1
|
Gautam D, Srivastava A, Chowdhury R, Laskar IR, Rao VKP, Mukherjee S. Mechanical microscopy of cancer cells: TGF-β induced epithelial to mesenchymal transition corresponds to low intracellular viscosity in cancer cells. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1787-1799. [PMID: 37725520 DOI: 10.1121/10.0020848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Viscosity is an essential parameter that regulates bio-molecular reaction rates of diffusion-driven cellular processes. Hence, abnormal viscosity levels are often associated with various diseases and malfunctions like cancer. For this reason, monitoring intracellular viscosity becomes vital. While several approaches have been developed for in vitro and in vivo measurement of viscosity, analysis of intracellular viscosity in live cells has not yet been well realized. Our research introduces a novel, natural frequency-based, non-invasive method to determine the intracellular viscosity in cells. This method can not only efficiently analyze the differences in intracellular viscosity post modulation with molecules like PEG or glucose but is sensitive enough to distinguish the difference in intra-cellular viscosity among various cancer cell lines such as Huh-7, MCF-7, and MDAMB-231. Interestingly, TGF-β a cytokine reported to induce epithelial to mesenchymal transition (EMT), a feature associated with cancer invasiveness resulted in reduced viscosity of cancer cells, as captured through our method. To corroborate our findings with existing methods of analysis, we analyzed intra-cellular viscosity with a previously described viscosity-sensitive molecular rotor-based fluorophore-TPSII. In parity with our position sensing device (PSD)-based approach, an increase in fluorescence intensity was observed with viscosity enhancers, while, TGF-β exposure resulted in its reduction in the cells studied. This is the first study of its kind that attempts to characterize differences in intracellular viscosity using a novel, non-invasive PSD-based method.
Collapse
Affiliation(s)
- Diplesh Gautam
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Abhilasha Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Inamur R Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Venkatesh K P Rao
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| |
Collapse
|
2
|
Vermeulen S, Roumans N, Honig F, Carlier A, Hebels DG, Eren AD, Dijke PT, Vasilevich A, de Boer J. Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells. Biomaterials 2020; 259:120331. [DOI: 10.1016/j.biomaterials.2020.120331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
3
|
Abstract
The vascular endothelium resides in a unique biomechanical stress environment resulting from the hemodynamics of the system. In vivo studies indicate that there are regional differences in endothelial biology and that this may be due to the influence of the local hemodynamic environment. To investigate this further, cell culture studies have been conducted using well-defined mechanical stress environments. To study flow effects, we have employed a parallel plate chamber in which endothelial cell monolayers are exposed to laminar flow. In such experiments and concomitant with changes in morphology, there are a variety of other alterations in cell function, including a decrease in the rate of cell proliferation for subconfluent monolayers. Changes in cell behavior due to the direct effect of pressure and in cultured cells which are in a cyclical stress field also have been observed. In the recognition/transduction of such a mechanical signal, the pathway may possibly include a membrane event linked to the control of intracellular calcium. It may be that the same signaling mechanisms are involved both in cytoskeletal/shape changes and in the control of the cell's growth program and, in exercising such an influence, hemodynamics may have an important role in the response of the arterial wall to injury and the resulting repair and/or disease processes.
Collapse
Affiliation(s)
- Robert M. Nerem
- School of Mechanical Engineering and Biomechanics Laboratory, Georgia Institute of Technology, Atlanta, Georgia 30332-0405
| | - Peggy R. Girard
- School of Mechanical Engineering and Biomechanics Laboratory, Georgia Institute of Technology, Atlanta, Georgia 30332-0405
| |
Collapse
|
4
|
Segerer G, Engelmann D, Kaestner A, Trötzmüller M, Köfeler H, Stigloher C, Thiele C, Jeanclos E, Gohla A. A phosphoglycolate phosphatase/AUM-dependent link between triacylglycerol turnover and epidermal growth factor signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [DOI: 10.1016/j.bbalip.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
G-Protein Gα 13 Functions with Abl Kinase to Regulate Actin Cytoskeletal Reorganization. J Mol Biol 2017; 429:3836-3849. [PMID: 29079481 DOI: 10.1016/j.jmb.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022]
Abstract
Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα13, is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα13-induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα13 controls actin cytoskeletal reorganization.
Collapse
|
6
|
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol 2016; 428:3850-68. [PMID: 27515397 DOI: 10.1016/j.jmb.2016.08.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kamela O Alegre
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
7
|
Salmela M, Rappu P, Lilja J, Niskanen H, Taipalus E, Jokinen J, Heino J. Tumor promoter PMA enhances kindlin-2 and decreases vimentin recruitment into cell adhesion sites. Int J Biochem Cell Biol 2016; 78:22-30. [PMID: 27373681 DOI: 10.1016/j.biocel.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/19/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Phorbol diester PMA (phorbol 12-myristate 13-acetate) is a well-known promoter of tumor progression. PMA also regulates cell adhesion by several mechanisms including conformational activation of integrins and integrin clustering. Here, PMA was shown to induce lamellipodia formation and reorganization of the adhesion sites as well as actin and vimentin filaments independently of integrin preactivation. To further analyze the mechanism of PMA action, the protein composition in the α1β1 integrin/collagen IV adhesion sites was analyzed by mass spectrometry and proteomics. In four independent experiments we observed the reduced recruitment of vimentin in relation to integrin α1 subunit. This was in full agreement with the fact that we also detected the retraction of vimentin from cell adhesions by confocal microscopy. Furthermore, the accumulation of kindlin-2 into cell adhesions was significantly increased after PMA treatment. Kindlin-2 siRNA inhibited cell spreading as well as the formation of actin fibrils and cell adhesions, but did not prevent the effect of PMA on lamellipodia formation. Thus, kindlin-2 recruitment was considered to be a consequence rather than the primary cause for the loss of connection between vimentin and the adhesion sites.
Collapse
Affiliation(s)
- Maria Salmela
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Johanna Lilja
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Henri Niskanen
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Taipalus
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Johanna Jokinen
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Estévez M, Martínez E, Yarwood SJ, Dalby MJ, Samitier J. Adhesion and migration of cells responding to microtopography. J Biomed Mater Res A 2014; 103:1659-68. [DOI: 10.1002/jbm.a.35293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Maruxa Estévez
- Nanobioengineering GroupInstitute for Bioengineering of Catalonia (IBEC)Baldiri Reixac 15–21Barcelona08028 Spain
- Biomimetic Systems for Cell Engineering GroupInstitute for Bioengineering of Catalonia (IBEC)Baldiri Reixac 15–21Barcelona08028 Spain
- Department of ElectronicsUniversity of BarcelonaC/Martí i Franquès 1Barcelona08028 Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering GroupInstitute for Bioengineering of Catalonia (IBEC)Baldiri Reixac 15–21Barcelona08028 Spain
- Department of ElectronicsUniversity of BarcelonaC/Martí i Franquès 1Barcelona08028 Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN) Spain
| | - Stephen J. Yarwood
- Laboratory of Cell BiologyInstitute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of GlasgowGlasgowG12 8QQ United Kingdom
| | - Matthew J. Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of GlasgowGlasgowG12 8QQ United Kingdom
| | - Josep Samitier
- Nanobioengineering GroupInstitute for Bioengineering of Catalonia (IBEC)Baldiri Reixac 15–21Barcelona08028 Spain
- Department of ElectronicsUniversity of BarcelonaC/Martí i Franquès 1Barcelona08028 Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN) Spain
| |
Collapse
|
9
|
Hansen TD, Koepsel JT, Le NN, Nguyen EH, Zorn S, Parlato M, Loveland SG, Schwartz MP, Murphy WL. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types. Biomater Sci 2014; 2:745-756. [PMID: 25386339 PMCID: PMC4224020 DOI: 10.1039/c3bm60278h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.
