1
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Verkerk AJMH, Andrei D, Vermeer MCSC, Kramer D, Schouten M, Arp P, Verlouw JAM, Pas HH, Meijer HJ, van der Molen M, Oberdorf-Maass S, Nijenhuis M, Romero-Herrera PH, Hoes MF, Bremer J, Slotman JA, van den Akker PC, Diercks GFH, Giepmans BNG, Stoop H, Saris JJ, van den Ouweland AMW, Willemsen R, Hublin JJ, Dean MC, Hoogeboom AJM, Silljé HHW, Uitterlinden AG, van der Meer P, Bolling MC. Disruption of TUFT1, a Desmosome-Associated Protein, Causes Skin Fragility, Woolly Hair, and Palmoplantar Keratoderma. J Invest Dermatol 2024; 144:284-295.e16. [PMID: 37716648 DOI: 10.1016/j.jid.2023.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 09/18/2023]
Abstract
Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.
Collapse
Affiliation(s)
- Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marloes Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost A M Verlouw
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Hillegonda J Meijer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Silke Oberdorf-Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Pedro H Romero-Herrera
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Chaire de Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, Paris, France
| | - M Christopher Dean
- Centre for Human Origins Research, Natural History Museum, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
3
|
Doucet EJ, Cortez Ghio S, Barbier MA, Savard É, Magne B, Safoine M, Larouche D, Fradette J, Germain L. Production of Tissue-Engineered Skin Substitutes for Clinical Applications: Elimination of Serum. Int J Mol Sci 2023; 24:12537. [PMID: 37628718 PMCID: PMC10454817 DOI: 10.3390/ijms241612537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tissue-engineered skin substitutes (TESs) are used as a treatment for severe burn injuries. Their production requires culturing both keratinocytes and fibroblasts. The methods to grow these cells have evolved over the years, but bovine serum is still commonly used in the culture medium. Because of the drawbacks associated with the use of serum, it would be advantageous to use serum-free media for the production of TESs. In a previous study, we developed a serum-free medium (Surge SFM) for the culture of keratinocytes. Herein, we tested the use of this medium, together with a commercially available serum-free medium for fibroblasts (Prime XV), to produce serum-free TESs. Our results show that serum-free TESs are macroscopically and histologically similar to skin substitutes produced with conventional serum-containing media. TESs produced with either culture media expressed keratin 14, Ki-67, transglutaminase 1, filaggrin, type I and IV collagen, and fibronectin comparably. Mechanical properties, such as contraction and tensile strength, were comparable between TESs cultured with and without serum. Serum-free TESs were also successfully grafted onto athymic mice for a six-month period. In conclusion, Surge SFM and Prime XV serum-free media could be used to produce high quality clinical-grade skin substitutes.
Collapse
Affiliation(s)
- Emilie J. Doucet
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Sergio Cortez Ghio
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Martin A. Barbier
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Étienne Savard
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Brice Magne
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Meryem Safoine
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Danielle Larouche
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- The Tissue Engineering Laboratory (LOEX), Université Laval’s Research Center, Québec, QC G1V 0A6, Canada; (E.J.D.); (S.C.G.); (M.A.B.); (É.S.); (B.M.); (M.S.); (D.L.); (J.F.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
5
|
A Newly Developed Chemically Defined Serum-Free Medium Suitable for Human Primary Keratinocyte Culture and Tissue Engineering Applications. Int J Mol Sci 2023; 24:ijms24031821. [PMID: 36768144 PMCID: PMC9915451 DOI: 10.3390/ijms24031821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In our experience, keratinocytes cultured in feeder-free conditions and in commercially available defined and serum-free media cannot be as efficiently massively expanded as their counterparts grown in conventional bovine serum-containing medium, nor can they properly form a stratified epidermis in a skin substitute model. We thus tested a new chemically defined serum-free medium, which we developed for massive human primary keratinocyte expansion and skin substitute production. Our medium, named Surge Serum-Free Medium (Surge SFM), was developed to be used alongside a feeder layer. It supports the growth of keratinocytes freshly isolated from a skin biopsy and cryopreserved primary keratinocytes in cultured monolayers over multiple passages. We also show that keratin-19-positive epithelial stem cells are retained through serial passaging in Surge SFM cultures. Transcriptomic analyses suggest that gene expression is similar between keratinocytes cultured with either Surge SFM or the conventional serum-containing medium. Additionally, Surge SFM can be used to produce bilayered self-assembled skin substitutes histologically similar to those produced using serum-containing medium. Furthermore, these substitutes were grafted onto athymic mice and persisted for up to six months. In conclusion, our new chemically defined serum-free keratinocyte culture medium shows great promise for basic research and clinical applications.
Collapse
|
6
|
Pitfalls in the Application of Dispase-Based Keratinocyte Dissociation Assay for In Vitro Analysis of Pemphigus Vulgaris. Vaccines (Basel) 2022; 10:vaccines10020208. [PMID: 35214667 PMCID: PMC8878461 DOI: 10.3390/vaccines10020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pemphigus vulgaris (PV) is a chronic, life-altering autoimmune disease due to the production of anti-desmoglein antibodies causing the loss of cell–cell adhesion in keratinocytes (acantholysis) and blister formation in both skin and mucous membranes. The dispase-based keratinocyte dissociation assay (DDA) is the method of choice to examine the pathogenic effect of antibodies and additional co-stimuli on cell adhesion in vitro. Despite its widespread use, there is a high variability of experimental conditions, leading to inconsistent results. In this paper, we identify and discuss pitfalls in the application of DDA, including generation of a monolayer with optimized density, appropriate culturing conditions to obtain said monolayer, application of mechanical stress in a standardized manner, and performing consistent data processing. Importantly, we describe a detailed protocol for a successful and reliable DDA and the respective ideal conditions for three different types of human keratinocytes: (1) primary keratinocytes, (2) the HaCaT spontaneously immortalized keratinocyte cell line, and (3) the recently characterized HaSKpw spontaneously immortalized keratinocyte cell line. Our study provides detailed protocols which guarantee intra- and inter-experimental comparability of DDA.
