected to histological assessment to demonstrate its equivalence to human cartilage. Decellularized porcine NC (DPNC) exposed distinct surfaces depending on two different histological zones: the outer surface (OS), which is equivalent to the superficial zone, and the inner surface (IS), which is equivalent to the central zone. Human adipose tissue-derived stem cells (ASCs) were isolated from the abdominal fat tissue of five female patients and were seeded on the IS and OS of DPNC, respectively. Cell seeding efficiency (CSE), vitality, proliferation, migration, the production of sulfated glycosaminoglycans (sGAG) and chondrogenic differentiation capacity were evaluated by histological staining (DAPI, Phalloidin, Live-Dead), biochemical assays (alamarBlue®, PicoGreen®, DMMB) and the quantification of gene expression (qPCR). Results show that cell vitality and CSE were not influenced by DPNC zones. ASCs, however, showed a significantly higher proliferation and elevated expression of early chondrogenic differentiation, as well as fibrocartilage markers, on the OS. On the contrary, there was a significantly higher upregulation of hypertrophy marker MMP13 (p < 0.0001) and GAG production (p = 0.0105) on the IS, whereas cell invasion into the three-dimensional DPNC was higher in comparison to the OS. We conclude that the zonal-dependent distinct architecture and composition of NC modulates activities of ASCs seeded on DPNC. These findings might be used for engineering of cartilage substitutes needed in facial reconstructive surgery that yield an equivalent histological and functional structure, such as native NC.
Collapse
Affiliation(s)
- Constanze Kuhlmann
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
- Laboratory of Cartilage Development, Diseases and Regeneration, Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany;
| | - Thilo L. Schenck
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
| | - Attila Aszodi
- Laboratory of Cartilage Development, Diseases and Regeneration, Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany;
| | - Riccardo E. Giunta
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
| | - Paul Severin Wiggenhauser
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
- Correspondence:
| |
Collapse
|
3
|
Shen H, He Y, Wang N, Fritch MR, Li X, Lin H, Tuan RS. Enhancing the potential of aged human articular chondrocytes for high-quality cartilage regeneration. FASEB J 2021; 35:e21410. [PMID: 33617078 DOI: 10.1096/fj.202002386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 11/11/2022]
Abstract
Autologous chondrocyte implantation (ACI) is a regenerative procedure used to treat focal articular cartilage defects in knee joints. However, age has been considered as a limiting factor and ACI is not recommended for patients older than 40-50 years of age. One reason for this may be due to the reduced capacity of aged chondrocytes in generating new cartilage. Currently, the underlying mechanism contributing to aging-associated functional decline in chondrocytes is not clear and no proven approach exists to reverse chondrocyte aging. Given that chondrocytes in healthy hyaline cartilage typically display a spherical shape, believed to be essential for chondrocyte phenotype stability, we hypothesize that maintaining aged chondrocytes in a suspension culture that forces the cells to adopt a round morphology may help to "rejuvenate" them to a younger state, thus, leading to enhanced cartilage regeneration. Chondrocytes isolated from aged donors displayed reduced proliferation potential and impaired capacity in generating hyaline cartilage, compared to cells isolated from young donors, indicated by increased hypertrophy and cellular senescence. To test our hypothesis, the "old" chondrocytes were seeded as a suspension onto an agarose-based substratum, where they maintained a round morphology. After the 3-day suspension culture, aged chondrocytes displayed enhanced replicative capacity, compared to those grown adherent to tissue culture plastic. Moreover, chondrocytes subjected to suspension culture formed new cartilage in vitro with higher quality and quantity, with enhanced cartilage matrix deposition, concomitant with lower levels of hypertrophy and cellular senescence markers. Mechanistic analysis suggested the involvement of the RhoA and ERK1/2 signaling pathways in the "rejuvenation" process. In summary, our study presents a robust and straightforward method to enhance the function of aged human chondrocytes, which can be conveniently used to generate a large number of high-quality chondrocytes for ACI application in the elderly.
Collapse
Affiliation(s)
- He Shen
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinyu Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Gryadunova AA, Koudan EV, Rodionov SA, Pereira FDAS, Meteleva NY, Kasyanov VA, Parfenov VA, Kovalev AV, Khesuani YD, Mironov VA, Bulanova EA. Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres. Acta Biomater 2020; 118:141-152. [PMID: 33045401 DOI: 10.1016/j.actbio.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.
Collapse
Affiliation(s)
- Anna A Gryadunova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation.
| | - Elizaveta V Koudan
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| | - Sergey A Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - F D A S Pereira
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Nina Yu Meteleva
- I.D. Papanin Institute for Biology of Inland Waters RAS, Borok 152742, Russian Federation
| | - Vladimir A Kasyanov
- Riga Stradins University, Riga LV-1007, Latvia; Riga Technical University, Riga LV-1658, Latvia
| | - Vladislav A Parfenov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Alexey V Kovalev
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Vladimir A Mironov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | - Elena A Bulanova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| |
Collapse
|
5
|
Lin IC, Wang TJ, Wu CL, Lu DH, Chen YR, Yang KC. Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose-derived stem cells. Regen Ther 2020; 14:238-244. [PMID: 32435677 PMCID: PMC7229425 DOI: 10.1016/j.reth.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are potential cell sources for cartilage tissue engineering. Chitosan has been shown to enhance the stemness and differentiation capability of ASCs, and the native extracellular matrix (ECM) derived from articular cartilage has been also reported to induce chondrogenic differentiation of ASCs. Here we tested the hypothesis that a porous three-dimensional (3D) hybrid scaffold composed of chitosan and cartilage ECM can provide a better environment to induce ASC chondrogenesis. Methods Mixed solution composed of chitosan and cartilage ECM was frozen and lyophilized to form a composite construct. The porous 3D scaffolds were further crosslinked by genipin and used for ASC culture. Results Cultivation of ASCs in the chitosan/cartilage ECM composite 3D scaffolds induced the formation of cell spheroids with profound glycosaminoglycan production after 14 and 28 days culture. Chondrogenesis of ASCs seeded in the 3D scaffolds was also evident by mRNA expressions of cartilage-specific gene COL2A1 and ACAN on day 14. Histology and immunohistochemistry on day 28 also showed abundant cartilage-specific macromolecules, namely collagen type II and proteoglycan, deposited in a surface layer of the composite scaffold with tangential layer, transitional layer, and lacunae-like structures. Otherwise, hypertrophic markers collagen type I and X were concentrated in the area beneath the surface. Conclusion Our findings demonstrated spatial chondrogenic differentiation of ASCs in the chitosan-cartilage ECM composite scaffolds. This 3D hybrid scaffold exhibits great potentials for ASC-based cartilage tissue engineering.