Collapse
Affiliation(s)
- Tyler D. Hansen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Ngoc Nhi Le
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Stefan Zorn
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew Parlato
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
10
|
Qi W, Xue Z, Yuan W, Wang H. Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. J Mater Chem B 2014; 2:325-331. [DOI: 10.1039/c3tb21387k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Schwartz MP, Rogers RE, Singh SP, Lee JY, Loveland SG, Koepsel JT, Witze ES, Montanez-Sauri SI, Sung KE, Tokuda EY, Sharma Y, Everhart LM, Nguyen EH, Zaman MH, Beebe DJ, Ahn NG, Murphy WL, Anseth KS. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. PLoS One 2013; 8:e81689. [PMID: 24349113 PMCID: PMC3857815 DOI: 10.1371/journal.pone.0081689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype.
Collapse
Affiliation(s)
- Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MPS); (KSA)
| | - Robert E. Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, , United States of America
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyung E. Sung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emi Y. Tokuda
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Lydia M. Everhart
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio, United States of America
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natalie G. Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * E-mail: (MPS); (KSA)
| |
Collapse
|
12
|
Xing B, Wang L, Guo D, Huang J, Espenel C, Kreitzer G, Zhang JJ, Guo L, Huang XY. Atypical protein kinase Cλ is critical for growth factor receptor-induced dorsal ruffle turnover and cell migration. J Biol Chem 2013; 288:32827-36. [PMID: 24092753 DOI: 10.1074/jbc.m113.489427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gα13, a member of the heterotrimeric G proteins, is critical for actin cytoskeletal reorganization and cell migration. Previously we have shown that Gα13 is essential for both G protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. Ric-8A, a non-receptor guanine nucleotide exchange factor for some heterotrimeric G proteins, is critical for coupling receptor tyrosine kinases to Gα13. Here, we show that PDGF can induce phosphorylation of Ric-8A. Atypical protein kinase Cλ (aPKCλ) is required for Ric-8A phosphorylation. Furthermore, aPKCλ is required for PDGF-induced dorsal ruffle turnover and cell migration as demonstrated by both down-regulation of aPKCλ protein levels in cells by RNA interference and by studies in aPKCλ knock-out cells. Moreover, phosphorylation of Ric-8A modulates its subcellular localization. Hence, aPKCλ is critical for PDGF-induced actin cytoskeletal reorganization and cell migration.
Collapse
Affiliation(s)
- Bowen Xing
- From the College of Life Sciences, Wuhan University, Wuhan 430072, China, and
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
14
|
Azimifar SB, Böttcher RT, Zanivan S, Grashoff C, Krüger M, Legate KR, Mann M, Fässler R. Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J Cell Sci 2013; 125:435-48. [PMID: 22357970 DOI: 10.1242/jcs.091652] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin and receptor tyrosine kinase signalling networks cooperate to regulate various biological functions. The molecular details underlying the integration of both signalling networks remain largely uncharacterized. Here we identify a signalling module composed of a fibronectin-α5β1-integrin-integrin-linked-kinase (ILK) complex that, in concert with epidermal growth factor (EGF) cues, cooperatively controls the formation of transient actin-based circular dorsal ruffles (DRs) in fibroblasts. DR formation depends on the precise spatial activation of Src at focal adhesions by integrin and EGF receptor signals, in an ILK-dependent manner. In a SILAC-based phosphoproteomics screen we identified the tumour-suppressor Cyld as being required for DR formation induced by α5β1 integrin and EGF receptor co-signalling. Furthermore, EGF-induced Cyld tyrosine phosphorylation is controlled by integrin-ILK and Src as a prerequisite for DR formation. This study provides evidence for a novel function of integrin-ILK and EGF signalling crosstalk in mediating Cyld tyrosine phosphorylation and fast actin-based cytoskeletal rearrangements.
Collapse
Affiliation(s)
- S Babak Azimifar
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Itoh T, Hasegawa J. Mechanistic insights into the regulation of circular dorsal ruffle formation. J Biochem 2012; 153:21-9. [PMID: 23175656 DOI: 10.1093/jb/mvs138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth factor stimulations induce dynamic changes in the cytoskeleton beneath the plasma membrane. Among them is the formation of membrane ruffles organized in a circular array, called 'circular dorsal ruffles' (CDRs). Physiological functions of CDRs include downregulation of cell growth by desensitizing the signalling from growth factor receptors as well as rearrangement of adhesion sites at the onset of cell migration. For the formation of CDRs, not only the activators of actin polymerization, such as N-WASP and the Arp2/3-complex, but also membrane deforming proteins with BAR/F-BAR domains are necessary. Small GTPases are also involved in the formation of CDRs by controlling intracellular trafficking through endosomes. Moreover, recent analyses of another circular cytoskeletal structure, podosome rosettes, have revealed common molecular features shared with CDRs. Among them, the roles of PI3-kinase and phosphoinositide 5-phosphatase may hold the key to the induction of these circular structures.
Collapse
Affiliation(s)
- Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan.
| | | |
Collapse
|
16
|
Wang L, Guo D, Xing B, Zhang JJ, Shu HB, Guo L, Huang XY. Resistance to inhibitors of cholinesterase-8A (Ric-8A) is critical for growth factor receptor-induced actin cytoskeletal reorganization. J Biol Chem 2011; 286:31055-31061. [PMID: 21771786 DOI: 10.1074/jbc.m111.253427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heterotrimeric G proteins are critical transducers of cellular signaling. In addition to their classic roles in relaying signals from G protein-coupled receptors (GPCRs), heterotrimeric G proteins also mediate physiological functions from non-GPCRs. Previously, we have shown that Gα(13), a member of the heterotrimeric G proteins, is essential for growth factor receptor-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. These Gα(13)-mediated dorsal ruffle turnover and cell migration by growth factors acting on their receptor tyrosine kinases (RTKs) are independent of GPCRs. However, the mechanism by which RTKs signal to Gα(13) is not known. Here, we show that cholinesterase-8A (Ric-8A), a nonreceptor guanine nucleotide exchange factor for some heterotrimeric G proteins, is critical for coupling RTKs to Gα(13). Down-regulation of Ric-8A protein levels in cells by RNA interference slowed down platelet-derived growth factor (PDGF)-induced dorsal ruffle turnover and inhibited PDGF-initiated cell migration. PDGF was able to increase the activity of Ric-8A in cells. Furthermore, purified Ric-8A proteins interact directly with purified Gα(13) protein in a nucleotide-dependent manner. Deficiency of Ric-8A prevented the translocation of Gα(13) to the cell cortex. Hence, Ric-8A is critical for growth factor receptor-induced actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Limin Wang
- College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Dagang Guo
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| | - Bowen Xing
- College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - J Jillian Zhang
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Lin Guo
- College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Xin-Yun Huang
- College of Life Sciences, Wuhan University, Wuhan, China 430072.