Collapse
|
7
|
To Stick or Not to Stick: Adhesions in Orofacial Clefts. BIOLOGY 2022; 11:biology11020153. [PMID: 35205020 PMCID: PMC8869391 DOI: 10.3390/biology11020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis. In particular, the interaction of the cell junctions with the cytoskeleton functions to amplify the behavior of individual cells into collective events that are critical for development. In this review we summarize the key morphogenic events that occur during the formation of the face and the palate, as well as the protein complexes required for cell-to-cell adhesions. We then integrate the current knowledge into a comprehensive review of how mutations in cell-to-cell adhesion genes lead to abnormal craniofacial development, with a particular focus on cleft lip with or without cleft palate.
Collapse
|
8
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
9
|
Schmitt T, Egu DT, Walter E, Sigmund AM, Eichkorn R, Yazdi A, Schmidt E, Sárdy M, Eming R, Goebeler M, Waschke J. Ca 2+ signalling is critical for autoantibody-induced blistering of human epidermis in pemphigus. Br J Dermatol 2021; 185:595-604. [PMID: 33792909 DOI: 10.1111/bjd.20091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti-Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3. OBJECTIVES To characterize the Ca2+ flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles. METHODS Immunoprecipitation, Ca2+ flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used. RESULTS PV IgG and PF IgG, but neither Dsg3-specific monoclonal antibody (AK23) nor mPV IgG, caused Ca2+ influx in primary human keratinocytes. Phosphatidylinositol 4-kinase α interacts with Dsg1 but not with Dsg3. Its downstream target - phospholipase-C-γ1 (PLC) - was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5-trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release-activated channels (CRAC)-mediated Ca2+ influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG-induced Ca2+ influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG-induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo. CONCLUSIONS Ca2+ -mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca2+ signalling may be a promising approach to treat epidermal manifestations of pemphigus.
Collapse
Affiliation(s)
- T Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - D T Egu
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - E Walter
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - A M Sigmund
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - R Eichkorn
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
| | - A Yazdi
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany.,Department of Dermatology, RWTH Aachen, Aachen, Germany
| | - E Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, 23562, Germany.,Department of Dermatology, University of Lübeck, Lübeck, 23562, Germany
| | - M Sárdy
- Clinic for Dermatology, Semmelweis University, Budapest, Hungary
| | - R Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - M Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - J Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| |
Collapse
|
10
|
Boudaka A, Al-Yazeedi M, Al-Lawati I. Role of Transient Receptor Potential Vanilloid 4 Channel in Skin Physiology and Pathology. Sultan Qaboos Univ Med J 2020; 20:e138-e146. [PMID: 32655905 PMCID: PMC7328835 DOI: 10.18295/squmj.2020.20.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channel responds to temperature, as well as various mechanical and chemical stimuli. This non-selective cation channel is expressed in several organs, including the blood vessels, kidneys, oesophagus and skin. In the skin, TRPV4 channel is present in various cell types such as keratinocytes, melanocytes and sensory neurons, as well as immune and inflammatory cells, and engages in several physiological actions, from skin homeostasis to sensation. In addition, there is substantial evidence implicating dysfunctional TRPV4 channel—in the form of either deficient or excessive channel activity—in pathological cutaneous conditions such as skin barrier compromise, pruritus, pain, skin inflammation and carcinogenesis. These varied functions, combined with the fact that TRPV4 channel owns pharmacologically-accessible sites, make this channel an attractive therapeutic target for skin disorders. In this review, we summarize the different physiological and pathophysiological effects of TRPV4 in the skin.
Collapse
Affiliation(s)
- Ammar Boudaka
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mallak Al-Yazeedi
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Intisar Al-Lawati
- Department of Physiology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
11
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
12
|
Rouaud F, Vasileva E, Spadaro D, Tsukita S, Citi S. R40.76 binds to the α domain of ZO-1: role of ZO-1 (α+) in epithelial differentiation and mechano-sensing. Tissue Barriers 2019; 7:e1653748. [PMID: 31438766 PMCID: PMC6748370 DOI: 10.1080/21688370.2019.1653748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The barrier function of epithelia and endothelia depends on tight junctions, which are formed by the polymerization of claudins on a scaffold of ZO proteins. Two differentially spliced isoforms of ZO-1 have been described, depending on the presence of the α domain, but the function of this domain is unclear. ZO-1 also contains a C-terminal ZU5 domain, which is involved in a mechano-sensitive intramolecular interaction with the central (ZPSG) region of ZO-1. Here we use immunoblotting and immunofluorescence to map the binding sites for commercially available monoclonal and polyclonal antibodies against ZO-1, and for a new polyclonal antibody (R3) that we developed against the ZO-1 C-terminus. We demonstrate that antibody R40.76 binds to the α domain, and the R3 antibody binds to the ZU5 domain. The (α+) isoform of ZO-1 shows higher expression in epithelial versus endothelial cells, and in differentiated versus undifferentiated primary keratinocytes, suggesting a link to epithelial differentiation and a potential molecular adaptation to junctions subjected to stronger mechanical forces. These results provide new tools and hypotheses to investigate the role of the α and ZU5 domains in ZO-1 mechano-sensing and dynamic interactions with the cytoskeleton and junctional ligands.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Sachiko Tsukita
- Strategic Innovation and Research Center, Teikyo University , Tokyo , Japan.,Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| |
Collapse
|
13
|
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 2018; 9:5284. [PMID: 30538252 PMCID: PMC6290003 DOI: 10.1038/s41467-018-07523-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes. Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.