Cultivation of ASCs in the chitosan and cartilage ECM hybrid scaffold induced chondrogenesis. ASCs in composite scaffold expressed cartilage-specific genes COL2A1 and ACAN. Histologic inspections showed abundant cartilage-specific collagen type II and proteoglycan productions. Chitosan-cartilage ECM hybrid scaffold exhibits great potentials for ASC-based cartilage tissue engineering.
Collapse
Affiliation(s)
- I-Chan Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chien-Liang Wu
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Ophthalmology, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Dai-Hua Lu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ru Chen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Kosorn W, Sakulsumbat M, Lertwimol T, Thavornyutikarn B, Uppanan P, Chantaweroad S, Janvikul W. Chondrogenic phenotype in responses to poly(ɛ-caprolactone) scaffolds catalyzed by bioenzymes: effects of surface topography and chemistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:128. [PMID: 31776772 DOI: 10.1007/s10856-019-6335-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) has been increasingly investigated as a promising scaffolding material for articular cartilage tissue repair. However, its use can be limited due to its surface hydrophobicity and topography. In this study, 3D porous PCL scaffolds fabricated by a fused deposition modeling (FDM) machine were enzymatically hydrolyzed using two different biocatalysts, namely Novozyme®435 and Amano lipase PS, at varied treatment conditions in a pH 8.0 phosphate buffer solution. The improved surface topography and chemistry of the PCL scaffolds were anticipated to ultimately boost the growth of porcine articular chondrocytes and promote the chondrogenic phenotype during cell culture. Alterations in surface roughness, wettability, and chemistry of the PCL scaffolds after enzymatic treatment were thoroughly investigated using several techniques, e.g., SEM, AFM, contact angle and surface energy measurement, and XPS. With increasing enzyme content, incubation time, and incubation temperature, the surfaces of the PCL scaffolds became rougher and more hydrophilic. In addition, Novozyme®435 was found to have a higher enzyme activity than Amano lipase PS when both were used in the same enzymatic treatment condition. Interestingly, the enzymatic degradation process rarely induced the deterioration of compressive strength of the bulk porous PCL material and slightly reduced the molecular weight of the material at the filament surface. After 28 days of culture, both porous PCL scaffolds catalyzed by Novozyme®435 and Amano lipase PS could facilitate the chondrocytes to not only proliferate properly, but also function more effectively, compared with the non-modified porous PCL scaffold. Furthermore, the enzymatic treatments with 50 mg of Novozyme®435 at 25 °C from 10 min to 60 min were evidently proven to provide the optimally enhanced surface roughness and hydrophilicity most significantly favorable for induction of chondrogenic phenotype, indicated by the greatest expression level of cartilage-specific gene and the largest production of total glycosaminoglycans.
Collapse
Affiliation(s)
- Wasana Kosorn
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Morakot Sakulsumbat
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Tareerat Lertwimol
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Paweena Uppanan
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Surapol Chantaweroad
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Wanida Janvikul
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
7
|
Abstract
During cartilage development chondrocytes undergo a multi-step process characterized by consecutive changes in cell morphology and gene expression. Cell proliferation, polarity, differentiation, and migration are influenced by chemical and mechanical signaling between the extracellular matrix (ECM) and the cell. Several structurally diverse transmembrane receptors such as integrins, discoidin domain receptor 2 (DDR 2), and CD44 mediate the crosstalk between cells and their ECM. However, the contribution of cell-matrix interactions during early chondrogenesis and further cartilage development through cell receptors and their signal transduction pathways is still not fully understood. Determination of receptor signaling pathways and the function of downstream targets will aid in a better understanding of musculoskeletal pathologies such as chondrodysplasia, and the development of new approaches for the treatment of cartilage disorders. We will summarize recent findings, linking cell receptors and their potential signaling pathways to the control of chondrocyte behavior during early chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Carina Prein
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, and Western University Bone and Joint Institute, University of Western Ontario, London, ON, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, and Western University Bone and Joint Institute, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Zheng H, Ramnaraign D, Anderson BA, Tycksen E, Nunley R, McAlinden A. MicroRNA-138 Inhibits Osteogenic Differentiation and Mineralization of Human Dedifferentiated Chondrocytes by Regulating RhoC and the Actin Cytoskeleton. JBMR Plus 2018; 3:e10071. [PMID: 30828688 PMCID: PMC6383697 DOI: 10.1002/jbm4.10071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play critical roles in many cellular processes including those regulating skeletal development and homeostasis. A previous study from our group identified differentially expressed miRNAs in the developing human growth plate. Among those more highly expressed in hypertrophic chondrocytes compared to progenitor chondrocytes was miR‐138, therefore suggesting a possible role for this miRNA in regulating chondrogenesis and/or endochondral ossification. The goal of this study was to determine the function of miR‐ 138 in regulating osteogenesis by using human osteoarthritic dedifferentiated chondrocytes (DDCs) as source of inducible cells. We show that over‐expression of miR‐138 inhibited osteogenic differentiation of DDCs in vitro. Moreover, cell shape was altered and cell proliferation and possibly migration was also suppressed by miR‐138. Given alterations in cell shape, closer analysis revealed that F‐actin polymerization was also inhibited by miR‐138. Computational approaches showed that the small GTPase, RhoC, is a potential miR‐138 target gene. We pursued RhoC further given its function in regulating cell proliferation and migration in cancer cells. Indeed, miR‐138 over‐expression in DDCs resulted in decreased RhoC protein levels. A series of rescue experiments showed that RhoC over‐expression could attenuate the inhibitory actions of miR‐138 on DDC proliferation, F‐actin polymerization and osteogenic differentiation. Bone formation was also found to be enhanced within human demineralized bone scaffolds seeded with DDCs expressing both miR‐138 and RhoC. In conclusion, we have discovered a new mechanism in DDCs whereby miR‐138 functions to suppress RhoC which subsequently inhibits proliferation, F‐actin polymerization and osteogenic differentiation. To date, there are no published reports on the importance of RhoC in regulating osteogenesis. This opens up new avenues of research involving miR‐138 and RhoC pathways to better understand mechanisms regulating bone formation in addition to the potential use of DDCs as a cell source for bone tissue engineering. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | | | - Britta A Anderson
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Eric Tycksen
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Ryan Nunley
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Audrey McAlinden
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
- Department of Cell BiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
9
|
Tamaddon M, Liu C. Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:255-298. [PMID: 29736578 DOI: 10.1007/978-3-319-76735-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Chaozong Liu
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
10
|
Brunelle AR, Horner CB, Low K, Ico G, Nam J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater 2018; 66:166-176. [PMID: 29128540 DOI: 10.1016/j.actbio.2017.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Abstract
Hydrogels have shown great potential for cartilage tissue engineering applications due to their capability to encapsulate cells within biomimetic, 3-dimensional (3D) microenvironments. However, the multi-step fabrication process that is necessary to produce cell/scaffold constructs with defined dimensions, limits their off-the-shelf translational usage. In this study, we have developed a hybrid scaffolding system which combines a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide) (PEG-PNIPAAm), with a biodegradable polymer, poly(ε-caprolactone) (PCL), into a composite, electrospun microfibrous structure. A judicious optimization of material composition and electrospinning process produced a structurally self-supporting hybrid scaffold. The reverse thermosensitivity of PEG-PNIPAAm allowed its dissolution/hydration upon cell seeding within a network of PCL microfibers while maintaining the overall scaffold shape at room temperature. A subsequent temperature elevation to 37 °C induced the hydrogel's phase transition to a gel state, effectively encapsulating cells in a 3D hydrogel without the use of a mold. We demonstrated that the hybrid scaffold enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs) based on chondrocytic gene and protein expression, which resulted in superior viscoelastic properties of the cell/scaffold constructs. The hybrid scaffold enables a facile, single-step cell seeding process to inoculate cells within a 3D hydrogel with the potential for cartilage tissue engineering. STATEMENT OF SIGNIFICANCE Hydrogels have demonstrated the excellent ability to enhance chondrogenesis of stem cells due to their hydrated fibrous nanostructure providing a cellular environment similar to native cartilage. However, the necessity for multi-step processes, including mixing of hydrogel precursor with cells and subsequent gelation in a mold to form a defined shape, limits their off-the-shelf usage. In this study, we developed a hybrid scaffold by combining a thermosensitive hydrogel with a mechanically stable polymer, which provides a facile means to inoculate cells in a 3D hydrogel with a mold-less, single step cell seeding process. We further showed that the hybrid scaffold enhanced chondrogenesis of mesenchymal stem cells, demonstrating its potential for cartilage tissue engineering.