| |
Collapse
|
17
|
Abstract
There is a growing concern about the effects of chemicals on the developing nervous system. Chemical exposure at critical periods of development can be associated with effects ranging from subtle to profound on the structure and/or function of the nervous system. Understanding critical biological molecular targets, which underlie chemical-induced neurotoxicity, will provide a scientific basis for risk assessment. Cell signaling molecules such as protein kinase C (PKC) have been shown to play critical roles in motor activity, development of the nervous system, and in learning and memory. PKC also has been shown to be associated with several neurological disorders including Alzheimer's disease, status epilepticus, and cerebellar ataxia. In the literature, there is abundant information linking PKC to cognitive function, long-term potentiation, or brain structural changes. Here, we show the relationship between changes in PKC (as assayed using radioactive material or by western blots) and the neurotoxic effects caused by environmental chemicals in vitro and in vivo.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, National Health and Environmental Effects Research Laboratories, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
18
|
Xiao H, Eves R, Yeh C, Kan W, Xu F, Mak AS, Liu M. Phorbol ester-induced podosomes in normal human bronchial epithelial cells. J Cell Physiol 2009; 218:366-75. [DOI: 10.1002/jcp.21609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Nairn AC, Aderem A. Calmodulin and protein kinase C cross-talk: the MARCKS protein is an actin filament and plasma membrane cross-linking protein regulated by protein kinase C phosphorylation and by calmodulin. CIBA FOUNDATION SYMPOSIUM 2007; 164:145-54; discussion 154-61. [PMID: 1395931 DOI: 10.1002/9780470514207.ch10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The myristoylated, alanine-rich C kinase (PKC) substrate (MARCKS) is a major, specific substrate of PKC that is phosphorylated during macrophage and neutrophil activation, growth factor-dependent mitogenesis and neurosecretion. MARCKS is also a calmodulin-binding protein and binding of calmodulin inhibits phosphorylation of the protein by PKC. Several recent observations from our laboratories suggest a role for MARCKS in cellular morphology and motility. First, in macrophages MARCKS is located at points of cellular adherence where actin filaments insert at the plasma membrane and is released to the cytoplasm upon activation of PKC. Second, during neutrophil chemotaxis MARCKS undergoes a cycle of release from, and reassociation with, the plasma membrane. Third, in vitro, MARCKS is an F-actin cross-linking protein whose activity is inhibited by PKC-mediated phosphorylation and by binding to calmodulin. MARCKS therefore appears to be a regulated cross-bridge between actin and the plasma membrane. Regulation of the plasma membrane-binding and actin-binding properties of MARCKS represents a convergence of the PKC and calmodulin signal transduction pathways in the control of actin cytoskeleton-plasma membrane interactions.
Collapse
Affiliation(s)
- A C Nairn
- Rockefeller University, New York, NY 10021
| | | |
Collapse
|
20
|
Rieber M, Strasberg-Rieber M. Different chromatin organization in benign and malignant cells revealed by unequal nuclease sensitivity between tumor and normal cell genomes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:787-8; author reply 788-9. [PMID: 17255344 PMCID: PMC1851875 DOI: 10.2353/ajpath.2007.060871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 2007; 27:123-34. [PMID: 16685256 PMCID: PMC2232899 DOI: 10.1038/sj.jcbfm.9600330] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) encephalitis is characterized by brain infiltration of virus-infected monocytes and macrophages. Cellular products and viral proteins secreted by infected cells likely play an important role in blood-brain barrier (BBB) impairment and the development of HIV-1-associated dementia (HAD). We previously demonstrated that HIV-1 envelope glycoprotein gp120 induces toxicity and alters expression of tight junction proteins in human brain microvascular endothelial cells (HBMECs). Here, we delineate the mechanisms of gp120-induced BBB dysfunction. Human brain microvascular endothelial cells expressed HIV-1 co-receptors (CCR5 and CXCR4). Exposure of HBMECs to gp120 derived from macrophage (CCR5) or lymphocyte (CXCR4)-tropic viruses decreased BBB tightness, increased permeability, and enhanced monocyte migration across in vitro BBB models. Blood-brain barrier integrity was restored after gp120 removal. CCR5 antibodies and inhibitors of myosin light chain kinase or protein kinase C (PKC) blocked gp120-enhanced monocyte migration and permeability of BBB in vitro. Exposure of HBMECs to gp120 induced release of intracellular calcium ([Ca(2+)](i)) that was prevented by CCR5 antibody and partially blocked by CXCR4 antagonist. Human immunodeficiency virus-1 gp120 activated three PKC isoforms in HBMECs [PKC-alpha/betaII, PKC(pan)-betaII and PKC-zeta/lambda]. Furthermore, specific PKC inhibitors (acting at the ATP-binding and calcium release site) blocked gp120-induced PKC activation and prevented increase in BBB permeability, supporting the biologic significance of these results. Thus, gp120 can cause dysfunction of BBB via PKC pathways and receptor mediated [Ca(2+)](i) release leading to cytoskeletal alterations and increased monocyte migration.
Collapse
Affiliation(s)
- Georgette D Kanmogne
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Wang D, Tan YC, Kreitzer GE, Nakai Y, Shan D, Zheng Y, Huang XY. G Proteins G12 and G13 Control the Dynamic Turnover of Growth Factor-induced Dorsal Ruffles. J Biol Chem 2006; 281:32660-7. [PMID: 16943201 DOI: 10.1074/jbc.m604588200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors induce massive actin cytoskeletal remodeling in cells. These reorganization events underlie various cellular responses such as cell migration and morphological changes. One major form of actin reorganization is the formation and disassembly of dorsal ruffles (also named waves, dorsal rings, or circular ruffles). Dorsal ruffles are involved in physiological functions including cell migration, invasion, macropinocytosis, plasma membrane recycling, and others. Growth factors initiate rapid formation (within 5 min) of circular membrane ruffles, and these ruffles move along the dorsal side of the cells, constrict, close, and eventually disassemble ( approximately 20 min). Considerable attention has been devoted to the mechanism by which growth factors induce the formation of dorsal ruffles. However, little is known of the mechanism by which these ruffles are disassembled. Here we have shown that G proteins G(12) and G(13) control the rate of disassembly of dorsal ruffles. In Galpha(12)(-/-)Galpha(13)(-/-) fibroblast cells, dorsal ruffles induced by growth factor treatment remain visible substantially longer ( approximately 60 min) than in wild-type cells, whereas the rate of formation of these ruffles was the same with or without Galpha(12) and Galpha(13). Thus, Galpha(12)/Galpha(13) critically regulate dorsal ruffle turnover.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Physiology, Cornell University Weill Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Cristofanilli M, Akopian A. Calcium channel and glutamate receptor activities regulate actin organization in salamander retinal neurons. J Physiol 2006; 575:543-54. [PMID: 16777935 PMCID: PMC1819466 DOI: 10.1113/jphysiol.2006.114108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular Ca2+ regulates a variety of neuronal functions, including neurotransmitter release, protein phosphorylation, gene expression and synaptic plasticity. In a variety of cell types, including neurons, Ca2+ is involved in actin reorganization, resulting in either actin polymerization or depolymerization. Very little, however, is known about the relationship between Ca2+ and the actin cytoskeleton organization in retinal neurons. We studied the effect of high-K+-induced depolarization on F-actin organization in salamander retina and found that Ca2+ influx through voltage-gated L-type channels causes F-actin disruption, as assessed by 53 +/- 5% (n = 23, P < 0.001) reduction in the intensity of staining with Alexa-Fluor488-phalloidin, a compound that permits visualization and quantification of polymerized actin. Calcium-induced F-actin depolymerization was attenuated in the presence of protein kinase C antagonists, chelerythrine or bis-indolylmaleimide hydrochloride (GF 109203X). In addition, phorbol 12-myristate 13-acetate (PMA), but not 4alpha-PMA, mimicked the effect of Ca2+ influx on F-actin. Activation of ionotropic AMPA and NMDA glutamate receptors also caused a reduction in F-actin. No effect on F-actin was exerted by caffeine or thapsigargin, agents that stimulate Ca2+ release from internal stores. In whole-cell recording from a slice preparation, light-evoked 'off' but not 'on' EPSCs in 'on-off' ganglion cells were reduced by 60 +/- 8% (n = 8, P < 0.01) by cytochalasin D. These data suggest that elevation of intracellular Ca2+ during excitatory synaptic activity initiates a cascade for activity-dependent actin remodelling, which in turn may serve as a feedback mechanism to attenuate excitotoxic Ca2+ accumulation induced by synaptic depolarization.