Collapse
|
14
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
15
|
Joshi A, Joshi A, Patel H, Ponnoth D, Stagni G. Cutaneous Penetration-Enhancing Effect of Menthol: Calcium Involvement. J Pharm Sci 2017; 106:1923-1932. [PMID: 28400197 DOI: 10.1016/j.xphs.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
Menthol is a naturally occurring terpene used as a penetration enhancer in topical and transdermal formulations. Literature shows a growing interest in menthol's interactions with the transient receptor potential melastatin 8. A decrease in extracellular Ca2+ due to the activation of the transient receptor potential melastatin 8 receptor produces inhibition of E-cadherin expression that is responsible for cell-cell adhesion. Because calcium is present in the entire epidermis, the purpose of this study is to evaluate whether the aforementioned properties of menthol are also related to its penetration-enhancing effects. We formulated 16 gels: (i) drug-alone (diphenhydramine or lidocaine), (ii) drug with menthol, (iii) drug, menthol, and calcium channel blocker (CCB; verapamil or diltiazem), and (iv) drug and CCB. In vitro studies showed no effect of the CCB on the release of the drugs either with or without menthol. In vivo experiments were performed for each drug/menthol/CCB combination gel by applying 4 formulations on a shaved rabbit's dorsum on the same day. Dermis concentration profiles were assessed with microdialysis. The gels containing menthol showed higher penetration of drugs than those without whereas the addition of the CCB consistently inhibited the penetration-enhancing effects of menthol. In summary, these findings strongly support the involvement of calcium in the penetration-enhancing effect of menthol.
Collapse
Affiliation(s)
- Amit Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Abhay Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Hiren Patel
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Dovenia Ponnoth
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201.
| |
Collapse
|
16
|
Li N, Park M, Xiao S, Liu Z, Diaz LA. ER-to-Golgi blockade of nascent desmosomal cadherins in SERCA2-inhibited keratinocytes: Implications for Darier's disease. Traffic 2017; 18:232-241. [PMID: 28156030 DOI: 10.1111/tra.12470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Darier's disease (DD) is an autosomal dominantly inherited skin disorder caused by mutations in sarco/endoplasmic reticulum Ca2+ -ATPase 2 (SERCA2), a Ca2+ pump that transports Ca2+ from the cytosol to the endoplasmic reticulum (ER). Loss of desmosomes and keratinocyte cohesion is a characteristic feature of DD. Desmosomal cadherins (DC) are Ca2+ -dependent transmembrane adhesion proteins of desmosomes, which are mislocalized in the lesional but not perilesional skin of DD. We show here that inhibition of SERCA2 by 2 distinct inhibitors results in accumulation of DC precursors in keratinocytes, indicating ER-to-Golgi transport of nascent DC is blocked. Partial loss of SERCA2 by siRNA has no such effect, implicating that haploinsufficiency is not sufficient to affect nascent DC maturation. However, a synergistic effect is revealed between SERCA2 siRNA and an ineffective dose of SERCA2 inhibitor, and between an agonist of the ER Ca2+ release channel and SERCA2 inhibitor. These results suggest that reduction of ER Ca2+ below a critical level causes ER retention of nascent DC. Moreover, colocalization of DC with ER calnexin is detected in SERCA2-inhibited keratinocytes and DD epidermis. Collectively, our data demonstrate that loss of SERCA2 impairs ER-to-Golgi transport of nascent DC, which may contribute to DD pathogenesis.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Moonhee Park
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shengxiang Xiao
- Department of Dermatology, The Second Hospital, Xi-An Jiaotong University, People's Republic of China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
18
|
Lange J, Weil F, Riegler C, Groeber F, Rebhan S, Kurdyn S, Alb M, Kneitz H, Gelbrich G, Walles H, Mielke S. Interactions of donor sources and media influence the histo-morphological quality of full-thickness skin models. Biotechnol J 2016; 11:1352-1361. [PMID: 27599760 DOI: 10.1002/biot.201600360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022]
Abstract
Human artificial skin models are increasingly employed as non-animal test platforms for research and medical purposes. However, the overall histopathological quality of such models may vary significantly. Therefore, the effects of manufacturing protocols and donor sources on the quality of skin models built-up from fibroblasts and keratinocytes derived from juvenile foreskins is studied. Histo-morphological parameters such as epidermal thickness, number of epidermal cell layers, dermal thickness, dermo-epidermal adhesion and absence of cellular nuclei in the corneal layer are obtained and scored accordingly. In total, 144 full-thickness skin models derived from 16 different donors, built-up in triplicates using three different culture conditions were successfully generated. In univariate analysis both media and donor age affected the quality of skin models significantly. Both parameters remained statistically significant in multivariate analyses. Performing general linear model analyses we could show that individual medium-donor-interactions influence the quality. These observations suggest that the optimal choice of media may differ from donor to donor and coincides with findings where significant inter-individual variations of growth rates in keratinocytes and fibroblasts have been described. Thus, the consideration of individual medium-donor-interactions may improve the overall quality of human organ models thereby forming a reproducible test platform for sophisticated clinical research.