Collapse
|
11
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
12
|
Kim H, Kim DH, Jeong B, Kim JH, Lee SR, Sonn JK. Blebbistatin induces chondrogenesis of single mesenchymal cells via PI3K/PDK1/mTOR/p70S6K pathway. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
PI3 Kinase Pathway and MET Inhibition is Efficacious in Malignant Pleural Mesothelioma. Sci Rep 2016; 6:32992. [PMID: 27623107 PMCID: PMC5021085 DOI: 10.1038/srep32992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is commonly associated with prior asbestos exposure. Receptor tyrosine kinases (RTKs) such as MET and its downstream target PI3K are overexpressed and activated in a majority of MPMs. Here, we studied the combinatorial therapeutic efficacy of the MET/ALK inhibitor crizotinib, with either a pan-class I PI3K inhibitor, BKM120, or with a PI3K/mTOR dual inhibitor, GDC-0980, in mesothelioma. Cell viability results showed that MPM cells were highly sensitive to crizotinib, BKM120 and GDC-0980 when used individually and their combination was more effective in suppressing growth. Treatment of MPM cells with these inhibitors also significantly decreased cell migration, and the combination of them was synergistic. Treatment with BKM120 alone or in combination with crizotinib induced G2-M arrest and apoptosis. Both crizotinib and BKM120 strongly inhibited the activity of MET and PI3K as evidenced by the decreased phosphorylation of MET, AKT and ribosomal S6 kinase. Using a PDX mouse model, we showed that a combination of crizotinib with BKM120 was highly synergetic in inhibiting MPM tumor growth. In conclusion our findings suggest that dual inhibition of PI3K and MET pathway is an effective strategy in treating MPM as compared to a single agent.
Collapse
|
14
|
McCorry MC, Puetzer JL, Bonassar LJ. Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. Stem Cell Res Ther 2016; 7:39. [PMID: 26971202 PMCID: PMC4789279 DOI: 10.1186/s13287-016-0301-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology. Methods MSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X. Results Cells were homogeneously mixed throughout the scaffold and cells had limited direct cell–cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels. Conclusions MSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0301-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jennifer L Puetzer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. .,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 2016; 33:1-12. [PMID: 26826532 DOI: 10.1016/j.actbio.2016.01.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. STATEMENT OF SIGNIFICANCE The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study. The authors propose broader studies implementing new high-throughput techniques for mechanical characterization of tissue engineering constructs and the inclusion of fatigue analysis as support methodology to more exhaustive mechanical characterization.
Collapse
|
16
|
Di Luca A, Longoni A, Criscenti G, Lorenzo-Moldero I, Klein-Gunnewiek M, Vancso J, van Blitterswijk C, Mota C, Moroni L. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication 2016; 8:015014. [DOI: 10.1088/1758-5090/8/1/015014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Staurosporine induces chondrogenesis of chick embryo wing bud mesenchyme in monolayer cultures through canonical and non-canonical TGF-β pathways. In Vitro Cell Dev Biol Anim 2015; 52:120-9. [PMID: 26427712 DOI: 10.1007/s11626-015-9954-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022]
Abstract
Staurosporine has been known to induce chondrogenesis in monolayer cultures of mesenchymal cells by dissolving actin stress fibers. The aim of this study was to further elucidate how the alteration of actin filaments by staurosporine induces chondrogenesis. Specifically, we examined whether the transforming growth factor (TGF)-β pathway is implicated. SB505124 strongly suppressed staurosporine-induced chondrogenesis without affecting the drug's action on the actin cytoskeleton. Staurosporine increased the phosphorylation of TGF-β receptor I (TβRI) but had no significant effect on the expression levels of TGF-β1, TGF-β2, TGF-β3, TβRI, TβRII, and TβRIII. Phosphorylation of Smad2 and Smad3 was not increased by staurosporine. However, SB505124 almost completely suppressed the phosphorylation of Smad2 and Smad3. In addition, inhibition of Smad3 blocked staurosporine-induced chondrogenesis. Inhibition of Akt, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) suppressed chondrogenesis induced by staurosporine. Phosphorylation of Akt, p38 MAPK, and JNK was increased by staurosporine. SB505124 reduced the phosphorylation of Akt and p38 MAPK, while it had no effect on the phosphorylation of JNK. The phosphorylation level of extracellular signal-regulated kinase (ERK) was not significantly affected by staurosporine. In addition, inhibition of ERK with PD98059 alone did not induce chondrogenesis. Taken together, these results suggest that staurosporine induces chondrogenesis through TGF-β pathways including canonical Smads and non-canonical Akt and p38 MAPK signaling.