Collapse
Affiliation(s)
- Massimiliano Cristofanilli
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue PHL 843, New York, NY 10016, USA
| | | |
Collapse
|
24
|
Orth JD, Krueger EW, Weller SG, McNiven MA. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res 2006; 66:3603-10. [PMID: 16585185 DOI: 10.1158/0008-5472.can-05-2916] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells form transient, circular dorsal ruffles or "waves" in response to stimulation of receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor. These dynamic structures progress inward on the dorsal surface and disappear, occurring concomitantly with a marked reorganization of F-actin. The cellular function of these structures is largely unknown. Here we show that EGF-induced waves selectively sequester and internalize approximately 50% of ligand-bound EGFR from the cell surface. This process requires receptor phosphorylation, active phosphatidylinositol 3-kinase, and dynamin 2, although clathrin-coated pits or caveolae are not required. Epithelial and fibroblast cells stimulated with EGF sequestered EGFR rapidly into waves that subsequently generated numerous receptor-positive tubular-vesicular structures. Electron microscopy confirmed that waves formed along the dorsal membrane surface and extended numerous tubules into the cytoplasm. These findings characterize a structure that selectively sequesters large numbers of activated EGFR for their subsequent internalization, independent of traditional endocytic mechanisms such as clathrin pits or caveolae.
Collapse
Affiliation(s)
- James D Orth
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
25
|
Tatin F, Varon C, Génot E, Moreau V. A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 2006; 119:769-81. [PMID: 16449321 DOI: 10.1242/jcs.02787] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The involvement of Src, Cdc42, RhoA and PKC in the regulation of podosome assembly has been identified in various cell models. In endothelial cells, the ectopic expression of constitutively active mutants of Src or Cdc42, but not RhoA, induced the formation of podosomes. Short-term exposure to phorbol-12-myristate-13-acetate (PMA) induced the appearance of podosomes and rosettes after initial disruption of stress fibres. Molecular analysis of PMA-induced podosomes and rosettes revealed that their composition was identical to that of podosomes described in other models. Pharmacological inhibition and siRNA knock-down experiments revealed that both PKCalpha and PKCdelta isotypes were necessary for podosome assembly. However, only constitutively active PKCalpha could mimic PMA in podosome formation. Src, Cdc42 and RhoA were required downstream of PKCs in this process. Src could be positioned between PKC and Cdc42 in a linear cascade leading to podosome assembly. Using in vitro matrix degradation assays, we demonstrated that PMA-induced podosomes are endowed with proteolytic activities involving MT1-MMP-mediated activation of MMP2. Endothelial podosomes may be involved in subendothelial matrix degradation during endothelium remodelling in pathophysiological processes.
Collapse
Affiliation(s)
- Florence Tatin
- Institut Européen de Chimie-Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | | | | | | |
Collapse
|
26
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|
27
|
Danen EHJ, van Rheenen J, Franken W, Huveneers S, Sonneveld P, Jalink K, Sonnenberg A. Integrins control motile strategy through a Rho-cofilin pathway. ACTA ACUST UNITED AC 2005; 169:515-26. [PMID: 15866889 PMCID: PMC2171933 DOI: 10.1083/jcb.200412081] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During wound healing, angiogenesis, and tumor invasion, cells often change their expression profiles of fibronectin-binding integrins. Here, we show that beta1 integrins promote random migration, whereas beta3 integrins promote persistent migration in the same epithelial cell background. Adhesion to fibronectin by alpha(v)beta3 supports extensive actin cytoskeletal reorganization through the actin-severing protein cofilin, resulting in a single broad lamellipod with static cell-matrix adhesions at the leading edge. Adhesion by alpha5beta1 instead leads to the phosphorylation/inactivation of cofilin, and these cells fail to polarize their cytoskeleton but extend thin protrusions containing highly dynamic cell-matrix adhesions in multiple directions. The activity of the small GTPase RhoA is particularly high in cells adhering by alpha5beta1, and inhibition of Rho signaling causes a switch from a beta1- to a beta3-associated mode of migration, whereas increased Rho activity has the opposite effect. Thus, alterations in integrin expression profiles allow cells to modulate several critical aspects of the motile machinery through Rho GTPases.
Collapse
Affiliation(s)
- Erik H J Danen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004; 5:647-57. [PMID: 15366708 DOI: 10.1038/nrm1436] [Citation(s) in RCA: 476] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The plasma membrane of many motile cells undergoes highly regulated protrusions and invaginations that support the formation of podosomes, invadopodia and circular dorsal ruffles. Although they are similar in appearance and in their formation--which is mediated by a highly conserved actin-membrane apparatus--these transient surface membrane distortions are distinct. Their function is to help the cell as it migrates, attaches and invades.
Collapse
Affiliation(s)
- Roberto Buccione
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | |
Collapse
|
29
|
Abstract
Integrin engagement stimulates the activity of numerous signaling molecules, including the Rho family of GTPases, tyrosine phosphatases, cAMP-dependent protein kinase and protein kinase C, and stimulates production of PtdIns(4,5)P2. Integrins promote actin assembly via the recruitment of molecules that directly activate the actin polymerization machinery or physically link it to sites of cell adhesion.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
30
|
Suetsugu S, Yamazaki D, Kurisu S, Takenawa T. Differential Roles of WAVE1 and WAVE2 in Dorsal and Peripheral Ruffle Formation for Fibroblast Cell Migration. Dev Cell 2003; 5:595-609. [PMID: 14536061 DOI: 10.1016/s1534-5807(03)00297-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | |
Collapse
|
31
|
Krueger EW, Orth JD, Cao H, McNiven MA. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 2003; 14:1085-96. [PMID: 12631725 PMCID: PMC151581 DOI: 10.1091/mbc.e02-08-0466] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms by which mammalian cells remodel the actin cytoskeleton in response to motogenic stimuli are complex and a topic of intense study. Dynamin 2 (Dyn2) is a large GTPase that interacts directly with several actin binding proteins, including cortactin. In this study, we demonstrate that Dyn2 and cortactin function to mediate dynamic remodeling of the actin cytoskeleton in response to stimulation with the motogenic growth factor platelet-derived growth factor. On stimulation, Dyn2 and cortactin coassemble into large, circular structures on the dorsal cell surface. These "waves" promote an active reorganization of actin filaments in the anterior cytoplasm and function to disassemble actin stress fibers. Importantly, inhibition of Dyn2 and cortactin function potently blocked the formation of waves and subsequent actin reorganization. These findings demonstrate that cortactin and Dyn2 function together in a supramolecular complex that assembles in response to growth factor stimulation and mediates the remodeling of actin to facilitate lamellipodial protrusion at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Eugene W Krueger
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
32
|
Chew CS, Chen X, Parente JA, Tarrer S, Okamoto C, Qin HY. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci 2002; 115:4787-99. [PMID: 12432067 DOI: 10.1242/jcs.00174] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins, nebulin, nebulette and N-RAP. In this study, we show that lasp-1 binds to non-muscle filamentous (F) actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent K(d) of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 micro M with a saturation stoichiometry of approximately 1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the K(d) and decreased the B(max) for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S(99) and S(146). BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S(99) and S(146), into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC, these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and possibly cell-specific role in modulating cytoskeletal/membrane-based cellular activities.