Collapse
Affiliation(s)
- Julia Lange
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Frederik Weil
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Christoph Riegler
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Florian Groeber
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Silke Rebhan
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Szymon Kurdyn
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Miriam Alb
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Hermann Kneitz
- Department of Dermatology, Section for Histopathology, Würzburg University Medical Center, Würzburg, Germany
| | - Götz Gelbrich
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Stephan Mielke
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany.
| |
Collapse
|
19
|
Moftah H, Dias K, Apu EH, Liu L, Uttagomol J, Bergmeier L, Kermorgant S, Wan H. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion. Cell Adh Migr 2016; 11:211-232. [PMID: 27254775 DOI: 10.1080/19336918.2016.1195942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.
Collapse
Affiliation(s)
- Hanan Moftah
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Kasuni Dias
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Ehsanul Hoque Apu
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Li Liu
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Jutamas Uttagomol
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Lesley Bergmeier
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Stephanie Kermorgant
- b Barts Cancer Institute, John Vane Science Center , Charterhouse Square, London , UK
| | - Hong Wan
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| |
Collapse
|
20
|
Oxidized low-density lipoprotein attenuated desmoglein 1 and desmocollin 2 expression via LOX-1/Ca2+/PKC-β signal in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2015; 468:380-6. [DOI: 10.1016/j.bbrc.2015.10.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/16/2015] [Indexed: 11/23/2022]
|
21
|
George SA, Sciuto KJ, Lin J, Salama ME, Keener JP, Gourdie RG, Poelzing S. Extracellular sodium and potassium levels modulate cardiac conduction in mice heterozygous null for the Connexin43 gene. Pflugers Arch 2015; 467:2287-97. [PMID: 25771952 DOI: 10.1007/s00424-015-1698-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Several studies have disagreed on measurements of cardiac conduction velocity (CV) in mice with a heterozygous knockout of the connexin gene Gja1--a mutation that reduces the gap junction (GJ) protein, Connexin43 (Cx43), by 50 %. We noted that perfusate ionic composition varied between studies and hypothesized that extracellular ionic concentration modulates CV dependence on GJs. CV was measured by optically mapping wild-type (WT) and heterozygous null (HZ) hearts serially perfused with solutions previously associated with no change (Solution 1) or CV slowing (Solution 2). In WT hearts, CV was similar for Solutions 1 and 2. However, consistent with the hypothesis, Solution 2 in HZ hearts slowed transverse CV (CVT) relative to Solution 1. Previously, we showed CV slowing in a manner consistent with ephaptic conduction correlated with increased perinexal inter-membrane width (W P) at GJ edges. Thus, W P was measured following perfusion with systematically adjusted [Na(+)]o and [K(+)]o in Solutions 1 and 2. A wider W P was associated with reduced CVT in WT and HZ hearts, with the greatest effect in HZ hearts. Increasing [Na(+)]o increased CVT only in HZ hearts. Increasing [K(+)]o slowed CVT in both WT and HZ hearts with large W P but only in HZ hearts with narrow W P. CONCLUSION When perinexi are wide, decreasing excitability by modulating [Na(+)]o and [K(+)]o increases CV sensitivity to reduced Cx43. By contrast, CV is less sensitive to Cx43 and ion composition when perinexi are narrow. These results are consistent with cardiac conduction dependence on both GJ and non-GJ (ephaptic) mechanisms.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Katherine J Sciuto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah and ARUP Reference Lab Institute of Research, Salt Lake City, UT, USA
| | - James P Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
22
|
Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro. Cytotechnology 2015; 68:1009-18. [PMID: 25698160 DOI: 10.1007/s10616-015-9857-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing.
Collapse
|
23
|
McHarg S, Hopkins G, Lim L, Garrod D. Down-regulation of desmosomes in cultured cells: the roles of PKC, microtubules and lysosomal/proteasomal degradation. PLoS One 2014; 9:e108570. [PMID: 25291180 PMCID: PMC4188543 DOI: 10.1371/journal.pone.0108570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds.
Collapse
Affiliation(s)
- Selina McHarg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Gemma Hopkins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lusiana Lim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Kurinna S, Schäfer M, Ostano P, Karouzakis E, Chiorino G, Bloch W, Bachmann A, Gay S, Garrod D, Lefort K, Dotto GP, Beer HD, Werner S. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 2014; 5:5099. [PMID: 25283360 DOI: 10.1038/ncomms6099] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/28/2014] [Indexed: 02/08/2023] Open
Abstract
The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Andreas Bachmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Nanorobotic investigation identifies novel visual, structural and functional correlates of autoimmune pathology in a blistering skin disease model. PLoS One 2014; 9:e106895. [PMID: 25198693 PMCID: PMC4157813 DOI: 10.1371/journal.pone.0106895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022] Open
Abstract
There remain major gaps in our knowledge regarding the detailed mechanisms by which autoantibodies mediate damage at the tissue level. We have undertaken novel strategies at the interface of engineering and clinical medicine to integrate nanoscale visual and structural data using nanorobotic atomic force microscopy with cell functional analyses to reveal previously unattainable details of autoimmune processes in real-time. Pemphigus vulgaris is a life-threatening autoimmune blistering skin condition in which there is disruption of desmosomal cell-cell adhesion structures that are associated with the presence of antibodies directed against specific epithelial proteins including Desmoglein (Dsg) 3. We demonstrate that pathogenic (blister-forming) anti-Dsg3 antibodies, distinct from non-pathogenic (non-blister forming) anti-Dsg3 antibodies, alter the structural and functional properties of keratinocytes in two sequential steps - an initial loss of cell adhesion and a later induction of apoptosis-related signaling pathways, but not full apoptotic cell death. We propose a “2-Hit” model for autoimmune disruption associated with skin-specific pathogenic autoantibodies. These data provide unprecedented details of autoimmune processes at the tissue level and offer a novel conceptual framework for understanding the action of self-reactive antibodies.