Collapse
|
18
|
Ray P, Chapman SC. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. PLoS One 2015; 10:e0134702. [PMID: 26237312 PMCID: PMC4523177 DOI: 10.1371/journal.pone.0134702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Collapse
Affiliation(s)
- Poulomi Ray
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
19
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
20
|
Restoration of chondrocytic phenotype on a two-dimensional micropatterned surface. Biointerphases 2015; 10:011003. [PMID: 25720765 DOI: 10.1116/1.4913565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocytes within mature cartilage reside in a 3D matrix and adopt a distinctive round morphology. A vast 2D-culture surface is well-known to induce chondrocyte dedifferentiation characterized by the loss of spherical morphology and ceased expression of chondrogenic markers. Methods to restore chondrogenesis so far only occur on a certain level producing varied cell subpopulations and inferior cartilage matrix; the critical parameters, especially for the pericellular microenvironment, are still to be precisely determined. In this study, arrays of 2D circular micropatterns were designed to hold single subcultured chondrocytes with stable adhesion. The chondrocytes rounded up forming a 3D architecture; they remodeled their cytoskeleton to resemble in-situ chondrocytes and expressed collagen II instead of collagen I or fibronectin. This technique suggested that pure physical constraints can induce chondrocytic phenotype restoration on a 2D surface; it also provides a new design pathway to precisely control the microenvironment surrounding every chondrocyte therefore to unify the redifferentiation level of individual cell.
Collapse
|
21
|
Li YY, Choy TH, Ho FC, Chan PB. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation. Biomaterials 2015; 52:208-20. [PMID: 25818427 DOI: 10.1016/j.biomaterials.2015.02.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional binding between αv and fibronectin. In addition, vimentin was the dominant cytoskeletal protein in these cells, and the chondrogenic marker genes were expressed but at a much lower level than in the MSCs encapsulated in C alone. This work suggests the importance of controlling the matrix composition as a strategy to manipulate cell-matrix interactions (through changes in the integrin expression profile and cytoskeleton organization), and hence stem cell fates.
Collapse
Affiliation(s)
- Yuk Yin Li
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Tze Hang Choy
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Fu Chak Ho
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Pui Barbara Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
22
|
|
23
|
Maeda E, Tsutsumi T, Kitamura N, Kurokawa T, Ping Gong J, Yasuda K, Ohashi T. Significant increase in Young's modulus of ATDC5 cells during chondrogenic differentiation induced by PAMPS/PDMAAm double-network gel: comparison with induction by insulin. J Biomech 2014; 47:3408-14. [PMID: 25110167 DOI: 10.1016/j.jbiomech.2014.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022]
Abstract
A double-network (DN) gel, which was composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated the biomechanical and biological responses of chondrogenic progenitor ATDC5 cells cultured on the DN gel. ATDC5 cells were cultured on a polystyrene surface without insulin (Culture 1) and with insulin (Culture 2), and on the DN gel without insulin (Culture 3). The cultured cells were evaluated using micropipette aspiration for cell Young's modulus and qPCR for gene expression of chondrogenic and actin organization markers on days 3, 7 and 14. On day 3, the cells in Culture 3 formed nodules, in which the cells exhibited an actin cortical layer inside them, and gene expression of type-II collagen, aggrecan, and SOX9 was significantly higher in Culture 3 than Cultures 1 and 2 (p<0.05). Young's modulus in Culture 3 was significantly higher than that in Culture 1 throughout the testing period (p<0.05) and that in Culture 2 on day 14 (p<0.01). There was continuous expression of actin organization markers in Culture 3. This study highlights that the cells on the DN gel increased the modulus and mRNA expression of chondrogenic markers at an earlier time point with a greater magnitude compared to those on the polystyrene surface with insulin. This study also demonstrates a possible strong interrelation among alteration of cell mechanical properties, changes in actin organization and the induction of chondrogenic differentiation.
Collapse
Affiliation(s)
- Eijiro Maeda
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Takehiro Tsutsumi
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Nobuto Kitamura
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Toshiro Ohashi
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
24
|
Feng Q, Zhu M, Wei K, Bian L. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. PLoS One 2014; 9:e99587. [PMID: 24911871 PMCID: PMC4049825 DOI: 10.1371/journal.pone.0099587] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022] Open
Abstract
Photocrosslinked methacrylated hyaluronic acid (MeHA) hydrogels support chondrogenesis of encapsulated human mesenchymal stem cells (hMSCs). However, the covalent crosslinks formed via chain polymerization in these hydrogels are hydrolytically non-degradable and restrict cartilage matrix spatial distribution and cell spreading. Meanwhile, cells are known to remodel their surrounding extracellular matrix (ECM) by secreting catabolic enzymes, such as MMPs. Hydrogels that are created with bifunctional crosslinkers containing MMP degradable peptide sequences have been shown to influence hMSC differentiations. However, crosslinks formed in the MMP-degradable hydrogels of these previous studies are also prone to hydrolysis, thereby confounding the effect of MMP-mediated degradation. The objective of this study is to develop a MMP-sensitive but hydrolytically stable hydrogel scaffold and investigate the effect of MMP-mediated hydrogel degradation on the chondrogenesis of the encapsulated hMSCs. Hyaluronic acid macromers were modified with maleimide groups and crosslinked with MMP-cleavable peptides or control crosslinkers containing dual thiol groups. The chondrogenesis of the hMSCs encapsulated in the hydrolytically stable MMP-sensitive HA hydrogels were compared with that of the MMP-insensitive HA hydrogels. It was found that hMSCs encapsulated in the MMP-sensitive hydrogels switched to a more spreaded morphology while cells in the MMP-insensitive hydrogels remained in round shape. Furthermore, hMSCs in the MMP-sensitive hydrogels expressed higher level of chondrogenic marker genes but lower level of hypertrophic genes compared to cells in the MMP-insensitive hydrogels. As a result, more cartilage specific matrix molecules but less calcification was observed in the MMP-degradable hydrogels than in the MMP-insensitive hydrogels. Findings from this study demonstrate that cell-mediated scaffold degradation regulates the chondrogenesis and hypertrophy of hMSCs encapsulated in HA hydrogels.