Collapse
Affiliation(s)
- Catherine S Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3175, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hyperglycemic control in diabetes is key to preventing the development and progression of vascular complications such as retinopathy, nephropathy and neuropathy. Increased activation of the diacylglycerol (DAG)-protein kinase C (PKC) signal transduction pathway has been identified in vascular tissues from diabetic animals, and in vascular cells exposed to elevated glucose. Vascular abnormalities associated with glucose-induced PKC activation leading to increased synthesis of DAG include altered vascular blood flow, extracellular matrix deposition, basement membrane thickening, increased permeability and neovascularization. Preferential activation of the PKCbeta isoform by elevated glucose is reported to occur in a variety of vascular tissues. This has lead to the development of LY333531, a PKCbeta isoform specific inhibitor, which has shown potential in animal models to be an orally effective and nontoxic therapy able to produce significant improvements in diabetic retinopathy, nephropathy, neuropathy and cardiac dysfunction. Additionally, the antioxidant vitamin E has been identified as an inhibitor of the DAG-PKC pathway, and shows promise in reducing vascular complications in animal models of diabetes. Given the overwhelming evidence indicating a role for PKC activation in contributing to the development of diabetic vascular complications, pharmacological therapies that can modulate this pathway, particularly with PKC isoform selectivity, show great promise for treatment of vascular complications, even in the presence of hyperglycemia.
Collapse
Affiliation(s)
- K J Way
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
34
|
Wiebe JP, Muzia D. The endogenous progesterone metabolite, 5a-pregnane-3,20-dione, decreases cell-substrate attachment, adhesion plaques, vinculin expression, and polymerized F-actin in MCF-7 breast cancer cells. Endocrine 2001; 16:7-14. [PMID: 11822829 DOI: 10.1385/endo:16:1:07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumorous human breast tissue readily converts progesterone to 5alpha-pregnane-3,20-dione (5alphaP), and this metabolite has been shown to stimulate proliferation and to decrease adhesion of MCF-7 breast cancer cells. To determine the mechanisms of action of 5alphaP on cell adhesion, MCF-7 cells were grown without or with 5alphaP (10(-9)-10(-5) M), and the effects on cell and nuclear morphology, adhesion plaques, vinculin and actin expression, actin polymerization, and microfilament distribution were examined by immunohistochemistry, morphometry (using confocal microscopy and digital computer imaging analysis), and Western blotting. Treatment of cells with 10(-9)-10(-6) M 5alphaP resulted in dose-dependent decreases in cell area, cell-to-cell contacts, and attachment to the substratum, and increases in variation in nuclear area. These changes in the 5alphaP-treated cells were accompanied by decreases in vinculin-containing adhesion plaques, vinculin expression, polymerized actin stress fibers, and decreases in insoluble and increases in soluble actin fractions. The results suggest that the observed decreases in adhesion and increases in cell proliferation following 5alphaP treatment may be owing to depolymerization of actin and decreased expression of actin and vinculin. We conclude that the endogenous progesterone metabolite, 5alphaP, may be involved in promoting breast neoplasia and metastasis by affecting adhesion and cytoskeletal molecules.
Collapse
Affiliation(s)
- J P Wiebe
- Hormonal Regulatory Mechanisms/Department of Zoology, University of Western Ontario, London, Canada.
| | | |
Collapse
|
35
|
Abstract
Vascular complications in diabetes mellitus are known to be associated with the activation of the protein kinase C (PKC) pathway through the de novo synthesis of diacylglycerol (DAG) from glycolytic intermediates. Specific PKC isoforms, mainly the beta- and delta-isoforms, have been shown to be persistently activated in diabetic mellitus. Multiple studies have reported that the activation of PKC leads to increased production of extracellular matrix and cytokines, enhances contractility, permeability and vascular cell proliferation, induces the activation of cytosolic phospholipase A2 and inhibits the activity of Na+-K+-ATPase. These events are not only frequently observed in diabetes mellitus but are also involved in the actions of vasoactive agents or oxidative stress. Inhibition of PKC by two different kinds of PKC inhibitors - LY333531, a selective PKC-beta-isoform inhibitor, and vitamin E, d-alpha-tocopheron - were able to prevent or reverse the various vascular dysfunctions in vitro and in vivo. Clinical studies using these compounds are now ongoing to evaluate the significance of DAG-PKC pathway activation in the development of vascular complications in diabetic patients.
Collapse
Affiliation(s)
- M Meier
- Research Division of Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
36
|
Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol Biol Cell 2000; 11:2999-3012. [PMID: 10982396 PMCID: PMC14971 DOI: 10.1091/mbc.11.9.2999] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migrating cells are polarized with a protrusive lamella at the cell front followed by the main cell body and a retractable tail at the rear of the cell. The lamella terminates in ruffling lamellipodia that face the direction of migration. Although the role of actin in the formation of lamellipodia is well established, it remains unclear to what degree microtubules contribute to this process. Herein, we have studied the contribution of microtubules to cell motility by time-lapse video microscopy on green flourescence protein-actin- and tubulin-green fluorescence protein-transfected melanoma cells. Treatment of cells with either the microtubule-disrupting agent nocodazole or with the stabilizing agent taxol showed decreased ruffling and lamellipodium formation. However, this was not due to an intrinsic inability to form ruffles and lamellipodia because both were restored by stimulation of cells with phorbol 12-myristate 13-acetate in a Rac-dependent manner, and by stem cell factor in melanoblasts expressing the receptor tyrosine kinase c-kit. Although ruffling and lamellipodia were formed without microtubules, the microtubular network was needed for advancement of the cell body and the subsequent retraction of the tail. In conclusion, we demonstrate that the formation of lamellipodia can occur via actin polymerization independently of microtubules, but that microtubules are required for cell migration, tail retraction, and modulation of cell adhesion.
Collapse
Affiliation(s)
- C Ballestrem
- Department of Pathology, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | | | |
Collapse
|
37
|
Arai A, Nakazawa T. Arrangement of actin filaments and cytoplasmic granules in the sea urchin egg after TPA treatment. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:21-30. [PMID: 9453711 DOI: 10.1002/(sici)1097-0169(1998)39:1<21::aid-cm3>3.0.co;2-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elongation of microvilli and formation of actin filaments after treatment with a phorbol ester, TPA, were investigated in unfertilized eggs of Hemicentrotus pulcherrimus. Microvilli on the egg surface were examined by scanning electron microscopy. Actin filaments in the cortical layer of the eggs were observed by fluorescence microscopy using rhodamine-labeled phalloidin. The actin molecules were polymerized and bundled to form long filaments inside the cortical layer of eggs after TPA treatment. Arrangement of the actin filaments was followed by spiral elongation of microvilli. Transmission electron microscopic studies showed that the cortical granules under the cell membrane of sea urchin eggs were transferred after TPA treatment from the surface to the interior of the cell [Ciapa et al., 1988: Dev. Biol. 128:142-149]. This movement of the cortical granules was inhibited by cytochalasin B, but not by nocodazole. Furthermore, the distribution of clear granules was changed following TPA treatment. From these results we conclude that intracellular actin filaments may cause the transport of cortical granules and clear granules into the central area of the egg by the activation of protein kinase C. The possible involvement of actin in the inward displacement of granules might be the result of the rearrangement of actin filaments in the cortical layer.