Collapse
|
26
|
Abstract
Hyper-adhesion is a unique, strongly adhesive form of desmosomal adhesion that functions to maintain tissue integrity. In this short review, we define hyper-adhesion, summarise the evidence for it in culture and in vivo, discuss its role in development, wound healing, and skin disease, and speculate about its molecular and cellular basis.
Collapse
Affiliation(s)
- David Garrod
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | | |
Collapse
|
27
|
Nitoiu D, Etheridge SL, Kelsell DP. Insights into Desmosome Biology from Inherited Human Skin Disease and Cardiocutaneous Syndromes. ACTA ACUST UNITED AC 2014; 21:129-40. [DOI: 10.3109/15419061.2014.908854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
29
|
|
30
|
Lamb R, Ambler CA. Keratinocytes propagated in serum-free, feeder-free culture conditions fail to form stratified epidermis in a reconstituted skin model. PLoS One 2013; 8:e52494. [PMID: 23326335 PMCID: PMC3543440 DOI: 10.1371/journal.pone.0052494] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Primary human epidermal stem cells isolated from skin tissues and subsequently expanded in tissue culture are used for human therapeutic use to reconstitute skin on patients and to generate artificial skin in culture for academic and commercial research. Classically, epidermal cells, known as keratinocytes, required fibroblast feeder support and serum-containing media for serial propagation. In alignment with global efforts to remove potential animal contaminants, many serum-free, feeder-free culture methods have been developed that support derivation and growth of these cells in 2-dimensional culture. Here we show that keratinocytes grown continually in serum-free and feeder-free conditions were unable to form into a stratified, mature epidermis in a skin equivalent model. This is not due to loss of cell potential as keratinocytes propagated in serum-free, feeder-free conditions retain their ability to form stratified epidermis when re-introduced to classic serum-containing media. Extracellular calcium supplementation failed to improve epidermis development. In contrast, the addition of serum to commercial, growth media developed for serum-free expansion of keratinocytes facilitated 3-dimensional stratification in our skin equivalent model. Moreover, the addition of heat-inactivated serum improved the epidermis structure and thickness, suggesting that serum contains factors that both aid and inhibit stratification.
Collapse
Affiliation(s)
- Rebecca Lamb
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, United Kingdom
| | - Carrie A. Ambler
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, United Kingdom
- Biophysical Sciences Institute, Durham University, South Road, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Wallace L, Reichelt J. Using 3D culture to investigate the role of mechanical signaling in keratinocyte stem cells. Methods Mol Biol 2013; 989:153-164. [PMID: 23483394 DOI: 10.1007/978-1-62703-330-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ability to grow keratinocyte stem cells (KSCs) in 3D culture is an important step forward for investigating the physiological properties of these cells. In the epidermis, KSCs are subject to various types of mechanical stress. To study the effects of mechanical stress on KSCs, monolayer cultures are limited as the KSCs can only form cell-cell contacts in one plane and to prevent differentiation, KSCs are grown in low (0.05 mM) calcium, which impairs formation of calcium-dependent adhesion structures such as desmosomes. This is in contrast to how KSCs are found in the epidermis in vivo, where they are connected on all sides by other cells, allowing them to form a more organized cytoskeleton. The cytoskeleton is essential for transducing mechanical signals between cells, and this cannot be accurately reproduced in monolayer cultures, where the cells do not have the same level of organization or connections. We describe a technique which allows the generation of large numbers of uniformly sized cell aggregates using cultured murine KSCs. These aggregates are produced using physiological calcium concentrations (1.2 mM), allowing the cells within the aggregates to form calcium-dependent contacts with other cells on all sides, resulting in the reorganization of the cytoskeleton, integrating the cells within each aggregate. Within the aggregates, KSCs retain stem cell properties, such as p63 expression, despite the increased calcium concentration and show activation of the mitogen-activated protein kinase ERK upon stretch. KSC aggregates can be manipulated further and provide a more physiologically relevant model for studying mechanical signaling in KSCs.