Collapse
Affiliation(s)
- Qian Feng
- Division of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
- Department of Mechanical and Automation Engineering and the Shun Hing Institute of Advanced Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
| | - Meiling Zhu
- Division of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
- Department of Mechanical and Automation Engineering and the Shun Hing Institute of Advanced Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
| | - Kongchang Wei
- Division of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
- Department of Mechanical and Automation Engineering and the Shun Hing Institute of Advanced Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
| | - Liming Bian
- Division of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
- Department of Mechanical and Automation Engineering and the Shun Hing Institute of Advanced Engineering, the Chinese University of Hong Kong, Hong Kong, the People's Republic of China
- The Chinese University of Hong Kong Shenzhen Research Institute, the People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Zhang J, Wu Y, Thote T, Lee EH, Ge Z, Yang Z. The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells. Biomed Mater 2014; 9:035011. [PMID: 24818859 DOI: 10.1088/1748-6041/9/3/035011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Different forms of biomaterials, including microspheres, sponges, hydrogels and nanofibres have been broadly used in cartilage regeneration; however, effects of internal structures of biomaterials on chondrogenesis of mesenchymal stem cells (MSCs) remain largely unexplored. Here we investigated the effect of physical microenvironments of sponges and hydrogels on chondrogenic differentiation of MSCs. MSCs, cultured in these two scaffold systems, were induced with TGF-β3 in chondrogeneic differentiation medium and the chondrogenic differentiation was evaluated and compared after three weeks. MSCs in the sponges clustered with spindle morphologies, while they distributed homogenously with round morphologies in the hydrogel. The MSCs proliferated faster in the sponge compared to that in the hydrogel. Significantly higher glycosaminoglycan and collagen II were found in the sponges but not in the hydrogels. The different tissue formation ability of MSCs in these two systems could be attributed to the different metabolic requirements and the cellular events prerequisite in the chondrogenic process of MSCs. It is reasonable to conclude that sponges with relatively active microenvironments that facilitate cell-cell contacts and cell-matrix interaction are optimal for early stage of chondrogeneic differentiation.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Kwon HJ, Yasuda K, Gong JP, Ohmiya Y. Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromol Res 2014. [DOI: 10.1007/s13233-014-2045-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cell Signal 2014; 26:979-1000. [PMID: 24440668 DOI: 10.1016/j.cellsig.2014.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
Abstract
During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Ali Mobasheri
- D-BOARD European Consortium for Biomarker Discovery, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Medicine, Faculty of Medicine and Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Mizuhashi K, Kanamoto T, Moriishi T, Muranishi Y, Miyazaki T, Terada K, Omori Y, Ito M, Komori T, Furukawa T. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum Mol Genet 2014; 23:2953-67. [DOI: 10.1093/hmg/ddu007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
29
|
Murphy MK, Masters TE, Hu JC, Athanasiou KA. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation. Cell Transplant 2013; 24:235-45. [PMID: 24380383 DOI: 10.3727/096368913x676204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in a monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II-to-I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage.
Collapse
Affiliation(s)
- Meghan K Murphy
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
30
|
McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor β-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A 2013; 20:921-9. [PMID: 24116978 DOI: 10.1089/ten.tea.2013.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The phenotype of articular chondrocytes is dependent on the cytoskeleton, specifically the actin microfilament architecture. Articular chondrocytes in monolayer culture undergo dedifferentiation and assume a fibroblastic phenotype. This process can be reversed by altering the actin cytoskeleton by treatment with cytochalasin. Whereas dedifferentiation has been studied on chondrocytes isolated from the whole cartilage, the effects of cytoskeletal alteration on specific zones of cells such as superficial zone chondrocytes are not known. Chondrocytes from the superficial zone secrete superficial zone protein (SZP), a lubricating proteoglycan that reduces the coefficient of friction of articular cartilage. A better understanding of this phenomenon may be useful in elucidating chondrocyte dedifferentiation in monolayer and accumulation of the cartilage lubricant SZP, with an eye toward tissue engineering functional articular cartilage. In this investigation, the effects of cytoskeletal modulation on the ability of superficial zone chondrocytes to secrete SZP were examined. Primary superficial zone chondrocytes were cultured in monolayer and treated with a combination of cytoskeleton modifying reagents and transforming growth factor β (TGFβ) 1, a critical regulator of SZP production. Whereas cytochalasin D maintains the articular chondrocyte phenotype, the hallmark of the superficial zone chondrocyte, SZP, was inhibited in the presence of TGFβ1. A decrease in TGFβ1-induced SZP accumulation was also observed when the microtubule cytoskeleton was modified using paclitaxel. These effects of actin and microtubule alteration were confirmed through the application of jasplakinolide and colchicine, respectively. As Rho GTPases regulate actin organization and microtubule polymerization, we hypothesized that the cytoskeleton is critical for TGFβ-induced SZP accumulation. TGFβ-mediated SZP accumulation was inhibited by small molecule inhibitors ML141 (Cdc42), NSC23766 (Rac1), and Y27632 (Rho effector Rho Kinase). On the other hand, lysophosphatidic acid, an upstream activator of Rho, increased SZP synthesis in response to TGFβ1. These results suggest that SZP production is dependent on the functional cytoskeleton, and Rho GTPases contribute to SZP accumulation by modulating the actions of TGFβ.
Collapse
Affiliation(s)
- Sean M McNary
- 1 Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| | | | | |
Collapse
|
31
|
Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013; 19:3429-45. [PMID: 23432679 DOI: 10.2174/13816128113199990350] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/10/2013] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation.
Collapse
Affiliation(s)
- Patrick T Brown
- Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | | | | | | |
Collapse
|
32
|
Dowling EP, Ronan W, McGarry JP. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 2013; 9:5943-55. [PMID: 23271042 DOI: 10.1016/j.actbio.2012.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/22/2022]
Abstract
Previous experimental studies have determined local strain fields for both healthy and degenerate cartilage tissue during mechanical loading. However, the biomechanical response of chondrocytes in situ, in particular the response of the actin cytoskeleton to physiological loading conditions, is poorly understood. In the current study a three-dimensional (3-D) representative volume element (RVE) for cartilage tissue is created, comprising a chondrocyte surrounded by a pericellular matrix and embedded in an extracellular matrix. A 3-D active modelling framework incorporating actin cytoskeleton remodelling and contractility is implemented to predict the biomechanical behaviour of chondrocytes. Physiological and abnormal strain fields, based on the experimental study of Wong and Sah (J. Orthop. Res. 2010; 28: 1554-1561), are applied to the RVE. Simulations demonstrate that the presence of a focal defect significantly affects cellular deformation, increases the stress experienced by the nucleus, and alters the distribution of the actin cytoskeleton. It is demonstrated that during dynamic loading cyclic tension reduction in the cytoplasm causes continuous dissociation of the actin cytoskeleton. In contrast, during static loading significant changes in cytoplasm tension are not predicted and hence the rate of dissociation of the actin cytoskeleton is reduced. It is demonstrated that chondrocyte behaviour is affected by the stiffness of the pericellular matrix, and also by the anisotropy of the extracellular matrix. The findings of the current study are of particular importance in understanding the biomechanics underlying experimental observations such as actin cytoskeleton dissociation during the dynamic loading of chondrocytes.