Collapse
Affiliation(s)
- A Arai
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan.
| | | |
Collapse
|
38
|
Arai A, Kyozuka K, Nakazawa T. Cytoplasmic Ca2+ oscillation coordinates the formation of actin filaments in the sea urchin eggs activated with phorbol ester. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:27-35. [PMID: 9915582 DOI: 10.1002/(sici)1097-0169(1999)42:1<27::aid-cm3>3.0.co;2-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Changes in the intracellular Ca2+ concentration ([Ca2+]i) and the formation of actin filaments were investigated in unfertilized eggs of the sea urchin Hemicentrotus pulcherrimus after activation with a phorbol ester, 12-O-tetradecanoyl phorbol13-acetate (TPA). Intracellular Ca2+ oscillation was observed using a fluorescent Ca2+ indicator dye, calcium green dextran. From about 20 to 80 min after the addition of TPA to 100 microM, there was a rise in [Ca2+]i, which was followed by Ca2+ oscillation. A change in [Ca2+]i in response to TPA was not observed in eggs that had been injected with heparin, an inositol 1,4,5-triphosphate (IP3) receptor antagonist. Therefore, long-term exposure to a high concentration of TPA seems to induce Ca2+ release via the IP3 pathway, as well as causing the release of diacylglycerol from membrane lipids. Moreover, the elongation of actin filaments occurred in the cytoplasm during the rise in [Ca2+]i. Actin filaments also formed when TPA-induced cytoplasmic alkalization was inhibited by exposure to Na(+)-free sea water. These results suggest that the observed cytoplasmic formation of actin filaments may be related to change in the cytoplasmic [Ca2(+)]i, and not intracellular pH, induced by TPA. These phenomena may be similar to the changes in actin construction that occur during cell cycle events.
Collapse
Affiliation(s)
- A Arai
- Department of Biology, Faculty of Science, Tohru University, Funabashi, Japan.
| | | | | |
Collapse
|
39
|
Lochter A, Werb Z, Bissell MJ. Transcriptional regulation of stromelysin-1 gene expression is altered during progression of mouse mammary epithelial cells from functionally normal to malignant. Matrix Biol 1999; 18:455-67. [PMID: 10601733 PMCID: PMC2933197 DOI: 10.1016/s0945-053x(99)00036-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The matrix metalloproteinase stromelysin-1 plays a central role during mammary gland development and tumor progression. To gain insight into the regulation of stromelysin-1 gene expression, the murine stromelysin-1 promoter was cloned and transfected into mouse mammary epithelial cells displaying various degrees of malignancy. A reconstituted basement membrane inhibited stromelysin-1 promoter activity in functionally normal cells, had little effect on moderately malignant cells and up-regulated the promoter in highly malignant cells. Spreading of normal and malignant cells was reduced by a reconstituted basement membrane, compared to a plastic substratum. Preventing spreading by maintenance of cells in suspension culture, regulated stromelysin-1 promoter activity in a manner similar to that on a reconstituted basement membrane. Conversely, increasing spreading by augmenting substratum adhesivity up-regulated stromelysin-1 promoter activity in tumor cells. In cells with reduced spreading in the presence of reconstituted basement membrane and in suspension culture, actin stress fibers were replaced by cortical actin bundles. In tumor cells, but not in functionally normal cells, treatment with phorbol diesters also resulted in accumulation of cortical actin and increased stromelysin-1 promoter activity. Consistent with an epithelial-to-mesenchymal conversion, regulation of stromelysin-1 gene expression in highly malignant cells was similar to its regulation in mammary fibroblasts. We conclude that the switch in transcriptional regulation of stromelysin-1 expression that occurs during epithelial-to-mesenchymal transition and conversion to tumorigenicity is related to altered regulation of signals from the cytoarchitecture.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cell Size
- Cells, Cultured
- Cytoskeleton/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/enzymology
- Extracellular Matrix/enzymology
- Female
- Gene Expression Regulation, Enzymologic
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/enzymology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/pathology
- Matrix Metalloproteinase 3/genetics
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transfection
Collapse
Affiliation(s)
- André Lochter
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Zena Werb
- Department of Anatomy, Box 0750, University of California, San Francisco, CA 94143, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Rd., Berkeley, CA 94720, USA
- Corresponding author. Tel: +510-486-4365; fax: +510-486-5586. m, (M.J. Bissell)
| |
Collapse
|
40
|
Vääräniemi J, Palovuori R, Lehto VP, Eskelinen S. Translocation of MARCKS and reorganization of the cytoskeleton by PMA correlates with the ion selectivity, the confluence, and transformation state of kidney epithelial cell lines. J Cell Physiol 1999; 181:83-95. [PMID: 10457356 DOI: 10.1002/(sici)1097-4652(199910)181:1<83::aid-jcp9>3.0.co;2-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of protein kinase C (PKC) in the regulation of the cytoskeleton of epithelial cells with tightly sealed contacts, poor contacts, and without contacts were investigated by incubating them with a protein kinase C activator phorbol myristoyl acetate (PMA). The morphology and organization of the membrane skeleton and stress fibers as well as the localization of an actin-bundling PKC substrate MARCKS in confluent MDCK cells originating from the distal tubulus of dog kidney, LLC-PK1 cells originating from the proximal tubulus of pig kidney, src-transformed MDCK cells, epidermoid carcinoma A431 cells, and MDCK cells grown in low calcium medium (LC medium) in low density were visualized with phase contrast and immunofluorescence microscopy. Four different responses to the PMA-treatment in actin-based structures of cultured epithelial cells were observed: 1) disintegration of the membrane skeleton in confluent MDCK cells; 2) depolymerization of the stress fibers in confluent MDCK and LLC-PK1 cells; 3) formation of the membrane skeleton in A431 cells, and 4) formation of the stress fibers and membrane skeleton in LC-MDCK cells. Thus, it seems that in fully confluent tightly sealed epithelium, activation of PKC has a deleterious effect on actin-based structures, whereas in cells without contacts or loose contacts, activation of PKC by PMA results in improvement of actin-based cytoskeletal structures. The main difference between the two kidney cell lines used is their selectivity to ion transport: the monolayer of LLC-PK1 cells is anion selective and MDCK cells cation selective. We propose a model where alterations in the ionic milieu within the MDCK cells by means of cation channels affect the disintegration of the membrane skeleton. The distribution of MARCKS followed the distribution of fodrin in both cell lines upon PMA-treatment, suggesting that phosphorylation of MARCKS by PKC may contribute in the regulation of the integrity of the membrane skeleton.