Collapse
Affiliation(s)
- Lee Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
32
|
Chen J, Nekrasova OE, Patel DM, Klessner JL, Godsel LM, Koetsier JL, Amargo EV, Desai BV, Green KJ. The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. ACTA ACUST UNITED AC 2012; 199:699-711. [PMID: 23128240 PMCID: PMC3494854 DOI: 10.1083/jcb.201202105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tail–tail interactions of desmoglein 2, promoted by its C-terminal unique region, inhibit its internalization, stabilizing it at the cell surface and promoting intercellular adhesion. Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
34
|
Löffek S, Bruckner-Tuderman L, Magin TM. Involvement of the ubiquitin-proteasome system in the stabilization of cell-cell contacts in human keratinocytes. Exp Dermatol 2012; 21:791-3. [PMID: 22882483 DOI: 10.1111/j.1600-0625.2012.01564.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2012] [Indexed: 01/08/2023]
Abstract
Desmosomes are highly organized intercellular junctions composed of a number of interacting proteins that provide mechanical integrity to epithelial tissues. Mutations in genes encoding desmosomal proteins, including desmoplakin (DP), are associated with human hereditary diseases affecting skin integrity. The detailed mechanism of desmosome assembly remains, despite many efforts, incompletely understood. Recently, the ubiquitin-proteasome system (UPS) has been suggested to be an important regulatory system for the proper intracellular trafficking of proteins. Here, we provide evidence for a calcium-independent, but UPS-dependent, stabilization of cell-cell contacts in human keratinocytes, which might be mediated by the maintenance of DP at desmosomes.
Collapse
|
35
|
Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:129-69. [PMID: 22513004 PMCID: PMC3362670 DOI: 10.1016/j.bbcan.2012.03.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Neutrophil gelatinase associated lipocalin (NGAL), also known as oncogene 24p3, uterocalin, siderocalin or lipocalin 2, is a 24kDa secreted glycoprotein originally purified from a culture of mouse kidney cells infected with simian virus 40 (SV-40). Subsequent investigations have revealed that it is a member of the lipocalin family of proteins that transport small, hydrophobic ligands. Since then, NGAL expression has been reported in several normal tissues where it serves to provide protection against bacterial infection and modulate oxidative stress. Its expression is also dysregulated in several benign and malignant diseases. Its small size, secreted nature and relative stability have led to it being investigated as a diagnostic and prognostic biomarker in numerous diseases including inflammation and cancer. Functional studies, conducted primarily on lipocalin 2 (Lcn2), the mouse homologue of human NGAL have revealed that Lcn2 has a strong affinity for iron complexed to both bacterial siderophores (iron-binding proteins) and certain human proteins like norepinephrine. By sequestering iron-laden siderophores, Lcn2 deprives bacteria of a vital nutrient and thus inhibits their growth (bacteriostatic effect). In malignant cells, its proposed functions range from inhibiting apoptosis (in thyroid cancer cells), invasion and angiogenesis (in pancreatic cancer) to increasing proliferation and metastasis (in breast and colon cancer). Ectopic expression of Lcn2 also promotes BCR-ABL induced chronic myelogenous leukemia in murine models. By transporting iron into and out of the cell, NGAL also regulates iron responsive genes. Further, it stabilizes the proteolytic enzyme matrix metalloprotease-9 (MMP-9) by forming a complex with it, and thereby prevents its autodegradation. The factors regulating NGAL expression are numerous and range from pro-inflammatory cytokines like interleukins, tumor necrosis factor-α and interferons to vitamins like retinoic acid. The purpose of this review article is to examine the expression, structure, regulation and biological role of NGAL and critically assess its potential as a novel diagnostic and prognostic marker in both benign and malignant human diseases.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
| | - Sushovan Guha
- Departments of Gastroenterology, Hepatology, and Nutrition, The UT MD Anderson Cancer Center, Houston, Texas
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
- Eppley Institute for Cancer Research, Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
36
|
Kimura TE, Merritt AJ, Lock FR, Eckert JJ, Fleming TP, Garrod DR. Desmosomal adhesiveness is developmentally regulated in the mouse embryo and modulated during trophectoderm migration. Dev Biol 2012; 369:286-97. [PMID: 22819675 DOI: 10.1016/j.ydbio.2012.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/16/2022]
Abstract
During embryonic development tissues remain malleable to participate in morphogenetic movements but on completion of morphogenesis they must acquire the toughness essential for independent adult life. Desmosomes are cell-cell junctions that maintain tissue integrity especially where resistance to mechanical stress is required. Desmosomes in adult tissues are termed hyper-adhesive because they adhere strongly and are experimentally resistant to extracellular calcium chelation. Wounding results in weakening of desmosomal adhesion to a calcium-dependent state, presumably to facilitate cell migration and wound closure. Since desmosomes appear early in mouse tissue development we hypothesised that initial weak adhesion would be followed by acquisition of hyper-adhesion, the opposite of what happens on wounding. We show that epidermal desmosomes are calcium-dependent until embryonic day 12 (E12) and become hyper-adhesive by E14. Similarly, trophectodermal desmosomes change from calcium-dependence to hyper-adhesiveness as blastocyst development proceeds from E3 to E4.5. In both, development of hyper-adhesion is accompanied by the appearance of a midline between the plasma membranes supporting previous evidence that hyper-adhesiveness depends on the organised arrangement of desmosomal cadherins. By contrast, adherens junctions remain calcium-dependent throughout but tight junctions become calcium-independent as desmosomes mature. Using protein kinase C (PKC) activation and PKCα-/- mice, we provide evidence suggesting that conventional PKC isoforms are involved in developmental progression to hyper-adhesiveness. We demonstrate that modulation of desmosomal adhesion by PKC can regulate migration of trophectoderm. It appears that tissue stabilisation is one of several roles played by desmosomes in animal development.