Collapse
Affiliation(s)
- Enda P Dowling
- Mechanical and Biomedical Engineering, National University of Ireland-Galway, Galway, Ireland
| | | | | |
Collapse
|
33
|
Kim M, Song K, Jin EJ, Sonn J. Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way. Exp Mol Med 2013; 44:521-8. [PMID: 22684244 PMCID: PMC3465745 DOI: 10.3858/emm.2012.44.9.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | |
Collapse
|
34
|
Krug D, Klinger M, Haller R, Hargus G, Büning J, Rohwedel J, Kramer J. Minor cartilage collagens type IX and XI are expressed during embryonic stem cell-derived in vitro chondrogenesis. Ann Anat 2013; 195:88-97. [DOI: 10.1016/j.aanat.2012.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
35
|
Kaivosoja E, Barreto G, Levón K, Virtanen S, Ainola M, Konttinen YT. Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med 2012; 44:635-50. [PMID: 21568670 DOI: 10.3109/07853890.2011.573805] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine is a multidisciplinary field utilizing the potential of stem cells and the regenerative capability of the body to restore, maintain, or enhance tissue and organ functions. Stem cells are unspecialized cells that can self-renew but also differentiate into several somatic cells when subjected the appropriate environmental cues. The ability to reliably direct stem cell fate would provide tremendous potential for basic research and clinical therapies. Proper tissue function and regeneration rely on the spatial and temporal control of biophysical and biochemical cues, including soluble molecules, cell-cell contacts, cell-extracellular matrix contacts, and physical forces. The mechanisms involved remain poorly understood. This review focuses on the stem cell-extracellular matrix interactions by summarizing the observations of the effects of material variables (such as overall architecture, surface topography, charge, ζ-potential, surface energy, and elastic modulus) on the stem cell fate. It also deals with the mechanisms underlying the effects of these extrinsic, material variables. Insight in the environmental interactions of the stem cells is crucial for the development of new material-based approaches for cell culture experiments and future experimental and clinical regenerative medicine applications.
Collapse
Affiliation(s)
- Emilia Kaivosoja
- Department of Medicine, Institute of Clinical Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Kwon HJ, Yasuda K. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties. J Mech Behav Biomed Mater 2012; 17:337-46. [PMID: 23127629 DOI: 10.1016/j.jmbbm.2012.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 11/29/2022]
Abstract
Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Regenerative Medicine/Tissue Engineering Division, Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | | |
Collapse
|
37
|
Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes. Drug Deliv Transl Res 2012; 2:351-62. [DOI: 10.1007/s13346-012-0080-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Singh P, Schwarzbauer JE. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci 2012; 125:3703-12. [PMID: 22976308 DOI: 10.1242/jcs.095786] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
39
|
Sukarto A, Yu C, Flynn LE, Amsden BG. Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 2012; 13:2490-502. [PMID: 22746668 DOI: 10.1021/bm300733n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The coencapsulation of growth factor-loaded microspheres with adipose-derived stem cells (ASCs) within a hydrogel matrix was studied as a potential means to enhance ASC chondrogenesis in the development of a cell-based therapeutic strategy for the regeneration of partial thickness chondral defects. A photopolymerizable N-methacrylate glycol chitosan (MGC) was employed to form an in situ gel used to encapsulate microspheres loaded with bone morphogenetic protein 6 (BMP-6) and transforming growth factor-β3 (TGF-β3) with human ASCs. ASC viability and retention were enhanced when the Young's modulus of the MGC ranged between 225 and 380 kPa. Grafting an RGD-containing peptide onto the MGC backbone (RGD-MGC) improved ASC viability within the gels, remaining at greater than 90% over 14 days in culture. The effects of BMP-6 and TGF-β3 released from the polymer microspheres on ASC chondrogenesis were assessed, and the level of differentiation was compared to ASCs in control gels containing nongrowth factor-loaded microspheres cultured with and without the growth factors supplied in the medium. There was enhanced expression of chondrogenic markers at earlier time points when the ASCs were induced with the sustained and local release of BMP-6 and TGF-β3 from the microspheres. More specifically, the normalized glycosaminoglycan and collagen type II protein expression levels were significantly higher than in the controls. In addition, the ratio of collagen type II to type I was significantly higher in the microsphere delivery group and increased over time. End-point RT-PCR analysis supported that there was a more rapid induction and enhancement of ASC chondrogenesis in the controlled release group. Interestingly, in all of the assays, there was evidence of chondrogenic differentiation when the ASCs were cultured in the gels in the absence of growth factor stimulation. Overall, the co-delivery of growth-factor-loaded microspheres and ASCs in RGD-modified MGC gels successfully induced ASC chondrogenesis and is a promising strategy for cartilage repair.
Collapse
Affiliation(s)
- Abby Sukarto
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. J Biomed Mater Res A 2012; 100:2526-36. [PMID: 22492677 DOI: 10.1002/jbm.a.34147] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/30/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
The injury and degeneration of articular cartilage and associated arthritis are leading causes of disability worldwide. Cartilage tissue engineering as a treatment modality for cartilage defects has been investigated for over 20 years. Various scaffold materials have been developed for this purpose, but has yet to achieve feasibility and effectiveness for widespread clinical use. Currently, the regeneration of articular cartilage remains a formidable challenge, due to the complex physiology of cartilage tissue and its poor healing capacity. Although intensive research has been focused on the developmental biology and regeneration of cartilage tissue and a diverse plethora of biomaterials have been developed for this purpose, cartilage regeneration is still suboptimal, such as lacking a layered structure, mechanical mismatch with native cartilage and inadequate integration between native tissue and implanted scaffold. The ideal scaffold material should have versatile properties that actively contribute to cartilage regeneration. Functional scaffold materials may overcome the various challenges faced in cartilage tissue engineering by providing essential biological, mechanical, and physical/chemical signaling cues through innovative design. This review thus focuses on the complex structure of native articular cartilage, the critical properties of scaffolds required for cartilage regeneration, present strategies for scaffold design, and future directions for cartilage regeneration with functional scaffold materials.
Collapse
Affiliation(s)
- Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China.
| | | | | | | | | |
Collapse
|
41
|
Aizawa R, Yamada A, Suzuki D, Iimura T, Kassai H, Harada T, Tsukasaki M, Yamamoto G, Tachikawa T, Nakao K, Yamamoto M, Yamaguchi A, Aiba A, Kamijo R. Cdc42 is required for chondrogenesis and interdigital programmed cell death during limb development. Mech Dev 2012; 129:38-50. [PMID: 22387309 DOI: 10.1016/j.mod.2012.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
Abstract
Cdc42, a member of the Rho subfamily of small GTPases, is known to be a regulator of multiple cellular functions, including cytoskeletal organization, cell migration, proliferation, and apoptosis. However, its tissue-specific roles, especially in mammalian limb development, remain unclear. To investigate the physiological function of Cdc42 during limb development, we generated limb bud mesenchyme-specific inactivated Cdc42 (Cdc42(fl/fl); Prx1-Cre) mice. Cdc42(fl/fl); Prx1-Cre mice demonstrated short limbs and body, abnormal calcification of the cranium, cleft palate, disruption of the xiphoid process, and syndactyly. Severe defects were also found in long bone growth plate cartilage, characterized by loss of columnar organization of chondrocytes, and thickening and massive accumulation of hypertrophic chondrocytes, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed that expressions of Col10 and Mmp13 were reduced in non-resorbed hypertrophic cartilage, indicating that deletion of Cdc42 inhibited their terminal differentiation. Syndactyly in Cdc42(fl/fl); Prx1-Cre mice was caused by fusion of metacarpals and a failure of interdigital programmed cell death (ID-PCD). Whole mount in situ hybridization analysis of limb buds showed that the expression patterns of Sox9 were ectopic, while those of Bmp2, Msx1, and Msx2, known to promote apoptosis in the interdigital mesenchyme, were down-regulated. These results demonstrate that Cdc42 is essential for chondrogenesis and ID-PCD during limb development.