Collapse
Affiliation(s)
- J Vääräniemi
- Biocenter Oulu and the Department of Pathology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
41
|
Krendel M, Gloushankova NA, Bonder EM, Feder HH, Vasiliev JM, Gelfand IM. Myosin-dependent contractile activity of the actin cytoskeleton modulates the spatial organization of cell-cell contacts in cultured epitheliocytes. Proc Natl Acad Sci U S A 1999; 96:9666-70. [PMID: 10449751 PMCID: PMC22267 DOI: 10.1073/pnas.96.17.9666] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The spatial organization of cell-cell adherens junctions is distinct in cultured cells from two different tissue types, specifically, epitheliocytes and fibroblasts. In epitheliocytes, contacts are localized tangentially, along contacting cell edges and in association with circumferential actin bundles. Contacts between fibroblasts are radially oriented; that is, they are perpendicular to the overlapping edges of the cells and are associated with straight bundles of actin filaments. In the present study, we establish that the spatial organization of cell-cell contacts in the epithelial cell line IAR-2 can be converted from the typical tangential pattern to the radial pattern observed in fibroblasts. This transition can be induced by treatment with two agents, phorbol 12-myristate 13-acetate and nocodazole, which have different modes of action. Inhibition of myosin contractility reverses tangential-to-radial conversion of cell-cell contacts. These data suggest that formation of radially aligned contacts depends on modulation of contractility within the actin cytoskeleton through the myosin motor protein. The results open the possibility that modulation of the spatial organization of cell-cell contacts may play important roles in regulating organization and physiological functions of epithelial tissues.
Collapse
Affiliation(s)
- M Krendel
- Program in Cellular and Molecular Biodynamics, Rutgers University, Newark, NJ 07102, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kouloukoussa M, Panagopoulou E, Marinos E. The in vitro effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate on Sertoli cell morphology. CANCER DETECTION AND PREVENTION 1999; 23:280-9. [PMID: 10403899 DOI: 10.1046/j.1525-1500.1999.99030.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The objective of the present study was to examine the effects of the well-known tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on the morphology of cultured Sertoli cells from immature rats. The cells were cultured for 5 days and the TPA was added at the end of the culture period for 8 h at a concentration of 10-7 M. Viability tests showed that controls as well as TPA-treated cells remained viable during the culture period and no deleterious effects were observed as a result. Application of computerized morphometry at both light and electron microscopic levels revealed that TPA caused important changes in cell morphology in vitro. Statistical analysis of the results indicated that compared to the controls, Sertoli cells treated with TPA exhibited fewer astrocytic-type cytoplasmic extensions and a smaller size. Our results support the conclusion that the tumor promoter TPA, when applied to immature Sertoli cells in vitro, causes significant morphological alterations.
Collapse
Affiliation(s)
- M Kouloukoussa
- Department of Histology and Embryology, University of Athens Medical School, Athens, Greece
| | | | | |
Collapse
|
43
|
Abstract
Clustering of integrins into focal adhesions and focal complexes is regulated by the actin cytoskeleton. In turn, actin dynamics are governed by Rho family GTPases. Integrin-mediated adhesion activates these GTPases, triggering assembly of filopodia, lamellipodia and stress fibers. In the past few years, signaling pathways have begun to be identified that promote focal adhesion disassembly and integrin dispersal. Many of these pathways result in decreased myosin-mediated cell contractility.
Collapse
Affiliation(s)
- S M Schoenwaelder
- The Department of Cell Biology and Anatomy, 108 Taylor Hall, CB#7090, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
44
|
Abstract
Adhesion is a process that can be divided into three separate stages: (1) cell attachment, (2) cell spreading, and (3) the formation of focal adhesions and stress fibers. With each stage the adhesive strength of the cell increases. De-adhesion can be defined as the process involving the transition of the cell from a strongly adherent state, characterized by focal adhesions and stress fibers, to a state of intermediate adherence, represented by a cell that is spread, but that lacks stress fibers terminating at adhesion plaques. We propose that this modification of the structural link between the actin cytoskeleton and the extracellular matrix results in a more malleable cellular state conducive for dynamic processes such as cytokinesis, mitogenesis, and motility. Anti-adhesive proteins, including thrombospondin, tenascin, and SPARC, rapidly signal de-adhesion, potentially mediating proliferation and migration during development and wound healing. Intracellular signaling molecules involved in the regulation of de-adhesion are only beginning to be identified. Interestingly, many of the same signaling proteins recognized to play important roles during the process of adhesion have also been found to act during de-adhesion. Characterization of the precise mechanisms by which these signals modulate adhesive structures and the cytoskeleton will further our understanding of the regulation of adhesive strength and its function in cellular physiology.
Collapse
Affiliation(s)
- J A Greenwood
- Department of Pathology, University of Alabama at Birmingham, 35294-0019, USA.
| | | |
Collapse
|
45
|
Affiliation(s)
- M P Koonce
- Department of Biology, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
46
|
Philpott DJ, McKay DM, Mak W, Perdue MH, Sherman PM. Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect Immun 1998; 66:1680-7. [PMID: 9529098 PMCID: PMC108105 DOI: 10.1128/iai.66.4.1680-1687.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 01/14/1998] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infection is associated with watery diarrhea and can lead to complications, including hemorrhagic colitis and the hemolytic-uremic syndrome. The mechanisms by which these organisms produce diarrheal disease remain to be elucidated. Changes in T84 epithelial cell electrophysiology were examined following EHEC infection. T84 cell monolayers infected with EHEC O157:H7 displayed a time-dependent decrease in transepithelial resistance. Increases in the transepithelial flux of both [3H]mannitol and 51Cr-EDTA accompanied the EHEC-induced decreases in T84 resistance. Altered barrier function induced by EHEC occurred at the level of the tight junction since immunofluorescent staining of the tight-junction-associated protein ZO-1 was disrupted when examined by confocal microscopy. Decreased resistance induced by EHEC involved a protein kinase C (PKC)-dependent pathway as the highly specific PKC inhibitor, CGP41251, abrogated the EHEC-induced drop in resistance. PKC activity was also increased in T84 cells infected with EHEC. Calmodulin and myosin light chain kinase played a role in EHEC-induced resistance changes as inhibition of these effector molecules partially reversed the effects of EHEC on barrier function. These studies demonstrate that intracellular signal transduction pathways activated following EHEC infection link the increases in T84 epithelial permeability induced by this pathogen.
Collapse
Affiliation(s)
- D J Philpott
- Department of Pediatrics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
47
|
Yokoyama Y, Ito T, Hanson V, Schwartz GK, Aderem AA, Holland JF, Tamaya T, Ohnuma T. PMA-induced reduction in invasiveness is associated with hyperphosphorylation of MARCKS and talin in invasive bladder cancer cells. Int J Cancer 1998; 75:774-9. [PMID: 9495248 DOI: 10.1002/(sici)1097-0215(19980302)75:5<774::aid-ijc18>3.0.co;2-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase C (PKC) plays a critical role in signal transduction for a variety of cell activation processes. Enhanced PKC activity is often found in cancer cells that show marked invasive and/or metastatic potential. Thus, a specific PKC inhibitor may serve as a tool to reduce invasive or metastatic potential of cancer cells. We show here that phorbol 12-myristate 13-acetate (PMA), a PKC activator, also reduces invasiveness of EJ invasive transitional carcinoma cells. PMA-induced reduction in invasiveness was parallel with inhibition of cell motility. PMA neither induced E-cadherin expression nor augmented cell-matrix adhesion of EJ cells. PMA caused retraction of microspikes from the rim of the cells and consequently rounding of the cellular rim, and the disappearance of microfilaments from the cytoplasm. PMA at 10(-7) M, at which concentration the motility of EJ cells was completely inhibited, down-regulated PKC activity over 5 hr after transient translocation of PKC activity to the membrane fraction. At the same time, PMA induced hyperphosphorylation of MARCKS and talin. During the process of cell movement, actin-binding proteins are in a cycle of phosphorylation and dephosphorylation. Once this cycle is interrupted, cells can no longer maintain the dynamics of cytoskeletal structure. We suggest that retention of the hyperphosphorylated state of MARCKS and talin is responsible for the mechanism(s) by which PMA produces inhibitory activity against invasiveness of EJ cells.