Collapse
|
37
|
Lago CU, Nowinski SM, Rundhaug JE, Pfeiffer ME, Kiguchi K, Hirasaka K, Yang X, Abramson EM, Bratton SB, Rho O, Colavitti R, Kenaston MA, Nikawa T, Trempus C, Digiovanni J, Fischer SM, Mills EM. Mitochondrial respiratory uncoupling promotes keratinocyte differentiation and blocks skin carcinogenesis. Oncogene 2012; 31:4725-31. [PMID: 22266853 DOI: 10.1038/onc.2011.630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decreased mitochondrial oxidative metabolism is a hallmark bioenergetic characteristic of malignancy that may have an adaptive role in carcinogenesis. By stimulating proton leak, mitochondrial uncoupling proteins (UCP1-3) increase mitochondrial respiration and may thereby oppose cancer development. To test this idea, we generated a mouse model that expresses an epidermal-targeted keratin-5-UCP3 (K5-UCP3) transgene and exhibits significantly increased cutaneous mitochondrial respiration compared with wild type (FVB/N). Remarkably, we observed that mitochondrial uncoupling drove keratinocyte/epidermal differentiation both in vitro and in vivo. This increase in epidermal differentiation corresponded to the loss of markers of the quiescent bulge stem cell population, and an increase in epidermal turnover measured using a bromodeoxyuridine (BrdU)-based transit assay. Interestingly, these changes in K5-UCP3 skin were associated with a nearly complete resistance to chemically-mediated multistage skin carcinogenesis. These data suggest that targeting mitochondrial respiration is a promising novel avenue for cancer prevention and treatment.
Collapse
Affiliation(s)
- C U Lago
- College of Pharmacy, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. ACTA ACUST UNITED AC 2011; 195:1185-203. [PMID: 22184201 PMCID: PMC3246898 DOI: 10.1083/jcb.201106057] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Desmogleins and desmocollins are transported to the plasma membrane by different kinesin motors, providing a potential mechanism to tailor desmosome structure and function during development and epithelial remodeling. The desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), comprise the adhesive core of intercellular junctions known as desmosomes. Although these adhesion molecules are known to be critical for tissue integrity, mechanisms that coordinate their trafficking into intercellular junctions to regulate their proper ratio and distribution are unknown. We demonstrate that Dsg2 and Dsc2 both exhibit microtubule-dependent transport in epithelial cells but use distinct motors to traffic to the plasma membrane. Functional interference with kinesin-1 blocked Dsg2 transport, resulting in the assembly of Dsg2-deficient junctions with minimal impact on distribution of Dsc2 or desmosomal plaque components. In contrast, inhibiting kinesin-2 prevented Dsc2 movement and decreased its plasma membrane accumulation without affecting Dsg2 trafficking. Either kinesin-1 or -2 deficiency weakened intercellular adhesion, despite the maintenance of adherens junctions and other desmosome components at the plasma membrane. Differential regulation of desmosomal cadherin transport could provide a mechanism to tailor adhesion strength during tissue morphogenesis and remodeling.
Collapse
Affiliation(s)
- Oxana E Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
39
|
Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2011; 226:158-71. [PMID: 21989576 DOI: 10.1002/path.3027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023]
Abstract
Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.
Collapse
Affiliation(s)
- Matthew A Brooke
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
40
|
Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2010; 2:a000125. [PMID: 20182611 DOI: 10.1101/cshperspect.a000125] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intercellular anchoring junctions are highly specialized regions of the plasma membrane where members of the cadherin family of transmembrane adhesion molecules on opposing cells interact through their extracellular domains, and through their cytoplasmic domains serve as a platform for organizing cytoskeletal anchors and remodelers. Here we focus on assembly of so-called "anchoring" or "adhering" junctions-adherens junctions (AJs) and desmosomes (DSMs), which associate with actin and intermediate filaments, respectively. We will examine how the assembly and function of AJs and DSMs are intimately connected during embryogenesis and in adult cells and tissues, and in some cases even form specialized "mixed" junctions. We will explore signaling and trafficking machineries that drive assembly and remodeling and how these mechanisms are co-opted in human disease.
Collapse
Affiliation(s)
- Kathleen J Green
- Northwestern University Feinberg School of Medicine, Department of Pathology, R.H. Lurie Comprehensive Cancer Center, 303 E. Chicago Ave. Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure–function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.
Collapse
|
42
|
Pieperhoff S, Barth M, Rickelt S, Franke WW. Desmosomal molecules in and out of adhering junctions: normal and diseased States of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010; 2010:139167. [PMID: 20671973 PMCID: PMC2909724 DOI: 10.1155/2010/139167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/23/2010] [Indexed: 11/18/2022] Open
Abstract
Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | - Mareike Barth
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Werner W. Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Maaßstraße 30, 69123 Heidelberg, Germany
| |
Collapse
|
43
|
Abstract
The structure, function, and regulation of desmosomal adhesion in vivo are discussed. Most desmosomes in tissues exhibit calcium-independent adhesion, which is strongly adhesive or “hyperadhesive”. This is fundamental to tissue strength. Almost all studies in culture are done on weakly adhesive, calcium-dependent desmosomes, although hyperadhesion can be readily obtained in confluent cell culture. Calcium dependence is a default condition in vivo, found in wounds and embryonic development. Hyperadhesion appears to be associated with an ordered arrangement of the extracellular domains of the desmosomal cadherins, which gives rise to the intercellular midline identified in ultrastructural studies. This in turn probably depends on molecular order in the desmosomal plaque. Protein kinase C downregulates hyperadhesion and there is preliminary evidence that it may also be regulated by tyrosine kinases. Downregulation of desmosomes in vivo may occur by internalisation of whole desmosomes rather than disassembly. Hyperadhesion has implications for diseases such as pemphigus.