Collapse
Affiliation(s)
- Ryo Aizawa
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells. Biochem Biophys Res Commun 2012; 418:500-5. [DOI: 10.1016/j.bbrc.2012.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 02/05/2023]
|
43
|
Handorf AM, Li WJ. Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One 2011; 6:e22887. [PMID: 21818404 PMCID: PMC3144950 DOI: 10.1371/journal.pone.0022887] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 07/08/2011] [Indexed: 12/03/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG.
Collapse
Affiliation(s)
- Andrew M. Handorf
- Department of Orthopedics and Rehabilitation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
44
|
Liang J, Feng J, Wu WKK, Xiao J, Wu Z, Han D, Zhu Y, Qiu G. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway. J Orthop Res 2011; 29:369-74. [PMID: 20886658 DOI: 10.1002/jor.21257] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/16/2010] [Indexed: 02/04/2023]
Abstract
Leptin affects a number of cell signaling pathways, at present, the mechanism(s) by which leptin affects the cartilage cells in OA patient is not well understood. The current study seeks to elucidate whether leptin induces cytoskeletal remodeling in chondrocytes and the possible involvement of the RhoA/ROCK pathway and its downstream mediators in this process. Fluorescent resonance energy transfer (FRET) and western analysis were used to determine the activations of the key proteins in the RhoA/LIMK1/Cofilin pathway. Accompanying cytoskeletal remodeling was elucidated. Upon leptin stimulation, a substantial increase of RhoA activity localized at one end of the cell was observed from 2 to 30 min post-stimulation. The results of Western blot showed leptin significantly increased LIMK1 and cofilin-2 phosphorylation in a time-dependent manner with maximal stimulation attained 60 min and 24 h post-stimulation, respectively. Chondrocytes stimulated with leptin exhibited an epithelioid morphology with increased cellular spreading. F-actin in leptin-stimulated chondrocytes also showed more intense cytoplasmic staining with occasional localization along filamentous structures. The results indicate that leptin activates the RhoA/ROCK/LIMK/cofilin pathway, which results in cytoskeletal reorganization in chondrocytes. These findings provide novel evidence supporting the possible involvement of leptin and the RhoA pathway in the pathogenesis of OA.
Collapse
Affiliation(s)
- Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Haudenschild DR, Chen J, Pang N, Steklov N, Grogan SP, Lotz MK, D’Lima DD. Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. J Orthop Res 2011; 29:20-5. [PMID: 20602472 PMCID: PMC2976780 DOI: 10.1002/jor.21198] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Actin and tubulin cytoskeletal components are studied extensively in chondrocytes, but less is known about vimentin intermediate filaments. In other cell types, vimentin is a determinant of cell stiffness and disruption of vimentin networks weakens the mechanical integrity of cells. Changes in vimentin organization correlate with osteoarthritis progression, but the functional consequences of these changes remain undetermined in chondrocytes. The objective of this study was to compare the contribution of vimentin to the mechanical stiffness of primary human chondrocytes isolated from normal versus osteoarthritic cartilage. Chondrocytes were embedded in alginate and vimentin networks disrupted with acrylamide. Constructs were imaged while subjected to 20% nominal strain on a confocal microscope stage, and the aspect ratios of approximately 1,900 cells were measured. Cytosolic stiffness was estimated with a finite element model, and live-cell imaging of GFP-vimentin was used to further analyze the nature of vimentin disruption. Vimentin in normal chondrocytes formed an inner cage-like network that was substantially stiffer than the rest of the cytosol and contributed significantly to overall cellular stiffness. Disruption of vimentin reduced stiffness approximately 2.8-fold in normal chondrocytes. In contrast, osteoarthritic chondrocytes were less stiff and less affected by vimentin disruption. This 3D experimental system revealed contributions of vimentin to chondrocyte stiffness previously not apparent, and correlated changes in vimentin-based chondrocyte stiffness with osteoarthritis.
Collapse
Affiliation(s)
- Dominik R. Haudenschild
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037, The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jianfen Chen
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Nina Pang
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Nikolai Steklov
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Martin K. Lotz
- The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037, The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
46
|
Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 2010; 32:1032-40. [PMID: 21074264 DOI: 10.1016/j.biomaterials.2010.08.100] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/29/2010] [Indexed: 10/18/2022]
Abstract
Scaffold architecture and composition are important parameters in cartilage tissue engineering. In this in vitro study, we compared the morphology of four different cell-graft systems applied in clinical cartilage regeneration and analyzed the cell distribution (DAPI nuclei staining) and cell-scaffold interaction (SEM, TEM). Our investigations revealed major differences in cell distribution related to scaffold density, pore size and architecture. Material composition influenced the quantity of autogenous matrix used for cellular adhesion. Cell bonding was further influenced by the geometry of the scaffold subunits. On scaffolds with widely spaced fibers and a thickness less than the cell diameter, chondrocytes surrounded the scaffold fibers with cell extensions. On those fibers, chondrocytes were spherical, suggesting a differentiated phenotype. Fiber sizes smaller than chondrocyte size, and widely spaced, are therefore beneficial in terms of improved adhesion by cell shape adaptation. They also support the differentiated stage of chondrocytes by preventing the fibroblast-like and polygonal cell shape, at least briefly.