Collapse
Affiliation(s)
- Y Yokoyama
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Greenwood JA, Pallero MA, Theibert AB, Murphy-Ullrich JE. Thrombospondin signaling of focal adhesion disassembly requires activation of phosphoinositide 3-kinase. J Biol Chem 1998; 273:1755-63. [PMID: 9430723 DOI: 10.1074/jbc.273.3.1755] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thrombospondin is an extracellular matrix protein involved in modulating cell adhesion. Thrombospondin stimulates a rapid loss of focal adhesion plaques and reorganization of the actin cytoskeleton in cultured bovine aortic endothelial cells. The focal adhesion labilizing activity of thrombospondin is localized to the amino-terminal domain, specifically amino acids 17-35. Use of a synthetic peptide (hep I), containing amino acids 17-35 of thrombospondin, enables us to examine the signaling mechanisms specifically involved in thrombospondin-induced disassembly of focal adhesions. We tested the hypothesis that activation of phosphoinositide 3-kinase is a necessary step in the thrombospondin-induced signaling pathway regulating focal adhesion disassembly. Both wortmannin and LY294002, membrane permeable inhibitors of phosphoinositide 3-kinase activity, blocked hep I-induced disassembly of focal adhesions. Similarly, wortmannin inhibited hep I-mediated actin microfilament reorganization and the hep I-induced translocation of alpha-actinin from focal adhesion plaques. Hep I also stimulated phosphoinositide 3-kinase activity approximately 2-3-fold as measured in anti-phosphoinositide 3-kinase and anti-phosphotyrosine immunoprecipitates. Increased immunoreactivity for the 85-kDa regulatory subunit in anti-phosphotyrosine immunoprecipitates suggests that the p85/p110 form of phosphoinositide 3-kinase is involved in this pathway. In 32Pi-labeled cells, hep I increased levels of phosphatidylinositol (3,4,5)-trisphosphate, the major product of phosphoinositide 3-kinase phosphorylation. These results suggest that thrombospondin signals the disassembly of focal adhesions and reorganization of the actin cytoskeleton by a pathway involving stimulation of phosphoinositide 3-kinase activity.
Collapse
Affiliation(s)
- J A Greenwood
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham 35294, USA.
| | | | | | | |
Collapse
|
49
|
Chun J, Auer KA, Jacobson BS. Arachidonate initiated protein kinase C activation regulates HeLa cell spreading on a gelatin substrate by inducing F-actin formation and exocytotic upregulation of beta 1 integrin. J Cell Physiol 1997; 173:361-70. [PMID: 9369949 DOI: 10.1002/(sici)1097-4652(199712)173:3<361::aid-jcp8>3.0.co;2-l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HeLa cell spreading on a gelatin substrate requires the activation of protein kinase C (PKC), which occurs as a result of cell-attachment-induced activation of phospholipase A2 (PLA2) to produce arachidonic acid (AA) and metabolism of AA by lipoxyginase (LOX). The present study examines how PKC activation affects the actin- and microtubule-based cytoskeletal machinery to facilitate HeLa cell spreading on gelatin. Cell spreading on gelatin is contingent on PKC induction of both actin polymerization and microtubule-facilitated exocytosis, which is based on the following observations. There is an increase in the relative content of filamentous (F)-actin during HeLa cell spreading, and treating HeLa cells with PKC-activating phorbol esters such as 12-O-tetradecanoyl phorbol 13-acetate (TPA) further increases the relative content of F-actin and the rate and extent to which the cells spread. Conversely, inhibition of PKC by calphostin C blocked both cell spreading and the increase of F-actin content. The increased F-actin content induced by PKC activators also was observed in suspension cells treated with TPA, and the kinetics of F-actin were similar to that for PKC activation. In addition, PKC epsilon, which is the PKC isoform most involved in regulating HeLa cell spreading in response to AA production, is more rapidly translocated to the membrane in response to TPA treatment than is the increase in F-actin. Blocking the activities of either PLA2 or LOX inhibited F-actin formation and cell spreading, both of which were reversed by TPA treatment. This result is consistent with AA and a LOX metabolite of AA as being upstream second messengers of activation of PKC and its regulation of F-actin formation and cell spreading. PKC appears to activate actin polymerization in the entire body of the cell and not just in the region of cell-substrate adhesion because activated PKC was associated not only with the basolateral plasma membrane domain contacting the culture dish but also with the apical plasma membrane domain exposed to the culture medium and with an intracellular membrane fraction. In addition to the facilitation of F-actin formation, activation of PKC induces the exocytotic upregulation of beta 1 integrins from an intracellular domain to the cell surface, possibly in a microtubule-dependent manner because the upregulation is inhibited by Nocodazole. The results support the concept that cell-attachment-induced AA production and its metabolism by LOX results in the activation of PKC, which has a dual role in regulating the cytoskeletal machinery during HeLa cell spreading. One is through the formation of F-actin that induces the structural reorganization of the cells from round to spread, and the other is the exocytotic upregulation of collagen receptors to the cell surface to enhance cell spreading.
Collapse
Affiliation(s)
- J Chun
- Department of Biology, Kyungpook National University, Taegu, Korea
| | | | | |
Collapse
|
50
|
Tenbroek EM, Louis CF, Johnson R. The differential effects of 12-O-tetradecanoylphorbol-13-acetate on the gap junctions and connexins of the developing mammalian lens. Dev Biol 1997; 191:88-102. [PMID: 9356174 DOI: 10.1006/dbio.1997.8703] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epithelial cells in primary ovine lens cultures express the gap junction proteins connexin43 (Cx43) and connexin49 (Cx49; a.k.a. MP70), a homologue of mouse connexin50. In contrast, lens cultures of differentiated, fiber-like cells (termed lentoid cells) express Cx49 and connexin46 (Cx46), but not Cx43. To investigate the regulation of lens cell gap junctions by protein kinase C (PKC), differentiating lens cultures were treated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate (beta-TPA). Within 10 min, beta-TPA significantly inhibited the transfer of Lucifer Yellow dye between epithelial, but not lentoid, cells. This inhibition was correlated with the phosphorylation of Cx43 and was followed by the gradual disappearance of Cx43 from cell interfaces. The protein kinase inhibitor staurosporine prevented Cx43 phosphorylation and the loss of Cx43 from intercellular junctions. Following treatment of cultures with beta-TPA for 2-6 hr, Cx49 disappeared from epithelial cell interfaces, and by 24 hr of beta-TPA treatment, levels of Cx49 detected on immunoblots of purified epithelial membrane fractions had also diminished significantly. The beta-TPA-induced loss of Cx49 both from regions of epithelial cell contact and from isolated membranes was correlated with the disappearance of Cx49 mRNA. In contrast to the epithelial connexins, the lentoid connexins Cx49 and Cx46 were unaffected by even extended beta-TPA treatment. In spite of lentoid dye transfer being refractory to beta-TPA, significant levels of PKC-alpha (a beta-TPA-sensitive isoform) were detected in the lentoid cell. The response of lens gap junctions to beta-TPA depends upon the stage of differentiation and the complement of connexins expressed. The contrasting effects of beta-TPA on Cx43 and Cx49 in lens epithelial cells indicate a fundamental difference in the regulation of these connexin proteins in the developing mammalian lens.
Collapse
Affiliation(s)
- E M Tenbroek
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|