Collapse
|
44
|
Wu MC, Liao YC, Chao SC. Mutation analysis of the ATP2C1 gene in Taiwanese patients with Hailey-Hailey disease. DERMATOL SIN 2010. [DOI: 10.1016/s1027-8117(10)60012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
van der Wier G, Pas HH, Jonkman MF. Experimental human cell and tissue models of pemphigus. Dermatol Res Pract 2010; 2010:143871. [PMID: 20585596 PMCID: PMC2877615 DOI: 10.1155/2010/143871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/18/2010] [Indexed: 11/18/2022] Open
Abstract
Pemphigus is a chronic mucocutaneous autoimmune bullous disease that is characterized by loss of cell-cell contact in skin and/or mucous membranes. Past research has successfully identified desmosomes as immunological targets and has demonstrated that acantholysis is initiated through direct binding of IgG. The exact mechanisms of acantholysis, however, are still missing. Experimental model systems have contributed considerably to today's knowledge and are still a favourite tool of research. In this paper we will describe to what extent human cell and tissue models represent the in vivo situation, for example, organ cultures of human skin, keratinocyte cultures, and human skin grafted on mice and, furthermore, how suitable they are to study the pathogenesis of pemphigus. Organ cultures closely mimic the architecture of the epidermis but are less suitable to answer posed biochemical questions. Cultured keratinocyte monolayers are convenient in this respect, but their desmosomal make-up in terms of adhesion molecules does not exactly reflect the in vivo situation. Reconstituted skin is a relatively new model that approaches organ culture. In models of human skin grafted on mice, acantholysis can be studied in actual human skin but now with all the advantages of an animal model.
Collapse
Affiliation(s)
- Gerda van der Wier
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Hendri H. Pas
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Marcel F. Jonkman
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
46
|
Sedimentation field-flow fractionation separation of proliferative and differentiated subpopulations during Ca2+-induced differentiation in HaCaT cells. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1051-8. [DOI: 10.1016/j.jchromb.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 11/22/2022]
|
47
|
Franke WW. Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 2009; 1:a003061. [PMID: 20066111 PMCID: PMC2773636 DOI: 10.1101/cshperspect.a003061] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organization of metazoa is based on the formation of tissues and on tissue-typical functions and these in turn are based on cell-cell connecting structures. In vertebrates, four major forms of cell junctions have been classified and the molecular composition of which has been elucidated in the past three decades: Desmosomes, which connect epithelial and some other cell types, and the almost ubiquitous adherens junctions are based on closely cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules. The by and large parallel discoveries of the junction protein families are reported.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Maher MT, Flozak AS, Stocker AM, Chenn A, Gottardi CJ. Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. ACTA ACUST UNITED AC 2009; 186:219-28. [PMID: 19620634 PMCID: PMC2717642 DOI: 10.1083/jcb.200811108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well established that cadherin protein levels impact canonical Wnt signaling through binding and sequestering β-catenin (β-cat) from T-cell factor family transcription factors. Whether changes in intercellular adhesion can affect β-cat signaling and the mechanism through which this occurs has remained unresolved. We show that axin, APC2, GSK-3β and N-terminally phosphorylated forms of β-cat can localize to cell–cell contacts in a complex that is molecularly distinct from the cadherin–catenin adhesive complex. Nonetheless, cadherins can promote the N-terminal phosphorylation of β-cat, and cell–cell adhesion increases the turnover of cytosolic β-cat. Together, these data suggest that cadherin-based cell–cell adhesion limits Wnt signals by promoting the activity of a junction-localized β-cat phosphodestruction complex, which may be relevant to tissue morphogenesis and cell fate decisions during development.
Collapse
Affiliation(s)
- Meghan T Maher
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
49
|
Bazou D, Foster GA, Ralphs JR, Coakley WT. Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap. Mol Membr Biol 2009; 22:229-40. [PMID: 16096265 DOI: 10.1080/09687860500093396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 2-dimensional aggregate of C6 neural cells was formed rapidly (within 30 s) in suspension in a recently developed 1.5 MHz ultrasound standing wave trap. A typical 1 mm diameter aggregate contained about 3,500 cells. Spreading of membrane occurred between the aggregated cells. The rate of spreading of the tangentially developing intercellular contact area was 0.19 microm/min. The form of the suspended aggregate changed from one of a hexagonal arrangement of cells to one of a cell-monolayer-like continuous sheet of mostly quadrilateral and pentagonal cells as in a cell monolayer on a solid substratum. A range of fluorescent indicators showed that the >99% viability of the cells did not change during 1 h exposures; therefore cell viability was not compromised during the monolayer development. The average integral intensities from stained actin filaments at the spreading cell-cell interfaces after 1, 8 and 30 min were 14, 25 and 46 microm(2) respectively. The cells in this work progressed from physical aggregation, through molecular adhesion, to displaying the intracellular consequences of receptor interactions. The ability to form mechanically strong confluent monolayer structures that can be monitored in situ or harvested from the trap provides a technique with general potential for monitoring the synchronous development of cell responses to receptor-triggered adhesion.
Collapse
Affiliation(s)
- Despina Bazou
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3TL, Wales, UK
| | | | | | | |
Collapse
|
50
|
Micallef L, Belaubre F, Pinon A, Jayat-Vignoles C, Delage C, Charveron M, Simon A. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes. Exp Dermatol 2009; 18:143-51. [DOI: 10.1111/j.1600-0625.2008.00775.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|