Collapse
Affiliation(s)
- Sylvia Nuernberger
- Department of Traumatology, Medical University of Vienna, Vienna 1090, Austria.
| | | | | | | | | | | |
Collapse
|
47
|
Buxton AN, Bahney CS, Yoo JU, Johnstone B. Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Tissue Eng Part A 2010; 17:371-80. [PMID: 20799905 DOI: 10.1089/ten.tea.2009.0839] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tissue engineering utilizes scaffolds containing chondrogenic cells to promote cartilage development at a clinically relevant scale, yet there remains a limited understanding of the optimal conditions for inducing differentiation and matrix production. We investigated how cell density and temporal exposure to chondrogenic factors impacted chondrogenesis of human mesenchymal stem cells (hMSCs) encapsulated in poly(ethylene glycol) diacrylate hydrogels. We found maximal proteoglycan and collagen production in constructs seeded between 10 and 25 × 10(6) cells/mL. Matrix deposition was significantly less per cell in constructs seeded at either higher or lower densities, indicating that paracrine communications may remain important despite loss of direct cell-cell contact. In vitro chondrogenesis of hMSCs was first accomplished using pellet cultures and a defined medium containing transforming growth factor (TGF)-β1 and dexamethasone. The differentiation of hMSCs in hydrogels also required initial exposure to TGF-β1, with no chondrogenic matrix produced in its absence. If TGF-β1 was initially included for at least 7 days, its removal impacted collagen production per cell but also lead to an increase in cell number, such that total collagen deposition was equivalent to controls when TGF-β1 was included for at least 3 weeks. Further, proteoglycan content per construct was higher at 6 weeks after removal of TGF-β1 at any time. In contrast to TGF-β1, dexamethasone was not required for chondrogenesis of hMSCs in hydrogels: there was no difference in matrix deposition between hydrogels cultured with or without dexamethasone. Further, without dexamethasone, SOX9 gene expression was higher during early chondrogenesis and there was a significant reduction in collagen I deposition, suggesting that a more hyaline cartilage phenotype is achieved without dexamethasone. Collagen content at 6 weeks was lower if dexamethasone was excluded after the first 7 days, but was equivalent to control if dexamethasone was included for 2 weeks or longer. Proteoglycan deposition was unaffected by dexamethasone exclusion. These results indicate that modulating exposure to TGF-β1 is beneficial for cell survival/proliferation and matrix production from hMSCs in hydrogels, and that not only is dexamethasone dispensable but also its exclusion may be advantageous for forming hyaline cartilage.
Collapse
Affiliation(s)
- Amanda N Buxton
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
48
|
Kang HG, Ku HO, Jeong SH, Cho JH, Son SW. Evaluation of embryotoxic potential of olaquindox and vitamin a in micromass culture and in rats. Toxicol Res 2010; 26:209-16. [PMID: 24278526 PMCID: PMC3834482 DOI: 10.5487/tr.2010.26.3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/16/2010] [Accepted: 05/31/2010] [Indexed: 11/20/2022] Open
Abstract
Limb bud (LB) and central nerve system (CNS) cells were prepared from 12.5 day old pregnant female Crj:CD (SD) rats and treated with olaquindox and vitamin A. Cytotoxicity and inhibition on differentiation were measured in each cell. Three doses of olaquindox (4, 21 and 100 mgkg) , and 0.2 and 75 mg/kg of vitamin A were administered to pregnant rat for 11 days from 6(th) to 16(th) of pregnancy. IC50 values of olaquindox for proliferation and differentiation in CNS cell were 22.74 and 28.32 μg/ml and 79.34 and 23.29 μg/ml in LB cell and those values of vitamin A were 8.13 and 5.94 μg/ml in CNS cell and 0.81 and 0.05 μg/ml in LB cell, respectively. Mean body weights of pregnant rats were decreased at high dose of olaquindox (110 mg/kg) but relative ovary weight, number of corpus lutea, and number of implantation were not changed. Resorption and dead fetus were increased at high dose of olaquindox, and relative ovary weight, the number of corpus lutea and implantation, and sex ratio of male to female were not significantly changed in all dose of olaquindox. Mean fetal and placenta weights were significantly (p < 0.01) decreased in rats of high group. Seven fetuses out of 103 showed external anomaly like bent tail, and 10 out of 114 fetuses showed visceral anomalies at high group. The ossification of sternebrae and metacarpals were significantly (p < 0.01) increased by low and middle dose of olaquindox but it was significantly (p < 0.01) prohibited by high dose of olaquindox. In rats treated with vitamin A, the resorption and dead fetus were increased by high dose. Mean fetal weights were significantly (p < 0.01) increased by low dose but significantly (p < 0.01) decreased by high dose. Thirty four fetuses out of 52 showed external anomaly; bent tail (1) , cranioarchschisis (14) , exencephaly (14) , dome shaped head (22) , anophthalmia (15) , brcahynathia (10) and others (19) . Forty five fetuses out of 52 showed soft tissue anomaly; cleft palate (42/52) and anophthalmia (22/52) by high dose of vitamin A. Sixty one fetuses out of 61 (85.2%) showed skull anomaly; defect of frontal, partial and occipital bone (21/61) , defect of palatine bone (52/61) and others (50/61) . In summary, we support that vitamin A is strong teratogen based on our micromass and in vivo data, and olaquindox has a weak teratogenic potential in LB cell but not in CNS cell. We provide the in vivo evidence that a high dose of olaquindox could have weak embryotoxic potential in rats.
Collapse
Affiliation(s)
- Hwan Goo Kang
- National Veterinary Research and Quarantine Service, Anyang 430-757
| | - Hyun Ok Ku
- National Veterinary Research and Quarantine Service, Anyang 430-757
| | - Sang Hee Jeong
- GLP Research Center, College of Natural Sciences, Hoseo University, Asan 336-795, Korea
| | - Joon Hyoung Cho
- National Veterinary Research and Quarantine Service, Anyang 430-757
| | - Seong Wan Son
- National Veterinary Research and Quarantine Service, Anyang 430-757
| |
Collapse
|
49
|
Jukes JM, van Blitterswijk CA, de Boer J. Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 2010; 4:165-80. [PMID: 19967745 DOI: 10.1002/term.234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Various cell types have been investigated as candidate cell sources for cartilage and bone tissue engineering. In this review, we focused on chondrogenic and osteogenic differentiation of mouse and human embryonic stem cells (ESCs) and their potential in cartilage and bone tissue engineering. A decade ago, mouse ESCs were first used as a model to study cartilage and bone development and essential genes, factors and conditions for chondrogenesis and osteogenesis were unravelled. This knowledge, combined with data from the differentiation of adult stem cells, led to successful chondrogenic and osteogenic differentiation of mouse ESCs and later also human ESCs. Next, researchers focused on the use of ESCs for skeletal tissue engineering. Cartilage and bone tissue was formed in vivo using ESCs. However, the amount, homogeneity and stability of the cartilage and bone formed were still insufficient for clinical application. The current protocols require improvement not only in differentiation efficiency but also in ESC-specific hurdles, such as tumourigenicity and immunorejection. In addition, some of the general tissue engineering challenges, such as cell seeding and nutrient limitation in larger constructs, will also apply for ESCs. In conclusion, there are still many challenges, but there is potential for ESCs in skeletal tissue engineering.
Collapse
Affiliation(s)
- Jojanneke M Jukes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
50
|
Nanotube surface triggers increased chondrocyte extracellular matrix production. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|